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A new class of random search algorithms for minimum in which in the search for a new best esti-

stochastic optimization is presented. The designer has mate, onl y the very recent h1story of the search 1s ta-
the option to employ a learning memory in order to ken into account. This algor1thm thus operates with a
reduce the cost of the optimization process measured short memory.However,over th~ last five years two
in terms of the number of observations. The asympto- factors in the design of optimlzation systems have
tical properties of the procedure are discussed ,and changed. First, the computers have become very fast
new probability theoretical techniques are used in the and can handle very large active memories. On the

f f rn nce other hand,the cost of taking measurements (i.e. col- proo 0 conve ~e .
lecting data,evaluating a performance , etc.) has goneI. Introduction up considerably because of the increased cost of man-

Let Q be an unknown real-valued function on a power. This has made the cost of the storage and pro-
set B~ Rm where m~ 1. In many applications, one is in- cessing of data decrease relatively to the cost of ob-
terested in finding a w in B for which Q(w) is nearly taining the data. This trend has been recognized by
minimal. Because of the absence of any information several authors (e.g.[18]) .So,one wants to develop
regarding the continuity ,differentiabili ty, smoothness an algorithm which
or unimodality of Q ,or because of the special nature {i)uses the available information as well as pos-
of B (for example~ can be a countable set of isola- sible,e.g.by storing the past observations and pro-
ted points from E ),it 1s not possible to use a cessing the data obtained during the search in an
classical optimization technique such as the gradient intelligent way.
method..It is known that in such situations random {ii)guarantees that the best estimate of the minimum
search can be successfully used (for a review of the converges, 1n some probab1listic sense, to the mini-
literature,see [1,2,3]). mum of Q.

In this paper ,we are interested in the stochas- In this paper a statistical search method is
tic optimization problem, that is ;Q(w) is no longer developed with a potentially growing memory. The rate
exactly computable but can be estimated if enough of convergence to the minimum is expected to be high
observations are averaged. To be explicit, it is assu- due to the learning behavior of the memory. Maclaren
med that for all w~B,one can observe (compute,etc.) [19) proPosed,in a control engineering application,to
Yl""'Yn,...where the Yn are independent random use a stochastic automaton with a variable structure

variables all distributed as Y with distribution and a growing number of states to tackle a special
function F and mean Q{w)=SydF {y)=E {YJ. stochastic optimization problem.However,the conver-

w w w gence problem for his method 1s not satisfactorily
Several people have tried the random search algo- solved while the field of applications is very small.
rithms used in deterministic optimization with the re- Our approach does not resemble any other method
suIt that there are as many heuristic random search ava1lable 1n the 11terature and is partially modeled
methods as there are scientists studying the stochas- on the learning process in the human brain. "Remem-
tic optimization problem. bering exceptional facts"," forgetting the too distant

The most widely studied random search techni- past" and "averaging costs" are features that can be
que for stochastic optimization is the algor1thm ?f recognized in the algorithm.The theoret~cal value of
Gur1n [4) or one of its modifications [3,5).Gurin s the methcxi is that it encompasses the well-known
algorithm is simple and can be used for general B random optimization method of Matyas [20) for deter-
and Q .However, the task of proving the convergence ministic optimization as a special case. The emphasis
for the modified methods has become increasingly is on the new method for proving the convergence of
difficul t. Furthermore, Gurin 0 s method 1s very inefficient the algorithm in s tochas tic optimiza tion problems. The

with respect to the number of measurements (obser- techniques,different from those employed in [4,5],de-
vations). If B is a finite set of points, one can use pend upon some powerful probability theoretical in-
stochastic automata with a variable structure [6,7)or equalities [22).
probabilistic strategy selection methods [8), most of
which are proved to be convergent in some probabi- II. Problem Formulation nd let
lis tic sense. If Q satisfies some regularity conditions, Let (12, a, P) be amprobabi~ity space ~al ebra
usually in terms of continuity,differentiability and B be a closed set from R .Let Ii B be the a g
unimodality,local hill-climbing methods may be used. of all the Borel sets that are contained in B.We as-
Most of these techniques are derived from the Kiefer- sume that there exists a measurable mapping h from
Wolfowitz stochastic approximation algorithm [10,11), (12xB,axBm) to (R,B) where B is the class of Borel
the stochastic gradient algorithm [12-15) and combi- B m -h{w ,...
nations of these algorithms w1th stochastic automata sets from R.Notice that for every w in R , ~-a c~l-
and random search [16-17).For instance,if Q is con- is a random variable on {fl,a,P).We say tha
tinuous and if the accuracy of the solution is of no lection {II
great importance,one can always partition B into a t = {Fwlw~B}
finite number of sets and consider each set as a of distr1bution functions is a random environm~ m
single point in a new space, thus reducing the prob- with search domain B if B is a closed set from R
lem to a finite opt1mization problem (see [9). and if there exists a probability space (fl.,a,P) and

