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Abstract -Zusammenfassung

A Simple Algorithm for Generating Random Variates with a Log-Concave Density. We present a short
algorithm for generating random variates with log-<:oncave density f on R and known mode in average
number of operations independent off Included in this class are the normal, gamma, Weibull, beta and
exponential power (all with shape parameters at least I), logistic, hyperbolic secant and extreme value
distributions. The algorithm merely requires the presence of a uniform [0, I] random number generator
and a subprogram for computingf It can be implemented in about 10 lines of FORTRAN code.
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Ein einfacher Algorithmus zur Erzeugung zufalliger Veranderlicher mit log-konkaver Dichte. Wir legen
einen kurzen Algorithmus zur Erzeugung yon Zufallsveranderlichen mit log-konkaver Dichte f auf R
mit bekanntem Median-Wert vor. Die mittlere Anzahl der erforderlichen Operationen ist unabhangig
yon f Die log-konkaven Dichtefunktionen beschreiben u. a. die Normal-, Gamma-, Weibull-, Beta-,
Potenzexponential- (aile mit Formparameter mindestens I), Perks- und Extremwert-Verteilung.

1. Introduction

This note is motivated by the need for developing algorithms for generating random
variates from large families of densities. Often the density can be computed but not
~ distlilMliioB fuKa iO tba11he inva~ method is ~ applicable. When the
family of densities is suitable restricted, a generat algorithm 15 sometimes wittrift
reach. For example, in Devroye (1984), such a general algorithm is given for the class
of all bounded monotonically decreasing densiti~s.with support [0,1]. In this note,

r we assume thatfis available for computation-and that it is log-concave, i.e.logfis a

concave function on its support. We also assume that a mode is known. Without loss
of generality, we can assume that a mode is lc;>cated at 0 (otherwise, apply aI

I translation), and that f(O) = 1 (otherwise, rescale).

The importance of this class is clear from tHe partial list of members:

(i) the normal density (2n)-1/2 exp ( --f);
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x"-le-x
(ii) the gamma density , x> 0, for a ~ 1 ;

r(a)
(iii) the Weibull density a xa -1 exp ( -x"), x> 0, for a ~ 1 ;

Xa-l (1-xt-1
(iv) the beta density , 0~x~1, for a,b~1;

B(a,b)
exp( -I x la)

(v) the exponential power density (EPD) ( 1)' for a ~ 1 ;

2r 1+-
a

(vi) the Perks distribution (Perks (1932)) with density of the form c/(e:"+e-x+a),
for a> -2 (c is a normalization constant); for a = 2, this yields the logistic
density; for a = 0, we obtain the hyperbolic secant distribution (Talacko
(1956)); .

kk
(vii) the extreme value distribution with density (k=-1)!exp(-kx-ke-X) for

k= 1,2,3, ...(Gumbel (1958)),

(viii) the generalized inverse gaussian density cxa-lexp(-bx-b*/x), x~O, for
a ~ 1, b, b* > 0 (Jorgensen, 1982, p.2.3).

The uniform density on [0, 1] is a member of sub-class (iv), while the Laplace density
is a member of the EPD family. The class of log-concave densities is closed under
convolutions, i.e. the density of a sum of two random variables with log-concave
densities is again log-concave (Ibragimov (1965); Lekkerkerker (1953)).

The algorithm for generating random variates from this general class of densities
should be reasonably fast, although we should not expect the speed obtained by
algorithms that are tailored to a specific density. The small size of the algorithm,
when implemented, is also very important. It could be at the basis of built-in
generators for large families of densities in microcomputers and pocket calculators.

Assume that the basic operations take a unit of time, i.e. the basic arithmetic
operations, compare, move, exp, log, generate a uniform random variate, compute f
Then a good algorithm should use up on the average a number of time units that is
uniformly bounded over the class of all log-concave densities. The algorithm given
here does more: its average time is bounded and is independent of the density j
within the given class when measured in terms of these fundamental "time units".
One should note that it was not until 1974 that uniformly fast algorithms were found
for the gamma family (Ahrens and Dieter (1974); see recent survey by Tadikamalla

(J and Johnson (1981)).

2. Development of the Algorithm

The algorithm is based upon the rejection method. It uses the following inequalities
in crucial places:

Inequality 1: Let j be the log-concave on [0,00) with mode at 0 and j(O) = 1. Then
j(x) ~g (x) where



A Simple Algorithm for Generating Random Variates 249

( ) {1, 0~x~1,g X = (1)
the unique solution t< 1 of t=exp( -x(1-t»), x> 1.

The bound cannot be improved because g is the supremum over all f in the family.

