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L InTRODUCTION

In kernel density estimation, R%-valued data X, -, Xy e
stored in one way or another to enable future eviluations of
the kernel density estimate

| (. d
.r"f'l."l= = E !I-“:'l:' b ".'ﬂflh':l, rER 3
frdy i=

where K is a given density und /> 0 is a positive number.
These estimates play a crucial role in statistical pattern recog-
nition, and most statisticians who have implemented them
have found to their distress that simulations involving repeated
evaluations of f,, require a lot of CPU time even for d = 1 and
n as small as 2000, Repeated evaluations of f,; are needed, for
example, in

a) Ereror estimation (where [, - ' must be computed lor
many values of x| here [ is the density of X, ==, X, ),

bY Ploreing iy

c) Estimation of probabilities of sets A (by [ fu):

d) Computation of functionals [ g0 [,y such us [ f3, ete.

e} Clazsification of manv new ohservations by the keriel
method (this involves compiuting various class densities for
many values of )

To sumniarize this, we ¢an say that the ohject [s 1o evaluate
Tulrgd V=1 at { given points. This will bz ealled the derer
ministle model  Inoapplications a), ¢), d), and &), the glven
points ¥, can sometimes be thought of as a sample ¥, ¥,
of independent identically distributed random vectors with
commaon density [ and independent of Xy, -, X,,. The data
Xyoooo L Xy also form an L. sequence with common density
f- This will be called the rusdom model,

In this note, we will compure various data structutes pnd
algorithms for carrying out these evaluations, both from o
theoretical and experimental point of view, Because there are
many Variable Dactors (o, 1, & b, o, and [ ), we have a gigantic
task ahead of us, We will present the main principles ford = 1,
and limit ourselves to general outlines for d > 1. Our theoreti-
cal results hold for all f thanks to the Lebesgue density theo-
rem. In our choice of X and 4, we will only consider the opi-
mal form of & and sequences /i depending vpon # in such a
way that the density estimate [, converges to/ in some sense.,
Fimally, to be able to make 1 clear distinction hetween the dif-
ferent data structures for several values of » and |, we will con-
sider two stages.

I} The Sctup [Preprocessing Stage or Initialization Stuge ). In
this stage, 4 data structure is ¢onstructed starting from an ur-
ray contauning Xy, -0, Xy, If the data structure uses knowl:
cdge about K andfor &, it will be called a specific data FrFLe-
fure.  In general, these daty structures will be less efficient or
even uscless for other K and 4.  In contrast, dota structures
that are useful for all reasonable choices of K and b are called
apen data stricturen.

2} The Evelugtion: The evaluation of £, (x) at one point x.

We will find. not unexpsctedly, that although they can he
used in fewer situations, specific data structures lead to faster
evaluations than open dats structurcs.  In our analysis and
comparisons, we will use the symbols ~ and = in the fallowing
SEMIS0S

Oq by medans m an /b, =1

a—==

dp = by means lim a,fh, =«
i
for some constant ¢ € (0, =),

To compute the time taken by a certwin algorithm, we as
sume that most commaon operations (compare, move, truncate,
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%, [, +, -} take a constant time independent of the operand(s)
involved, The setup time Tp=T4(Xy, ", Xq)and the evilu-
arion time Telx)= Talx; Xy, ° 7, Xy) are baoth assumed Lo b2
Borel measurable functions of their arguments (for purcly
thearetical reasons). In the random model. the two gquantities
that are of primary importance ane

Ty=FE(Ty)

and

(the expecred setup rimel

T =J-F.'[T,.l'1'}} flx) dx {the expected evaluation time),

In the deterministic model, we still assume that Xy, * . K
are Li.d. with density f, but the x;'s can take any value, includ-
ing the value that makes Te(x) largest. Thus, in this model, we
are more interested in T, and

rh = Esup Tele Xy, 0. Xal)
X

{the expected warst-cage evaliation time).