The classical random search algorithm is a se- an (OxB,axBm)-{R,B) measurable function h such
qu~ntial procedure to update the best estimate of the B
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that for all YEF., Fw(y)=P(w IwE.a,h(w,w)~y) .Notice and if to is tt for some t>O with parameter L=O,then' ~
th t if B i tabl th h b bilit to is determinis tic. Also ,if to is to then to is to fora s coun e, en suc a pro a y space t s
and a measurable function h can always be found. all s~t.It should be pointed out that most environ-
Thus it makes sense to define a countabl y infinite ments of any practical interest are generalized gaus-
(finite) random environment as a countable (finite) col- sian.For instan~e,1f all the Fare gauss1an w1th va-
lection of distribution functions.The reason of the de- riance a2(w)~a ,then to is Jwwith parameters a and
finition (1) is the following. If W is any random vector O. If to all F correspond probability measures that
on some probability space (ll',u',P') that 1s different w
from (Jl,u,P) and Wtakes values in B,then Y=h(w,W) put their weights on [dl(w).d2(w)] where d.z(W)-dl(W)

is a random variable on the product of both probabi- ~L, then e is generalized gauss1an with parameters
lity spaces. Furthermore,if Wl"."Wn is any se- L/2 and L.In particular,if for all win B,Y takes with
quence of random vectors (all taking values in B) probability one values in (O,I) or [0,1], then e 1s
that are applied to the environment, then there exists J with parameters 1/2 and 1. Such environments are

Y Y f d i bl ( f ed often encountered in stochastic automata theory and
a sequence 1 , ..., 0 ran om var a es re err di t ti i in SCre e op m zat on.
to as responses ci the environment, measurements ,.QB.- The purp:>se is to find an optimization pro-
servations or observed losses) where ,given that cedure that generates a sequence of random vectors
Wl=wl"'.'Wn=wn (wiEB,i=I,...,n),the Yi are in- WI'... ,Wn".' taking values in B such that

dependent and have distribution function F ,i=I,..., Max(Q(W ),q i ) tends in some probabilistic sense
wi n m n

n. We will refer to Q(w)=! ydF (y) = E (Y} as the to qmin as n Notice that we have to allow for the
w w .

h tl f i d Qi b ti possibility that Q(W )<q i for some n.Df course,if
stocnasuc perrormance InOex. s y assump on a n m n
Borel measurable function from B to F.. Except for B, WI' ..., W ,... were a sequence of lid random vec-
we assume that there is no a priori knowledge about tors distri:uted as W then Q(w)~ w 1 for all nto or Q. The stochastic opti mization problem is to ' n qmin p .

sequentially find a value w in B for which Q is mini- III Th D ti 1 ti P d..ne uptlmlzauon I'roceoure
mal or nearly minimal. Let (~ ) and (~ ) be sequences from [0 1]We assume that there is a random generator n n '

with support in B, i. e. a device for generating a se- with ~ + ~ ~ 1 for all n, and let (A ) be a sequence
n n n

quence W I '...' W ,... of lid (independent identical- f itl i t F rth 1 t Z Z be . n 0 pos ve n egers. u er, e l' 2".' a se-

ly distributed) random vectors taking values in Band f ind nd t i t 1 ed d i blquence 0 epe en n eger-va u ran om var a es
distributed as W where W has a distribution function with
G which is either known or unknown. The minimum of P(Z =1}=a ,P(Z =O}=B ,P(Z =-1}=1-~ -~ .
0 with respect to G is n n n n n n n

-i f Q(W) (2) (4)
qmin -ess n To start the 8earch ,generate a random vector WO=W 0

where the essential infimum is defined as usual [2]. having distribution function G.Given that W*=w, ~
Actually,q i is the unique number with the property 0 0

f lml n 0 P(Q(w) '" ) 0 nd measurements are made,SaYY l',...,Y: ,all having
that or a c>, ~qmin-C -a "0

( (W) } 0 id d th W k distribution function F .Let the estimate of Q(w) be
P Q ~q + C > prove at q i > -'. e remar Y* h w

min m nOw ere ).0
thatifBiscountable,SayB=(wl,w2,...),andG YO=(t Y;)/).O. (5)

i-I,puts mass gi at wi such that tgi=1 and O~gi~1 for Let Y =y* and N =N*=). where N is the number of
0 0 0 0 0' 0

alIi then q = inf Q(w) In th1s case we see, min i .observations that were used 1n computing the average
i:gi>O Y .The search procedure cons1sts of generating two

that q i is indepenaent of G as long as every wi s2quences of tri ples (W * y* ,N*) and (W Y N ) n=m n ' n' n n n' n' n'
receives pos1tive probability from G. 1,2, ...where (W*,Y*,N*)=CW ,Y ,N ).W is the

We categorize the random environments with 0 0 0 0 0 0 n
msearch domain B as follows. estimate at iteration n of the minimum in R of Q.