Proof: We need only consider the case x > 1. The essential observation is that among
all log-concave densities with mode at 0 andf(O)= 1, the one maximizingf(x) is of
the form determined by.

{ -au O<u<xlogf(u) = ' --
~ 00, x<u

.for some a>O. Thus, f(u)=e-au, O~u~x. Here a is chosen for the sake of

normalization; thus,
1 -a%

-e
1= .

a

Replace 1- a by t. This concludes the proof of inequality 1.

Inequality 2: Thefunctiong given in (1) can be bounded by two sequences offunctions
Yn(x), Zn(x) for x>1:

1
O=zO(X)~Zl (x)~ ...~g(x)~ ...~Yl (x)~Yo(x)=-.

x

The sequences are defined recursively by

Yn+l (x)=exp( ~x(1- Yn(x»))
and

Zn+ 1 (x) = exp ( -x(1-zn(x»)).
They converge for all x ~ 1: lim Yn (x~ = lim Zn (x) = g (x). ..

n n

Furthermore,
g(X)~Yl (x)=exp(1-x), x~ 1, (2)

and

g(X)~Y2(x)=exp(-x+xel-x), x~1. (3)

Proof: Fix x>1. Consider the functionsft(u)=u andf2(u)=exp(-x(1-u») for
O~u~ 1. Wehaveh (1)= f2(1)= 1,f2(1)=x> 1 = f{ (1),f2 (O)=xe-%< 1 = f{ (0),f2 is
convex and increases from e-X at u=O to 1 atu = 1. This shows that for x> 1, there is
exactly one solution in (0,1) for h (u) = f2 (u). It can be obtained by functional
iteration: if we start with Zo (x)=O, and use Zn+l (x) = f2 (Zn(X»), the unique solution is
approached from below in a monotone manner. If we start with Yo (x) and Yo (x) is
guaranteed to be at least equal to the value of the solution, then the functional
iterationYn+ 1 (x) = f2 (Yn (x)) can be used to approach the solution from above in a

monotone way. As initial overestimate Yo (x) we can take Yo (x) =~ because
x

f2 (~)~h (~).
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Let c = f(m), and letfbe log-concave on Em, 00) with mode at m. By Inequality 2, we
have

+ f( m+~) ~h(x)=min(1,e1-X). (4)

Inequality (4) allows us to use the rejection method in a straightforward way:

Algorithm LCU (Log-Concave densities, Uniform version.) ...
Step 0: [Set-up. To be done once for each density.] Compute c+-f(m).

Step 1: Generate a random variate X with density proportional to h, and prepare
for the acceptance/rejection step: ~

1. Generate U uniform on [0,2], and V uniform on [0,1].
2. IfU~1 then X+-U, T+-V;

else X+-1-log(U-1), T+-V(U-1).

Step 2: [Acceptance/rejection step.]
X

1. X+-m+-.
c

1 .
2. If T~- f(X) then ex1t

c
else go to 1.

At the end of step 1,(X, T) is distributed as(X, Vh(X))where'X has density ~on
2

[0, 00) (this follows from the fact that the integral under h is exactly 2), and V is
independent of X and uniformly distributed on [0, 1]. Sinde the area underfis 1, we

1
accept in step 2 with probability -, independent of f. The average number of

2
iterations is exactly 2, for all log-concave densities on Em, 00) with mode at m.

3. Modifications and Extensions

If f is log-concave with mode at m, then

+f(m+~)~h(IXI). (5)

The integral of h(lxl) over R is 4. Thus, algorithm LCU with the appropriate

modipcation (i. e., replace step 2.1 by: "Generate W uniform on [0, 1].If W ~ 0 then

X ) rX+-- X. X +-m +~" executes steps 1 and 2 four times on the average. Thus, we

pay rather heavily for the presence of two tails. A\quic~ fix-up is not ~ossible because l
ofthtrfactthat the sum of two log-concave functlonsls not necessanly log-concave.
Th~ we could notl."a.dd" the left~nortionlof f to the right portion suitably mirrored
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and apply the algorithm LCU to the sum. However, whenf is symmetric about mode
m, we can achieve the performance of the original one-sided version of LCU : jllst
replace step:2.1 by the new step "Generate W uniform on [0,1]. If W:s0.5 then

X
X+--X. X+-m+-".

2c

If exponential, random variates can be ge1!lerated very cheaply, and the computation
~ of logf poses no time problems (in most examples, it is faster to compute logfthan

to compute f), then the following exponential version can be useful:

~ Algorithm LCE (Log-Concave densities, Exponential version.)