We will conclude pur preparations by commenting on the
choices of K and b, When Xy, - <. X, are 1i.d. with density
f, and h is n sequence of positive numbers depending upon n
such that h -0, nhd === then f1fn = f1-=0 almost surely
and in the mean for all fand K [ 7], and [y == fin probability
for almogt all x, Tor all £ and all bounded X with compact sup
port [9], For earlier but slightly more restrictive versions of
these consistency theorems, see Rosenblatt [16], Parzen 1141,
and Cacoullos [3], From o careful analysis of the rate of con-
vergence of the expected Ly error, Epanechnikov [10] for
4= 1 and Deheuvels [6] for d > 1 derived the optimal farm of
K K{x)=e(1 = |[x]1*),. Here { ) denotes the positive part
of { ), and ¢ is 8 normalization constant, equal to 3ford=1.
This happens also to be the optimal form for the expected L
error, so that we will assume this form of & throughout the
mote. Although we will not use it anywhere, it is worth men-
tioning that for d =1, i is often chosen as e/ where cis a
constant depending upon & and f only. This will give an idea
of the order of magnitude of i, and ¢an help in the design of a
data structure that is good for most common chaices of k. In
practice, h is chosen as a function of the data (these are called
automatic density estimates), and in some cases, we need to
evaluate [, for different values af x gnd k. This calls of course
for an open data structure. Once & is fixed, we can set up a
specific data stracture for future evaluations.

In this paper, we will not consider a computational method
based upon fast Fourier transforms--we refer the reader to
Silverman [ 17] and Jones and Lotwick [12] for more details.

1. OPEN DATA STRUCTURES
A, AnArray

When X,, -, Xy are simply stored in artay form, we have,
deterministically, T =n and T,=0. To reduce the propo:-
tionality constant in T,, one could computs EL, (1-ix-
X)h1?). in a loop, and multiply this sum with 3/{4nk)
afterwards.

B, A Sorted Array

In the setup stage, Xy, -, X, can be sorted by a compari-
son based sorting method, preferably quicksort, heapsort, or
modifications thereof (see [13] for descriptions), so that
either T, =n log n deterministically, or at least T;=n log 1,
and that in both cases the distribution of 7, does not depend
upon [,

The evaluntion of f,(x) can be done by first finding the in-
dex { such that x € [X, X4, ) by binary szarch (where, by
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convention, Xy = -= and X4y =+==), and then traveling up
and down the array, starting from index 7, and visiting all the
X,;’s for which lx - X;l{h < 1, to form the sum

i

U
anh (1-(lx - X))

= =x30ml <1

Thus, we need anly consider adjacent indexes. The time taken
by the binary search is T, =log n, T8 =1log n. The time
needed to form the sum must be added to this: it is f-depen-
dent and can be written as @ + hV(x) where a, b are positive
constants, and N(x ) is the number of X'sin (v - hox + hl We
need 1o know EIN(x)) and Elsupx Nix)) for our analysis. In
the Appendix, we will prove the following:

Theorem 2.1

For all densities £ on R, we have

EiN(x))

=h

ﬁ'f."ﬂriiﬂrhh
py ————— - f.f'?

Anh

- f[x), almost all x:

{even if the right-hond side is =)

Eisup Nx)) .
—_—— = g sup f(x)
2nh ¥

when also nkiflog & = =9,

where *‘ess sup” denotes the essentinl supremum (le., the
unigue namber ¥ with the property that forall e > 0, {x: flx) =
y+¢b and {x:f(x)>y - €} have Lebesgue measure 0 und >0,
respectively ). We recall the standing conditions on i Hmy -«
h=0, imy .= nh==_and on K Kix)= 31 - x%). The re
cult remains valid for the uniform kernel K(x) =31 5 ).
First, we note that [/ and ess sup [ are measures of the
peakedness of [, For very peaked densities, there are many X'B
for which Mix) s quite large, namely for all the x's near the
peakis) of . This has a negative influence on the evaluation
time. The “best” density for evaluation is the uniform den-
sity. Theorem 2.1 does not give us any information about the
rate of increase of [ F(M(x)) fix) dx and E{sup N(x)) when
[t =5 and ess sup f(x) =22, respectively.  But when these
measures of peakedness are finite, we can conclude that

T, == logn) + (=nh)
and
T2 = (=lug n)+ (=nhk).