(i) to is i;(deterministlc,noiseless) if for all WEB, Y 1s the corresponding estimate of Q(W ) and N is
Y=Q(w) wpl (with probability one). tfile exper1ence w1th W ,that is,the numb'l;r of objier-

(ii) e 1s to for some t>C with parameter L<. if vations that were userfin the computation of the es-
t t t timate Y .

sup E (I Y-Q(w) I }=sup! I y-Q(w) I dF (y) n
wEB w weB w Let the search be at iteration n.Then W~ is

s L < .(3) generated as follows.
(iii) e is J (generalized gaussian) with parameters a (i) If Zn=O,let W~=Wn-l'

and L (O~a<. ,O~L<.) if (ii) If Z =1 let W* be an independent random vector
2 2 n' n

sup E (e).(Y-Q(w»)) sea k /2(1-\kIL) w1th distr1bution function G.
wEB w (i1i) If Z =-I,W* is arbitrary with the restr1ction

for all A with 1).IL~I. that ;(W*EB)=I.
If an environment is J then it certainly 1s to t for all
t>O.A determi nistic environment is always gauss1an
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GiVen that W*=w, N*=). observations are made, say Define (W* Y* N*) b yn n n n' n' n

Y' , ...,Y ).' ,all having distribution function F .Let the --(W* y* N*) or (W* y* N* ) *
1 n w (W~,Y*,N*)= n' n' n n' n' n

estimate of Q(w) be n n (W, Y ,N ) ,if S =1

).n n-l n-l n-l n

y* = (E Y' )/). , (6)
n i - I i n (W*,Y*,N*) or (W*,Y*,N*)*

-, n~n nnn

Two questions naturally arise;(I) How does one pick cvf- ~-1 ~-~
w* if Z =-1 and how can the past observations be i 'i 'i' n-l

n n if S =2 and W*=W
used to aid in picking W*? (2) How does one find n n i

n (W*,Y*,N*) ,if S =3 (9)
(W ,Y ,N ) given (W*,Y*,N*),i=O,I,...,n aI¥1 n n n n

n n n n n n where ,if S = 1, one either always merges or never mer-

(Wn-1'Yn-l,Nn-l)? We will refer to Wn as the ges and,ifnS =2,one either always merges or never mer-

basepoint and to (W ,Y ,N ) as ti\e base triple, ges. The mel'g~ng operatlon can be randomlzed but this

n n n will only complicate matters now. The consistency in the

In Gurin's algorithm [3-5],to make the decision use of the merging operation and the fact thatW and
in answer to question (2) ,it is required that). ad- h Wn-1 n-1

ditional measurements be made with W to 6btain t e i ,lsiST -l,are pairwise unequal for all n are
n-l n

an estimate Y 1 of Q(W 1). The decision is based important factors in the proof of the theorem of con-
n- n-

upon a comparison between Y and y* ,that is, vergence given below.

"'"' n-1 n The next step is the decision whether to pick

W =W 1 unless Y 1> Y*+c (where c > 0 is a thres- (W 1 , Y I ,N ) or to select (W*, y* N*) as the
n n- n- n n n n- n- n-l n n' n

hold),in which case W =W*.However,valuable data new base triple.Let D be a random variable taking
n n n

are wasted since Y is forgotten and thus,it is as values in (0,1) where D =1 only if the old base

if N measuremei\\sl are thrown away at the n-th triple is updated at the n.!\h iteration. Thus,
n-l -

iteration. Therefore , we will not require to make spe- D = Jl if Snz1 or Y~<Yn-l (10)

cial additional observations for the decision (2),thus n to otherwise

reducing the total cost of data collection. and --

Let H be the data,outside the base triple, that (W ,Y ,N )=
l(w~,Y~,N~) if Dn=l (11)

n n n n
i d t ti h H - (W n Y n N n ) (W ,Y ,N )if D =0.

are memor ze a me n were n- I' I' 1 ,..., n-l n-l n-l n

n n n(W T ' YT ,NT) and where Tn is a .nonnegative integer The only thing that is left is to obtain H

n n n , from Hand (W*, y* ,N*) .To make sure that Wn and
valued random variable.If T =O,then H is empty.If n n-1 n n n n

T sM<- for all n,we say Btat the 'alg~rithm operates Wi,l~i~Tn' are pairwise unequal,the following pro-

w'lth a finite memory. If T ..-as n... then we say cedure is suggested.
n vJ1-1 h.lI-l .n-l .11-1

that the algorithm operates with a growinq memory. (i) If Sn=2 and W~= i ,remove lVY i 'Xi ,Ni ) from