Step 0: [Set-up. To be done once for each density.] Compute c+-f(m), r+-Iogc.

Step 1: Generate U uniform on [0,2], and E independent of U and exponential.
IfU:S1 then X+-U, T+--E

else X-l+E*, T+--E-E* (E* is a new exponential random
variate).

X
Step 2: Case flog-concave on [m,oo): X+-m+-

c
flog-concave on (-00, 00): generate Wuniform on [0,1];

if W:s0.5 then X+- -X;
.X

case f symmetnc: X +-m+-;
2c

h .X ot erWlse: X+-m+-.
c

If T:Slogf(X)-r then exit
else go to 1.

Log-concave densities also occur in Rd, e.g. the multivariate normal density is log-
concave. The closure under convolutions also holds in Rd (Davidovic etal. (1969)),
and marginals of log-concave densities are again log-concave (Prekopa (1973)).
Unfortunately, it is useless to try to look for a generalization of the present
inequalities to Rd for d ~ 2 because the class oflog-concave functions in Rd with mode
at 0 and f(O) = 1 includes the class of functions

IA(x)

where A is any convex set containing the origin, and I is the indicator function. Thus,
the only universal upper bound over this class of functions is 1.

Other approaches could be based upon the combined use of f and the distribution
function F (when this is easy to compute, say). Since log-concave functions- are
unimodal, we refer the reader to Devroye(1984) where general algorithms are given
for unimodal densities when both F and; f can be computed. The dominaiiing
function f<Dundherei~ rather crude, especially in the two-tailed case. Perhaps faster
times can be obtained, at the expense of simplicity, when the derivative f' is given in
a subpro-g1Jam: this will allow one to obtain better dominating curves for Vhe
rejection method.
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4. FORTRAN Programs

C REAL FUNCTION GENLCE (RMODE, OLD, ALOGF)
C
C GENLCE PRODUCES RANDOM VARIATES WITH LOG-CONCAVE
C DENSITY F
C
C RMODE: POSITION OF THE MODE OF F ~
C OLD: SET TO .TRUE. WHEN GENCLE WAS CALLED BEFORE
C FOR THE SAME F
C .F ALSE. WHEN GENCLE IS CALLED FOR THE ,
C FIRST TIME
C ALOGF: A FUNCTION SUBPROGRAM FOR COMPUTING LOG F
C GENLCE ASSUMES A UNIFORM [0,1] GENERATOR (UNI)
C AN EXPONENTIAL GENERATOR (REXP)
C A PROGRAM FOR COMPUTING LOG F (ALOGF)
C

DATA CINV, Rj2*0.Oj
IF (OLD) GO TO 1
.R=ALOGF (RMODE)

CINV = EXP (- R)
1 X=2*UNI (0)

T = -REXP (0)
IF (X.LT.1.0) GO TO 2
X=I.0+REXP (0)
T=I.0-X+T

2 IF (UNI (0) .LT.0.5) X=-X
3 GENLCE=RMODE+CINV*X

IF (T.GT.ALOGF (GENCLE)-R) GO TO 1
RETURN
END

In GENCLE, statement 2 should be replaced by "2 CONTINUE" when f is log-
concave on [m,oo), and the definition of CINV should be replaced by
"CINV=0.5*EXP( -R)" whenfis log-concave on (- 00, 00) and symmetric about
m.

5. A Small Experiment

One small experiment was carried out on an AMDAHL V7 computer at McGill
University for three one-parameter densities, the gamma, Weibull and EPD
densities. One thousand random variates were generated for each density by two
methods: .

(i) A typical robust tailor-designed algorithm of comparable size. For the gamma
distribution, we took Cheng's algorithm GB (Cheng, 1977). We should note
that Best's algorithm XG (Best, 1978) is about equally fast and short, and that J

most other methods of comparable complexity are slower (see for example the
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survey of Tadikamalla and Johnson (1981)). For the Weibull distribution with
parameter a, we used Ella where E is an exponential random variate. EPD
random variates were generated as VGlia where V is uniform on [ -1,1] and G

is independent of V and has a gamma (1 +~) density.

(ii) Algorithm LCE (subprogram GENLCE). For the EPD distribution, the" 
modification for symmetric distributions is implemented.

The average times were computed for parameter values a= 1.5,3.3,9.9,16.2,99.9.
They do not include set-up times, i.e. we are not including the time needed to

" compute a mode (as a function of a), and we are not including the time needed to

compute the value off at this mode. However, the time spent passing parameters is
not subtracted: three parameters are passed in GENLCE, one of which is the name
of a subprogram; only one parameter is passed in GB. The slight variation in the
time ofGENLCE for the gamma and Weibull densities as a function of a is due to the
variable times of several service subprograms (logarithm, exponent, power,
logarithm of the gamma function) with respect to their arguments.