The notation is self-explanatory. The first terms are not de-
pendent upon [- The second terms have proportionality fac-
tors 2 [ 7 and 2 ess sup [, respectively. For open data strue-
tures, M(x) comes very close to being a lower bound for the
time needed to compute [, {x), so that little improvement over
the present method is possible from an agymptotic point of
view,

C. A Bucket Structitre

In an attempt to reduce the setup time over the previous
method, we could apply a standard order-preserving hashing
technigue with chaining: find m = min X;, M = max X in ont
pass of the data; imagine that [m, M) 15 divided into n - ]
equal intervals (buckets)

-1 ]
m+ (M= m),m+
n-1 n- 1

{.-'-.I"—nt]]. l=i=n-1



L

Add an nth bucket [M, M+[1/{n-1}]) Keep for cach
bucket a linked list nI'aJlI[-'s belonging to the bucket (this re-
quires a second and last pass of the data), Note that the index
1 =ilx) of the bucket of x is oblained by simple truncation

-

m
i=ilx)=1+ (n=1)
]

The time taken by the setup is 7, =n. The storage is usually
3An, i.e., n words for the original array, n words for the pointers
to next elements (linked clements) in the buckets, and n words
for pointers (o bucket headers.

We pay very slightly in evalustion time for the fact that the
data are nat sorted. For fixed », we determine fp=1{{x - &)
and {5 = i{x + h), and replace {; and {5 by max (i, 1) and min
{1y, 1), respectively. Then f,{v) is computed as

3
(4n.‘r) .Z’ z
fp=i=iy f: X]in

buekel |

(1= (lx = X)/h)"),.

Obviously, we still have T. 2 g+ dN(x) as for methad 2.2
Alsg, T. =t +bN*(x) for some different constant ¢ >0,

where N *(x) is the number of X'sin [x < & - (M = 'm)f(n - 1),
x4+ (M-m)ftn- 111, We note here that the constants
@, #, ¢ do not depend upon w, b S or Xy, 000, X Also, the

log v component in the expression for T, has disappeared, bhe-
cause we are able now 1o locate a bucket in time propartional
to g constant, By proving that N*(x) is approximately of
the size of Nix), we can show the following theorem (see
Appendix),

Thedrem 2.2

Al of Theorem 2.1 remains valid for AN®(x) when [ satisfies
the following condition,

lim < E( max  [Xly=0.
B R 1% i<n
Let ug first comment on the condition imposed upon [
it is needed to insure that the intervals around x that are con-
gidered when the sum is formed do not contain loo many
points, Le., to insure that M - m isnot 1oo large. The verifica-
tion of the condition is sometimes @ problem. However, we
have the following property.
FProperty 2.1
If is a density for which

jg'lﬂ_r{x}dx e forsome (>0

{this is called Cramer’s condition), and lim,, ~ = nhflog n =09,
then

1
lim — E{ max

|X;1)=0.
L% jsn

o, L
Cramer's condition is satisfied when ..ff:‘.l‘&'a:'ﬁlrl. lel=e¢,
forsomea, b, ¢ > 0. y

From Theorems 2.1 and 2.2, we immediately deduce that T,
and T2 -are both =nk. In the former case, the proportionality
constant is 2 [/, and ir the sccond case, it is 2 sup f.
Clearly, for those densities thet are covered by Theorem 1.2
we expect similar evaluation times, with perhaps a slight edge
for data structure 11-B,

NI, SPECIFIC DATA STRUCTURES

Observe that [, is a spline with knots at X; -k, X;+h, 1 <
j=n, and that within each interval between knots f,, takes the
forma + bx 4 ex?, where g, &, and ¢ are coefficients depending
upon the X;'s only, There are 2n knots and thus 2# - 1 inter-
vals on which f, ¥ 0. To evaluate /g, it suffices to store
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1) The ordered seguence of 2n knots,

