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Abstract: We provide a short proof of the validity and unimodality of Linnik’s characteristic function 1/(1+ |¢[%), 0 < @ < 2,
by noting that it corresponds to the distribution of S,V"'/*, where S, is a symmetric stable random variable with parameter «a,

and V' is an independent exponential random variable.
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In 1953, Linnik showed that the function
(1) =1/(1+|1]%)

is a valid characteristic function for a € (0, 2].
Later, Laha (1961) (see Also Lukacs, 1970, pp.
96-97) showed that the distribution is in fact
unimodal. Using the fact that for a <1, ¢ is a
Polya characteristic function (convex on the posi-
tive halfline), Devroye (1986) showed how random
variates from this distribution can easily be gener-
ated. Recently, Dale Anderson (UC Riverside)
asked me how one could quickly generate random
variates for all values of a. This led to the follow-
ing simple observation.

Property. Let a € (0,2] and B> 0 be given con-
stants. Let S, be a symmetric stable random varia-
ble with characteristic function e """, and let Vj be
an independent random variable with density

exp(—»#)/T(1+1/8), »>0.

Then X = SaVﬁB/ * has characteristic function

e(r)=1/(1+ [1]%).
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Proof. Note that

E(e"¥) = E(e ™)
S q
I ram @

=1/0+ 111" o

Linnik’s distribution. 8=1. The characteristic
function identified by Linnik is that of S,/
where V', is exponentially distributed. This prop-
erty provides a short proof of the validity of
Linnik’s characteristic function. Since S, is uni-
modal (Ibragimov and Chernin, 1959; Kanter,
1975), it follows that X is unimodal as well. In
general, there exists an infinite peak at the origin
if and only if a < 8. From the representation, we
also deduce that the first absolute moment is finite
if and only if a > 1.

Random variate generation. S, can be generated
by the method proposed by Chambers, Mallows
and Stuck (1976) as

sin(al) ( cos((1 —a)U )\~
cos'/*U Y '
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where U is uniformly distributed on [0, 1] and Y
is exponentially distributed and independent of U.
Furthermore, V; has the exponential power distri-
bution, for which several good generators are
available (Johnson, 1979; Tadikamalla, 1980).
Several other generators are given in Devroye
(1986). In any case, V; is distributed as UY'/%,
where U is uniform on [0, 1} and Y is a gamma
random variable with parameter 1 + 1 /8. Gamma
random variates in turn can be obtained in aver-
age time uniformly bounded over the parameters.

Special cases. (A) If Y is Cauchy (characteristic
function e ") and Z is exponential, then YZ is
Linnik with parameters « =1 and 8= 1.

(B) If N is standard normal, and Z is exponen-
tial, then Ny3Z is Linnik with parameters a =2
and B=1, which in turn is easily seen to be
Laplace.

(C) If N is standard normal, then S(|{N|/
v2)*/* has characteristic function 1//1+ |¢|*.

(D) 1t is equally simple to verify that if ¥V is
exponential, a; forms a sequence of numbers from
0, 2], Y, = 0, and Sa, is a sequence of independent
symmetric stable random variables with the given
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parameters, then ZjilSa/(ij)‘/ % has characteris-
tic function

1/(1+ )y y_,.|z|“/).
i=1

J
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