The figures in Table 1 show the difference between LCE and its modifications. For
example, it is important to implement the modification for symmetric distributions if
the density is known to be symmetric. For the EPD, the performance of LCE
approaches that of the specialized algorithm.

Table 1. Average times in microseconds per random variate

Parameter a 1.5 3.3 9.9 16.2 99.9

SPECIAL ALGORITHMS
Gamma 50.3 47.1 44.7 44.0 43.4
Weibull 37.1 37.2 37.2 36.8 37.4
EPD 83.7 87.4 88.5 88.2 88.0

ALGORITHM LCE
(PROGRAM GEMLCE)

Gamma 127.0 136.0 132.0 141.0 145.0
Weibull 174.0 203.0 238.0 225.0 222.0
EPD 101.0 99.4 99.3 98.8 98.5

One drawback of the given method is the requirement that log f or f must be
computed. This often involves the computation of a complicated normalization
factor. The contribution to the total time is not negligible when only a small number
of random variates are needed for the same distribution. The problem can be, 
avoided when f is given analytically, by using a subprogram for computing

log M. The acceptance/rejection step in the algorithm LCE would then read
f(m)

f(X) .
If T<log -then exIt

-f(m) else go to 1.
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This time-saving modification was not used in our ,experimen1. It (Jrfers a;lso
numerical advantages because f(x)/f(m) is "normalized"': all its values are
,comparable to 1 for x near m. In some cases, there are even questions about the
computability of f(x), that are eliminated when one considers f(x)/f(m). For
,.example, for the generalized inverse gaussian distribution, the normalization
constant c depends upon a Bessel function of the 1ihird kind evaluated at G. In
j(x)/f(m), the normalization factor is canceled. "

6. The Optima! Rejection Algorithm

In this section we assmne(without loss of genera1ity) that the density f is nornlalized
as in Inequality 1. The optimal rejection algorithm (in terms of expected number of
iterations) would use the function g defined in (1) as the dominating curve. Although
g is only defined implicitly, we can nevertheless generate random variates with
density g/f g;

Property 1: If E1, E2, U, D are independent random variables where E1, E2 are
exponentially distributed, U is uniformly distributed on [0, i] and D is integer-valued I
with P(D=j)=6/(n2.f),j?;1, then I

( (E1 + E2~/D )~.(X,Y)= U ( "exp(-(E1+E2)/D1-exp-(E1 +EJ/D,

is uniformly distributed in {(x, y): X?;O, O~y~g(x)}. In particular, X has density
g/J g, and Y is distributed as Vg(X) where V is a uniform [0,1] random variable
independent of X.

Proof: We flip the axes around and note that the desired Y should have a density
proportional to -log(y)/(l-y), O~y~l, and that X should be distributed as
U (-log (Y)/(1 -Y)) where U is independent of Y. By the transformation
y=exp(-z), Y=exp(-Z), we see that Z has density proportional to

ze-z 00 .n2 ( 00 . ( 6 ))-z= L ze-u+tjz=- L U2ze-JZ) ~ ' z?;O,
1-e j=O 6 j=1 n ]

i.e. Z is distributed as (E1 +E2)/D (since E1 +E2 has density ze-z, Z?;O). Thus, the
couple (UZ/(l-exp(-Z)), exp(-Z)) has the correct uniform distribution.

Algorithm:

Step I: Generate the following independent random variates: U is uniformly
distributed on [0,1], E.,E2 are exponentially distributed, and D is
integer-valued with P(D=j)=6/(n2 f),j?; 1. Note that D can be obtained
as follows:
Repeat Generate (U*, V*) uniformly in [0, If. 1

If U* ~t then D.- t
, -~ " I

else D '-l/{2(1- U*)).
Until DV*?; 1.

Z.-(E1+E2)/D, Y.-exp(-Z), X.-UZ/(l- Y).
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Step 2: If Y::;f(X) then exit.
else go to 1.

In the proof of property 1, we have implicitly shown that J g=n2/6= 1.6433...,
which is the expected number of iterations. If D is generated as suggested in the
algorithm, then there is also some hidden rejection, since the expected number ofL 
iterations to obtain D is 12/n2., 

7. The Mirror Principlei
"

Consider now,anormalized log-concavefwith two tails (m=O,f(O)= 1). As we havet, seen, in this case the rejection algorithms LCU, LCE are not particularly efficient,

the area under the dominating curve being 4. The expected number of iterations can
be improved considerably by two observations suggested to the author by Richard
Brent.