2) The coefficients 2, &, and ¢ for each of the 2n- 1
intervals,

Thus, about 8n real numbars have to be stored, well up from
the storage requirements for the open data structures, but still
lingar in n.  For evaluating fp(x], it suffices to locate the in-
terval to which x belongs by binary search, and evaluate
g+xlb+ex), The time is deterministically bounded by log a,
independent of 1

In Sections 111-A and 111-B, we will describe two methods for
setting up the data structure described above,

A. Setup by Brute Force

We procesd as follows:

Step I} Order Xy, -, Xy by p comparison-based sorting
algorithm in expected tme = # log n,

Step 2) In one pass of Xy, X, with two moving pelni-
ors, create an ordered sequence of Knots and labels (Y, 2, ),
“r Y s, £14), where ¥y S ¥y €+ is an ordered version

of Xy <k, o= Xy kX0 Xyt h, and the labels £,
are defined hy
+j i ¥Y=X +h,
Z= i
=1 ir ¥Yi=Xx;-h

The time taken in Step 2 is deterministically proportional to .

Step 3) Compute flor each of 2n - 1 intervals | {interval J =
[ ¥y, Yiey)) coefficients a;, by, and e; s follows: let i be the
largest index < for which £, <0 (this can be found by
counting down from i ); and let iy be the smallest index & 1§ + |
for which 2, > 0. Set [; < [Z;|, fn 1 Z5, 1. Wiy = do

f ry 2 5 Y
i -1;)) 2 1
@ubiep=— X ((1-{=) )= -F)
iy M, £f 4”"’!‘!# (( (h h .Ij.t)

We have

Ty=(=nlogn+ (rc E (Z ."v’v[.t",—]))

!
= (= log n) + (= nE(NIX, 1))

={=nlogn)+ (hn < 2nh Jr}‘ t)

when [ /° < se (by Theorem 2.1). It is worth noting that the
second term, the contribution of Step 3, usually dominates: it
is superlinear but subguadsatic.

B. Setup by Recurgive Computations

It is not hard to see that (o, , Bje ., ey ) can be computed
from (g, &;, c4), and that we can thus compute all our coeffi-
cients in one pass of the intervals. Forexample, Step 3 could
be reéplaced by

Step 3') (4, 8, C)=(0,0,0)

Fori:=1ro2n-1do

= &, < sign Zp;

(A, B.C)*+ (4, B,C)- ((1—(ﬂ)2) 2% _L).
o e h SRR

h‘lh 'bl'- l.‘f]"_ {.r-!. E, err

Since Step 3’ takes the prﬂ_purLiunal to m, it is cledr that Step
1 dominates and that thus T, =n logn.

Important Remark: The procedure in Section HI-B is numer-
ically imaccurate when n is large, and could lead to serious er-
rors on limited precision machines. Also, the procedures in
both Sections IH-A and B have built-in cancellation errors in
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the evaluation stape: &, B;, and ¢; become increasingly large as
kL 0; vet, fo{x), their weighted sum, tends to fif k is well
chosen. Fortunately, for # to be so small that this poses a
problem, n must be astronomically large

The numerical danger of the procedure in Section 111-B ca
be circumvented by taking the uniform kernel Kix)= 1,
x| = 1. It is known that the replacement of the optimal ker-
nel by the unifarm kernel does not increase £0f [f, - /1) very
much. For the uniform kernel, we need only remember ;s
hecause

The numerdcal sccurscy i+ achieved by doing Ihi.' Iecursive
compulations on intepgers, For example, Step 3" becomes
simply
Step 3') A = 0(4 isan integer.)
Fori:=1tln-1do
il FA R 17+
A=A =¥
= AffInh),

Also, the evaluation is now very simple [or 5 &

[ Y YViag o we
have f,(x) =a,.