We require that H be a measurable function of Hn-l'
nh (W * Y * N * ) i 0 1 d th t t 11 ti (11) If D zl and S ~I,add (W ,Y ,N ) to H

t e i " ,="... ,n an a a ames n n n-l n-l n-l n-li i --

W Wn Wn ar e P a i rwise U
ne q ual Theref o re T = 0 or add nothinq at all.If D n =O,add (W*,Y*,N*) to

n' 1'...' T ., 0 n n n

d T ~ f n H 1 or add nothing at all.
an ~n or all n. n-

~e now continue the description of the algo- (ill) Any triple left 1n H after (11) can be dropped

n-l
rithm. First of all,it 1s clear that in picking W* if If desired. Dropping triples corresponds to a

n
Z =-1, we can expect help from H l and (W 1 ; loss of memory but can sometimes be more econo-

n n- n-
Y N ) Gi (W* y* N*) (W Y N ) and mical,

n-l' n-l' ven n: n' n' n-l' n-l' n-l (iv) Relabel ~ll the triples left after (i11) so that to

H l ,we will compute (W ,Y ,N ) in two steps, all l~i~T (T is the number of triples) there cor-
n- n n n n n

First an auxiliary triple (W*, Y* ,N*) is obtained.De- responds one and only one triple cvf f ,~). This
n n n i' i 1

fine a random variable S where relabeled sequence of triples is H .
n n

S =1 if W*=W The method of deciding whether to add or to

{ n n n--,1 1 drop triples from Hn-l (in (11),(ii1) is not specified.

S =2 if W*=~ Yor some ~ from H
n n i i n-l In fact this decision may depend in an arbitrary

S =3 otherwise (7) fashion upon any information available at the n-th
nN th t S i i 1 d fi ed i W ...n-l iteration. The decision may be randomized and can,in

ote a s un que yen s nce , YY--, ..,
n-l n n-l 1 an extreme case,also be made through human inter-

W T are pairwise unequal. Define further the .!!!!!:.- vention in the search process.

i n-1 f tw tri 1 (W Y N) d (W Y " N " ) as f 1 -Given (W ,Y ,N ) and H ,the above described
9.!!)9 0 0 p es , " an , , ,on n n n

lows: procedure is repeated for n+ 1, that is, the generation

(W,Y,N)*(W,Y",N")=(W,(NY+N"Y")/(N+N"),N+N'? of CW* l ,y* l ,N* 1 ) (see (6»),the computation of
(8) nt n~ n+

Th th i f th tri 1 is t h S m f (W* 1 , y* I ' N* 1 ) (see (7), (9» ,the decision concerning
us, e exper ence 0 e new pee u 0 n+ n+ n+

the experiences of the component triples. CW 1 , Y 1 , N 1 ) (see (10-11») and the determination
n+ n+ n+
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of Hn+ 1 (procedure (l)-(iv». A note is ln order h.ere concerning the me'g'.. ~

Remarks: We note that the algorithm can be used operation in (9) .If Tn-l is large and one goes thrOug~ ~

with T =0 for all n.Notice further that TO=O and that the trouble of storing all or most .of the past observa-n .
OST sT +1 for all n.The memory can be labeled as tions ,it would be very lnconsistent if no merglng was

n+ 1 n used in (9). Further ,lf merging is used in (9\ ,it is
a learning memory either because the N~ are increa- wlse to let W* be equal to one of the wn- ,lsisT ,
slng (In view of ). ...m as n'" m ,or because of the n i nol
merging in (9)) or nbecause T ...m as n"'m,Surprislng- with positive pro~~yility,thus increasing the expe-
ly, the convergence of the algSrithm is not affected rlences of the W 1 on the long run. If Tn is small

by the finiteness or divergence of the sequence T. or zero,one can of course as well do without the mer-
The undefined parts ln the algorlthm ar n glng in (9). This woul~ s~plify the algorithm consl-

(a) The generation of W~ lf Zn=-I. e derably because (W~,Y~,N~)=(W~,Y~,N~ and N~).n,If

(b) Steps (li) and (lli) in the updating of Hn-l. Tn-I-a for all n, then it is easy to see that the only

It ls up to the deslgner to use (a) .and (b) to obtaln thing to be memorlzed is (W n-l' Yn-l). The decision
h rule (10-11) reduces to19h rates of convergence. Of course, some experlmen-
tal know-how will be helpful.Let us briefly dlscuss }(W~,Y~) 1fY~<Yn-lthe problems (a) and (b). We say that Q and B define (W n' YJ = I (W ,Y ) otherwise. (12)
an exhaustive search problem if for every finlte ,.ub- n-l n-l
set (w ,..., w 1 of B, the knowledge of Q(w ),..., In that case the algorlthm reduces to the well-known