Inequality 3: Iff is a log-concave density with known mode m=O, and F(O)=p is
known (F is the distribution function for f), then, if f(O) = 1,

{min(l,exP(l-lxl/(l-P))), x~O, (6)f(x) <
-min(l,exp(l-lxl/p)), x<O.

The area under the bounding curve in (6) is 2.

Proof: Note that f(x)/(l- p) is a log-concave density on (0, 00), and that f(x)/p is a
log-concave density on( -00,0). Since f(x (1- p)) is log-concave on (0, 00), we have

f(x(l- p))::;min(1,exp(1-x)), x ~O.

Inequality (6) and the statement about the area now follow without work.

The details of the rejection algorithm based on (6) are left to the reader. Even if
p = F (m) is not known, we can reduce the number of iterations, based on

Inequality 4: Let f be a logJconcave density with mode at 0, and f(O) = 1. Then, for
x~O,

x x

f(x)+f(-x)::;g(x)= sup (min(1,el-9+min(1,el-"j;))
pe(O,l)

(7){ 2, O::;x::; 1/2,
= 1+exp(2-1/(1-x)),1/2::;x::;1,

exp(l-x),l::;x.

Furthermore,
5 1 <X>( U )-2 5 1 <X> e-u

Jg=-+- J 1+- e-udu<-+- J -du=2.6491 r 2 4 0 2 2 4 0 l+uI 

If g*=gexcepton( +, 1), whereg* is linear withg* (+) =2,g* (1)= 1, theng*~g,

and 11

Jg*=-.4
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Proof: The first inequality in (7) follows from (6) (consider p as F (0)). Thus, it suffices
to establish the equality on the right-hand-side of(7). Let us write g(x)= sup hp(x)
where o~p~t

2, x:$p,

l+exP

( I-~ ) 'P:$X:$I-P' .

hp(x) = p ,

exp (1-~) +exp (1-6)' I-p:$x<oo.

1 '
First, we observe that g(x)~right-hand side of (7), because for X:$2' we have

1
h1/2(X)=2, for 2:$X:$I, we have h1-x(x)= 1 +exp(2-1/(I-x)), and for x~ 1, we

have ho (x)=exp(l-x). We now show thatg (x) :$right-hand-side of(7). Decompose
hp as hp1 + hp2 + hp3 where hp1 = hp on [0, p] and 0 elsewhere, hp2 = hp on [p, 1 -p]

and 0 elsewhere, and hp3=hp on [1-p,oo) and 0 elsewhere. Clearly, hp1:$g, all

P:$+, x~O. Since [p, 1- p] is a subinterval of [0, 1], we have hp2 :$g, all P:$+,

x~O. Thus, hp:$g if hp3 :$exp(l-x), all x~ 1, p:$I/2. For this, it suffices in turn to
show (8):

exp (-~ ) +exp (-~ ) :$e-1, O:$P:$~, (8}
p I-p 2

because this would yield

1 1 1 1
e((e-pr+(e-~):$e(e-p+e-~:$e1-x, x~l.

Putting u = (1- p)/p, we have

(exp( -1/p)+exp( -1/(I-p))) e =exp(-u)+exp( -1/u).

The function exp (- u) + exp (-I/u) can be shown to have equal maxima at u = 0 and
u i 00, and a minimum at u = 1, with maximal and minimal values 1 and 2/e
respectively. The first integral (J g) can be written as

5 1 ( 1 ) 5 1 CX)( U
) -2 -+e2 J exp --dx=-+- J 1+- e-udu

2 1/2 I-x 2 4 0 2

(set u = 1/(1- x) -2). The rest follows easily. In the computation, we made use of a
formula for the exponential integral given in Abramowitz and Stegun (1970, p. 231).
The statement about g* follows directly from the convexity of the function hp2 on

[+'IJ.
Based on Inequality 4, we can now give the corresponding algorithm (which requires
on the average 2.75 iterations, and 5.5 evaluations of f, and should be used only ,.
when the number of uniform random variates per generated random variate is to be

reduced):
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Algorithm:

Step 1: Generate four independent uniform [0,1] random variates, U, V, W, Z.
IfU~4j11 then X+-Wj2, T+-2V.

1 1 .
else if U~7j11 then X +-2+2mm(W,2W*), T+- V(l +2(1-X»)

(where W* is another uniform [0,1] random variate)..
else X +-1-10g(W), T+- VW.

Step 2: If T ~f(X) + f( -X) then if Z ~f(X)j(f(x) + f( -X)), then exit with X.
) else exit with -X.

else go to 1.
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