O Summary af Complexitier

We will now summarize our [indings for ?_', and f.- for den-
sities with [ f? <es and sequences b satisfylng # = 0, nhflog

Data structure

and - -
algorithm T, T,
Open data - 0 =n
structures 11-B =nlogn = nh
- = =nh
Specific data 1A = nth = log n
structures 1i1-B =nlogn =logn

For the T, result in row 1-C there is a weak additional condi-
tion on f(see Theorem 2.2). For what happens in the uninter-
esting case when aliflog n #* °=, we refer to Sections [1-B {_1:01'
the expression for T.) and T11-A {for the expression for T,
Finally, it is worth pointing out that the proportionality fac-
tors do not_depend upon f except in the following cases: the
entries for T, in rows 11-B and 11-C and the entry for T, in row
111-4, Inthosecases, finfluences the ime in proportion to [ /2.
We will see in our experiments, described in Section [V, that
the théoretical rankings predicted by this table are preserved.

0. The Um‘ferm Kernel

When K = 5, |x}< 1 (the uniform kernel), there is an open
data slruuure t.hat allows =log n evalustions: for. if we con-
sider the sorted array of Section 11-B, then f,(x) can be evalu-
ated as follows: locate the intervals i and f such that x - # E
[Xi Xpeq ), x+ B E X}, Xj41), by binary search of the sorted
arrzy. Recall the convention Xy =-22and X, = +==. Then,
falxd=(j- i)/{Zak). This method combines the fast setup of
11-B with the simple evaluations of the specific methods, Of
course, we are now using the fact that K is the uniform kemnel,
and thus, the comparison with open data structures is not fair.

E. Setup by Computing Distribttion Functicns

The method of Section IT1-I) has an evaluation time that is
about twice that of Sections 111-A and I11-B, because two look-
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TABLE 1
MosTe Caruo Estimares o T, asp T, (8 MILLISECTNDS)
Fo THE MorMal THENSTTY
" 100 bl 400 L B0
TIME FETHDO
1‘1 -8 a o ] 0 0
11-B 15 9 45 151 1y
([ [ = § £ = A Fa
-4 i ¥552 5445 18471
n-e b33 T4 184 Ml
111-E 15 i s L] 1]
i A 1T 1. 4.1 S 55,1
g 2.0 I | 1] 5.2 16.%
1-c 14 i, 1.6 11 6E 0.
ni-A 0. 3% 0.19 i, 4 .44
1B o oo (HLH L
1HI-E .81 .1 5,18 ol 0.1

ups are needed instead of one, and the lookups are the main
contributing factor to 7., On the other hand, the storage
costs are drastically reduced, and T, remuains roughly the same,
We can generalize it now to the optimal kernel as follows.

In the setup stage, we order X, -, X, and compute the
following suxiliary armays, cumulative distribution functions of
s0rts

Si=X, +
Ty=X{ +

X, 1Si%n,

| =i nm.

The storage s 3n, the time taken is (=n log n) + (=n), and
the data structure does not use information about b, an impor-
tant point in some applications.

The evaluation is done as in Section 11-I}: first locate the in-
tervals f and fsuch that x - A& [X, Xy hx +HE [N X )
(this takes time = log n). Then, compute frix} hy the formula

3 _ 32 1
m({;-:}(t-% ‘T*'T'}F)

(this takes time = 1), T.=log n. Because of its similarity with
11I-B, znd its inferior proportionality constant in T, it will
not be tested. I1s lower storage requirements and A-indepen-
dence could make |t useful in some situations, but, as for [1I-B,
numerical accuracy remains a problem.

-+ X},

2x
)*15; : Sﬂ‘ﬁ_}"

TV. AN EXPERIMENTAL COMPARISON

We compared methods [1-A, [1-B, 1I-C, 11l-A, and [II-B for
the normal density and sample sizes n = 100, 200, 400, 800,
and 1600, All the experiments were carmied out ona CYBER
171 computer at Applied Research Laboratories at the Uni-
versity of Texas. The smoothing factor b was taken in the
{2svmptotically) optimal way with respect to E([ |f; - 7k
for the normal density, this is known to be