1 L. 1 random optimization algorithm of Matyas [20].
Q (wL) does not convey any inforlJja tion regardlng the
value of Q(w) for any w~B,wJ.(w ,...,w ),In such IV. Theorem Of Converge~e
problems ,does lt still make sensA to store some in- Theorem 1: Let B be a closed set from ~ and let t
forma tion in H (1. e. ,to let T > 0) ? The answer ls be a random envlronment wi th search domain B. Let Q
of course nega!l;lve lf the envlronment is determlnlstic. be a Borel measurable mapping from B to R and let G
I:tdeed,1f the envlronment ls ~,then it ls clear that be anaarbltrary distrlbution function with support ln 8.
" =Q(W) wpl for all n,The only informaticn that Let ( n},{$n) and {Yn) be number sequences from
"\ n

needs to be stored ls (Wn'Yn) and lt ls not nece8- [0,1] such that an+8n+Yn=1 for all n.Let (~) be a

sary to sample the basepolnt (thus,let $ aO for all Ii. sequence of positive integers and let Wl'W2'... be
n mFurther,lf Z =-1, the best one can do is to generate a sequence of random vectors from R whose distri-

W* with dP.tribution function G ln B.Therefore,lf the button is determined by the procedure described in
n

i t 1 d t i i ti nd d fi h section III. If there exists a sequence (b } of integersenv ronmen s e erm n s cae nes an ex aus- h U t nsuc iative search problem, we can let a =1 and Z =1 for all b b (13)
n.In the random search literature~hls meth'dd is cal- OS IS...
led bllnd search (1] Assume next that the envlronment osb Sn for all n, (14)

nls determlnistic but that Q and B do not define an n n
exhaustive search problem,e.g. because B=F.m and Q t ~i ..." (15)
ls known to be continuous.In that case lt can be lab,

nhelpful to let T >O.If Z =-1, T 1=0 and Q ls conti- n n
(16)n n n- 2 t a ..."

nuous, one can let W* be gausslan with variance a lab!
n n n

and mean W 1 for the purpose of local hl11-climblng and the environment ls
n-

either ~ n(thls method ls referred to as creeplng random search - J nd '\ / 2 1or a A c og n ...
(1]).If T I >O,the dlstrlbution of w* may be a mlx- -b n nn- n
ture of gaussian dlstrlbutions wlth centers at Wn-l .Q!:.tt for t~2 and in additio~ to the latter con-

_.n-l t t-l n
and Wl ,ISiSTn-l' ln order to slmultaneously dltion, ncnIXb (17)

n A
climb separate lo.cal hills .The same strategles can where c =n-bn+l and 1b =Mln(Abn.Ab,+.I,...,An).then
be used 1f the environment ls noisy, 1. e. not ~. But for l) 'h n

nolsy envlronments,even in case Q and B define an Max(Q(W),q i ) ...q 1 in probability. (18) ,
n mn mn

exhaustive search problem,it makes sense to store Th i (18) iith .:. bilit if the convergence n s w prooa yone e
all the past observations ln H on account of the f«:t diti (15 17) I ed b (15' 17' )1 n con ons -are rep ac y -:

that the ~- are only noisy estimates of the Q(w~) ~ ~i / log n r:. '. (IS')

for i=I ,T .In such case.if Z =-I,one could for lab,
n-l n n n n

instance define w* as follows.Let M>O be fixed and t ai/log n ..., (16')
conslder those n wr-1 that correspond to the M i=b .

lowest values among the yr-1 ,IS1ST -1. Then let ~nd the en~i~onment ls ~~ .Q!:.J and
n n-l ). /c2 log n.. ..or t for t~ 2 and in additlon to the

W* have a unlform dls trlbution over those W 1 ,The b n -;- t 1
n nol lat'ler condltion, E nct/Xt- < m. (17')

deslgner can for lnstance eliminate the other (W 1 ' n=1 n bn
.} .} ,

yf ,N~) from Hn-l so that TnsM for all n. f.!.Q.Q!: Theorem 1 is proved In the Appendix.
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In some applications one 1s more interested in If the environment is J, then (13-17) or (13-14,15'-
the asymptotic behavior of the expected values of the 17') hold if
measurements,i.e. Q(W~),n=l,2,... .The following Max(a,a)<Min(6/2,l). (24)
theorem holds true. For this ,it suffices that a=a=O and that 6>0.The
Theorem 2: Let B be a closed set from Rm and let e proofs of the sufficiency of (22-24) are given in the

