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Abstract: We provide a short proof of the validity and unimodality of Linnik’s characteristic function l/(1 + 1 t I”), 0 < a < 2, 

by noting that it corresponds to the distribution of S,V’/a, where S, is a symmetric stable random variable with parameter OL, 

and V is an independent exponential random variable. 
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In 1953, Linnik showed that the function 

is a valid characteristic function for (Y E (0, 21. 
Later, Laha (1961) (see Also Lukacs, 1970, pp. 

96-97) showed that the distribution is in fact 
unimodal. Using the fact that for (Y < 1, $I is a 
Polya characteristic function (convex on the posi- 
tive halfline), Devroye (1986) showed how random 
variates from this distribution can easily be gener- 

ated. Recently, Dale Anderson (UC Riverside) 
asked me how one could quickly generate random 
variates for all values of 0~. This led to the follow- 
ing simple observation. 

Property. Let 01 E (0, 21 and p > 0 be given con- 
stants. Let S, be a symmetric stable random varia- 
ble with characteristic function ePl*l”, and let VP be 

an independent random variable with density 

exp( -#)/F(l + l//3), v > 0. 

Then X = SaVBfl/a has characteristic function 

+(t) = l/(1 + 1 t 1 yP. 
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Proof. Note that 

E(eifX) = ~(~-lrl”$) 

m e-“fi+““fi 
= 

/ 0 F(l-tl/P) dv 

=1/(1-t play. 0 

Linnik’s distribution. j3 = 1. The characteristic 
function identified by Linnik is that of SJ’;‘“, 

where V, is exponentially distributed. This prop- 
erty provides a short proof of the validity of 
Linnik’s characteristic function. Since S, is uni- 
modal (Ibragimov and Chernin, 1959; Kanter, 
1975) it follows that X is unimodal as well. In 
general, there exists an infinite peak at the origin 
if and only if a < p. From the representation, we 
also deduce that the first absolute moment is finite 
if and only if (Y > 1. 

Random variate generation. S, can be generated 
by the method proposed by Chambers, Mallows 
and Stuck (1976) as 

sin(&) cOS((1 - a)U) (‘-a)‘a 

cos ‘/“U i Y i 
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where U is uniformly distributed on [0, 11 and Y 
is exponentially distributed and independent of U. 
Furthermore, VP has the exponential power distri- 
bution, for which several good generators are 
available (Johnson, 1979; Tadikamalla, 1980). 
Several other generators are given in Devroye 

(1986). In any case, VP is distributed as UY’jP, 
where U is uniform on [0, l] and Y is a gamma 
random variable with parameter 1 + l//3. Gamma 
random variates in turn can be obtained in aver- 
age time uniformly bounded over the parameters. 

Special cases. (A) If Y is Cauchy (characteristic 
function e-l”) and Z is exponential, then YZ is 
Linnik with parameters cx = 1 and p = 1. 

(B) If N is standard normal, and Z is exponen- 

tial, then N/$! is Linnik with parameters (Y = 2 
and /3 = 1, which in turn is easily seen to be 

Laplace. 
(C) If N is standard normal, then S,( ( N I/ 

fi)‘ja has characteristic function l/,/m. 

(D) It is equally simple to verify that if V is 
exponential, cyJ forms a sequence of numbers from 
(0, 21, y, 2 0, and Sa, is a sequence of independent 
symmetric stable random variables with the given 

parameters, then Cy= ,Sa,( yjV)‘/a/ has characteris- 
tic function 

l/ 1-t i yj] t 1 a, . 
l J=l 1 
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