Appendixbe a random environment with search domain B.Let Q .
be a Borel measurable mapping from B to R and let G V. Conclusion
be an arbitrary distribution function with ~upport in B. The theoretical properties of a large class
Let (a }, (a } and (y } be number sequences from of random search algorithms for use in stochastic

n n n optimization are discussed.To actually obtain practi-
[0,1] such that a +~ +y =1 for all n.Let fA } be a cal algorithms it is important to make the best usen n n n '
sequence of positive integers and let W. W W* W of the freedom that 1s left to the designer,e.g.in

I' 1~ 2' 2' the ci:101ce of the sequences fa }, (~ } and (A },in
...be a sequence of random vectors from R whose n n n
distribution is determined by the procedure descr1bed the procedure for the generation of W* and in the
in section III.If procedure for updating the memory cozl;\ents Hn.As

Max(Q(W ) ,q ) ~ q 1n probabillty (19) for most random search techniques, the class of
n min m1n random environments to be allowed is very large.

and ~ '!. 1 , (20) This makes the algorithm suitable as a basic buil-
then n ding block for a widely applicable optimization pro-

Max(Q(w" ,q ) ~ q in probab1lity. (21) gram in the com~uter library.
n min min The deslgner has the option to use an al-

fI..ggJ: Let c>O be arbitrary and note that gorithm with a growing memory to reduce the cost
(Q(W~»qmin+C}~ (Q(Wn-1»qmin+C}U (Zn"O} ,so that of optimization measured in terms of the number of
P{QcW*»q +c}~P(Q(w »q +c}+(l-~ ).Theorem observ~tions.It is pointed out how a growing memory

n m1n n-1 m1n n can be useful even in exhaustive (but stochastic)
2 follows from this inequa11ty, (19) and (20). opt1mization problems. In non~xhaustive search
Remark :It turns out that the convergence in probabi- problems,e.g.when B=Rm and Q is continuous ,other
i"1"t"i-;;T Q(W*) ,as in (21) ,normally is the strongest procedures to extract information from the past ob-

n servat10ns should be studied.For instance,further
poss1ble mode of convergence. Indeed, if y =0 for all research is incouraged in parametr1c and nonparame-
n,it is not always possible to insure thaf Q(W*) tric estimators of Q that use the data that are col-

nconverges wp1. This curious but not entirely surpris1ng lected during the search.
result is formulated in Theorem 3. The counterexample
proving Theorem 3 is given 1n the Appendix.The VI.Appendix
result 1n Theorem 3 is not absolute in the sense that Lemma 1 :Let Xl ' ...,X ,X',... ,X' be lid random

n 1 2n 2 -n
for special Band e it may be possible that Q(Wn) variables with £(X )=0 and £(X }=a <- .If S = 1: X
and Q(W:*) both tend to q 1 wp1 as n nil n 1-1 i

n m n and S' = t (X -X') ,then -,
Theorem 3: There exis ts a closed set B from Rm, a n 1= I, i I

Borel measurable function Q from B to R, a determinls- k
tic environment e and a distribution function G with P( U (ISk/k I~ c }}~6 1: P( IS'2k-1/2 1~c/8)
support in B such that for all sequences (a ), (~ ) k~n k~lOl.lzn

n n 2 2
and (y ) from [0,1) with a +~ =1 and y =0 and for for all n and c>O with nc >8a .

n n n n Proof: Let ~y denote the median of a random variabe
all sequences (A } of positive integers and for all ~ P.Levy's symmetrization ineqUaliti and the
algorithms fittingnthe descr1ption of sect10n III ,1t is fact that if £ (y }=O, then I ~y I ~ (2£ (Y2)) ,

impossible that n p( U (ISk/kl~c}) ~P( u (1(,\-~,\)/K.I~c/2))
Max (Q(W*) ,q i ) ..q i wp1. k~ k~n mn mn
For deterministic env1ronments,one can let b=l + P(kU (1~,\/kI~C/2})~

in the condi tions of Theorem 1. The condi tions of n ~

convergence then reduce to 2P( U (ISk/kl~c/2JJ+P[ u((2a2k)~~c/lJ).
-a = t a = -k~n k~

n:1 n n=l n .The last term on t~e right-hand ~ide of this in.-
, , equality is 0 if nc /4>2a2.Arguing as in Loeve [21,

By a slight change 1n the proof of the theorem,it can 252 253) h f 2k-l 2k pp. -we ave or <n~be seen that the condition 1: a =- can be dropped ' ,
eltogether. -n IS~/nl=I(S~-S'k-t/n+s' k-1/nl

The conditions of convergence in Theorem 1 2 2
look rather complicated. Let for instance a =A/na,.B- ~Is'-s',. I/n+ !S' 1/2k-1n n n ~-1 k-1
B/nBand An=Cn6 where a~O,a~O and 6~0.If the en- ~2(IS':S' 11/2k+2ISI 1/2k).
vironment 1s et with t~2,then (13-17) hold- if n 2k- 2k-1

Max(a, a)<Min(6/2, (6 (t-1)-1)/t , 1) (22) By another application of Levy's symmetrization in-
equality, I ' I } }and (13-14,15'-17') hold 1f P( U( Sj/j ~c/2

Max(a,a)<Min(6/2,(6(t-1)-2)/t, 1). (23) j~n
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2k k Proof of theorem 1 :Let c > 0 be arbltrary and let {b } ~
s 1: (P{ U -(2ISj-S' k-11/2 ~ c/4}) be a sequence of lntegers satisfying (13-17) .If cn=n

2k j=2k 1+1, 2 k n-b + 1 ,and W is a random vector with distribution~n + P {2Is' k-11/2 ~ c/4} ) fun6tion G, then we make the following cruclal obser-

2 k k va tion where we use I { } to denote the indicator of
s 1:(2P{IS'k-S'k-11/2 ~c/d}+P{IS'k-11/}. ~~}) an event. .n
2k 2 2 2 {Q(w:»q 1 +c}~{ E I {Z=O}=O} ~n n m n i=b, i

=3 1:P{IS'k-11/2k~c/8}. U{~I -~1}n{~{I~~-Q(W*)I>c/4c}
k~log2n 2 i=b{~-O} i=b, 1 i n

Lemma 2 :Let Xl '. ..,X be lid random variables with n, n n
n

E{X1}=0 and E{lx1It}s:L<~ for some t~2,then U{1~{Q(W1*»qmln+c/2}}}. (25)
t t-1 -CJnc2 n,P { U (ISk l/k~ c }}sCl/c n + C2e F1rst,1t is clear that

k~ 2 2/t n n n
for all nand c >0 with nC >8 L where P{ E I{z =o}=O}S1T (1-~) $ exp(- E e ). (26)
C =24 (1+2/t)tL8t'C 2=12/(1-exP(-16e2}) and C 3= i=b, 1 1=b 1 1=b 1

1 n n, n,
1/(32 et(2+t) L 2/1. Also, n n n
f!:Q2.L: From lemma 1,an irequalit2/rf Fuk and Na- P\~{Q(W1*»qm1n+C/2}}sP{EI{Z=1}$E a1/2}
gaev [22,pp.654] and E{X1 )=0'2$L ,we have with n, 1=bn,1 1=bn,
S'-X + +X -X --X n n n
n- 1... Ii n+1... 2n' +P{1:I ->1:a/2:n{QCW*»q +c/2}}

P{ u{ISkl/k~c)) S 6 1: P{IS'k-11/2k~I/8} 1=b{Zi-1} 1=b 1 1=b 1 min
k~ k~lr,r, n 2 n, n, n,

~~2 n
S6 1: 2(1+2/t)tL/((c/d}t(2~1)1C} 1:bai/2

k~092n + 2 exp(-2et2k(~)2/(t+2)0'2) S(P{Q(W»qmw+c/2)) -n, n

s(C /2ctn~1) r: (2~1)-k+C (1-exp(-1/!6e2)). +P{ 1: (I{z.=l}-ai)/cnS- 1: a1/2cn).
1 k=O 2 2 k 1.0 1 1=c

, 1: exp( -C c 2 ) n, n,
k 1 3 Using 8ennett's inequality (see,e.g. [22]) and the

~ognt t-1 -~ 2 -r- 2 2 -1/!6e2 fact that by the definition of q ,P{Q(W»q +.d2)
$ C /c n +(e "nl /(l-e ~jnc )~(l-e ) min min

1 t t-1 -CJnc2 =l-e for some e>O,the right hand side of the last
$ C1/c n + C2e 2 \ ?It ineaual1ty ls upper bounded by

.2 2/t -~nc -Oj8L n
for all n with n 1 >8L in view of e se 1~ ~i/2 n 2 2 n
:$8-1/!6e2.we used the fact that for all a>l,b>l &1¥1 (I-e) n + exP(-cn(~ ai/2cn) /(2a+E~i/2cJ

k K -bK i=b , 1=c ,
K integer, E a-b sa-b /(l-a ). where 2 n n n n

k~K a = 1: a1 (l-a1)/cn $ E a1/cn .
Lemma 3 :Let X ,...,X be lid random variables with 1=b , 1~ ,

1 n n n

E{X1)=0 and 2 2 Therefore,~e can conclude that
E{eAX1) seA a /2(1-IAIL)for all A with IAIL<l P{n (Q(Wi*»qm1n+c/2})

and for some O'~ 0 and L~ 0, then 1.0 ,
2 2 n. n n

P{ U (ISk/k I~ c)) sC4exp(-nc /(1280' +16LI») s exp(-(a/2) 1: al) + exp(- E a1/10). (27)
k~ n 2 2 1=b , 1=b ,for all nand c>O with nc >80' ,where C4- N t n n

12/(1-exp(-1/16(1+Lc/80'2»)). 2 ex, p{n IY* (W,*)I>c/4C})

f!:Q2.L:It is easy to see that E{X\ }=a2.Note also that i~{, i-Q 1 n
for all n, by Chebyshev's inequal ty, n n .

PIS 'n~ c) sp{ ~)( ~nc }$e-Anc(E{eAx1})n sP{ U u- (IY(Wt, tJ-Q(Wt) I> c/4on})
n i-Ii 1=l,JrAb'

~ exP(-Anc+nA2-0'~/2(1-IAIL)) for all IAIL<I,( .n

With AL=CL/0'2(1+Lc/0'2),W~ obtain sn SUPBP{:!r:_{IY(w,t)-O(w)l>c/4cn})

P{S /n~ c} $ exp(-nc /20'2(1+cL/0'2). tWE Abn'
The samenbound is valid for p{Sn/ns-c} ,so that by where Y(w,t) =E Yilt and the Y1,l$1Sn, are 1id ran-
a combination of bounds, 1=1,

FIls /nl~c}s2exp(-nc2/2(0'2+LI). dom variables with distribution function F .Note that
n 2 2 we used the fact that the merging in (9)w is consis-

By lemma 1, for all n with nc >8 0' ,
tently used and that for all n the Wand W1 Is! ~k 2 ' n i' n'

P{ u{ IS /k I~c }}s12 E exp(-2 (c/8) /2.(0'2+Lc/d) are pairwise unequal.k~n k k~log n From lemmas 2 and 3 we know that for all n lar-
2 2 22 2 -n(c!S) /l tJ +L r...sl ge enough.

$12 exp(-n(~i /2(0'+;c/d)/(1-e ') sup pw{ u_{!'i(w,t}-Q(w)l>c/4cn}} $ gn

S C exp(-nc /(1280' +16Lc)). wEB l=A
b '

4 n
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~here n n,. w 0 1f the envIronment is ~ .,. J..TT ( /(2 )) J..""" -0. -J A
9 = t 1 / z ~ ~ ,exp -a, -0. ~. lie K ~~

n t --C K K~c /~b + ~e ~!bn n if the environ- k=l, k=l,
n n (2) X; / 2 where we used the inequal1ty 1-u~exp(-u/(1-u)) for
ment 1s tt t~ and b cn~K4 O~u<l.This proves (ii).Next,

2 n -A
~exP(-~rb/(K,cn+Yscn) 1f the environ- P{Q(W~»t}~~nP(Q(Wn-l»i}~ ~ne /2

ment 1s J and Ib /c;~Kg' and lim 1nf P (Q(W*»i} ~e-A /2
n n n

and where ~,...,~ are pos1tive constants that de- because the summability of the cz 1mplies that a '.lo
n n

pend upon e and the parameters of the env1ronment'2 and $ !11. This and (i) show that 1t 1s imposs1ble
e.g.L and t if t is tt with parameter L ,or L and a that nQ(W*)'.1q .w 1.
if the environment 1s .J .Let d=Min(1/10; 8/2) so n mm p

that ,after collecting bounds and resvbstitution in Proof of the suffic1ency of (22:24) :We display a se-
(25) ,we obtain ,for all n large enough, quence {c } with c =n-b +1 for all n .such thatn n n n n

P {Q~ »q +e} s exp(-E $ ) + 2exp(-dE a) (13-17) or (13-14,15'-17') hold.Let c nY for some
n min i i ni=o, i=o, O<y<l.Because $<1 and a<l we have that

n n n an.+ n gn .(28) E ai n Y- and E $i n Y-".

Clearly, (28) and (13-17) 1mply (18).The second part i=On' i=On'
of the theorem follows from (28),(15'-17') and the Also, A. /c21ogn n6-2Y/log:n
Borel-Cantelli lemma [21].Indeed,it is easy to check and bn n
that for all c >0, t/ t-l 1+yt-6(t-l)

nc A.b n .m n
t P{Q(w »q +c J < -n

n=l, n min If (22) holds, then we can find a O<y<l such that

by a repeated use of the fact that for any sequence (13-17) 1s eatisfied for type tt environments \vith
{a } of nonnegat1ve real numbers and any r>O, t~2.SimUarly,(24) is suffic1ent for (13-17) and for

n n m r -an (15'-17')for type J env1ronments.F1nallY,(23) is suf-
an/logn.. m if and only if n:lne <m.This conclu- ficlent for (13-14,15'-17') for type tt environments.
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