5 e
h-( 225me? ) / VS = | 6644745 - - - [n s

(see, e.g., [B]). For each method, Monte Carlo estimates of
T;and T, were ohtained (see Table 1),

Th: variations of the expected times with respect to n are
exactly as predicted in the summary of Section [11-C. Forex-
ample, T, increases inearly with n formethod 11-A. Formeth-
ods 1I-B and [I-C, the rate of increase is n*/5, and the ratio
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TABLE 1l
MowTE Canbo EsTiMates (8 Misecowps) oF (T, + [T0
WHEN f 15 Norsal, n = 80

T L] 1 o0 1000 o000 =
Hithed
LI B ar.s 205 b e 275 ar.s ]
1@ o, 74.3 10.7 9.3 L N1 §.3
1n-c fifn, ¥ 1.6 1.7 1.7 1.7 107
M-A g fiEh 1847 .8 ] 0450
n.g )4 W6 1. o.M 048 ]
11-E 1684l 12, .49 0978 0.7 o.410

TABLE 111
SeErrar Reaoove To Memwop T-A rog Tie Nowsear, Dessry,
n = 800

Rert noeh data Besl specific or

] Structure oprs dals siructure
] 1,00 1,00
{1} 168 1,6k
[£:] a.47 17,04
oo watid LTI
100HH] 1.8 56 .0

= b 1 61.1%

between T, {or method [1-B and T, for method U-C remains
constiht, with a slight edge for method 11-B. The figures for
methods 1I-A and 1H-E increase logarithmically with », and
are all but identical. The improvement over the open data
qtructures i3 impressive,

In real applications, we first s&t up a data structure and carry
out | evaluations. Thus, the criterion should be (T, +[T.)/1,
For n = 800, we computed Monte Carlo estimates of this. All
the sorting in the setup stages was done by the celebrated
quicksort algorithm ([11], [18],and [1]). Table 1l shows the
estimates. For very small /{{ = 30), the best open data struc-
ture is hetter than the best specific data structure because of
smaller setup times. The range 0<1< 30 is unrealistically
small in mest cases. For standard values of [ used in Monte
Carlo computations or plotting subprograms, methed 111-B is
by far the fastest method. We should stress that for large n,
method 1I-B is numerically inaceurate, and should be used
with care. Of course, for large n, it can be replaced by method
ITI-A which, despite {ts gigantic setup time, manages to be the
fastest among the more accurate methods 1-A-I111-A for |
greater than approximately 2000. As pointed out in Section
l1-B, the numerical problem can be sidestepped by using 2
uniform kernel instead of Epanechnikov's kernel. .

In Table Ill, we show the speedup (in terms of T, +iT,) that
is obtainable if the standard algorithm II-A is replaced by either
the best open data structure, or the best data structure overall.
It do¢s not really matter what value o 7 is chosen for such a
tible: for p = B00, the value chosen for Table IIL, the specdups
are enormous. In general, the speedups will be better for
larger n and !, and worse for smaller n and /.

In our experiment, i was rather large because the density
was smooth. For estimation of unsmooth or multimodal den-
sities, h is usually much smaller. This should work in faver of
Te for methods 1I-B, 1I-C, and of T, for method A, Also,
if we were to replace the optimal kernel by the uniform kemnel,
most times will decrease slightly. The performance of the dis-
tribution function method of Section III-E is comparable to
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that ~f Section HI-B, with slightly smaller values for T, but
moderately larger values for T,

We conclude this section by recommending that for open
data structures methods I1-B or 11-C be used for all n, f, Speci-
fic data structures should be used whenever possible provided
that [ 15 not too small and that one takes care of the numerical
inaccuracies.

V. EXTENSIONS TO R"

Open data structures in RY create special problems becuuse
there i no simple extension of the notiop of a sorted array.
There are many multidimensional data structures that qualify
as generalizations, such as trees, quadirees, k-d-trees, grids,
etc., and that could help vs search for a neighborhood of x,
and identify the X' that are close to x. Regardless of what
data structure is chosen to generalize 11-B, the evaluation time
is bounded from below by E(N(x)). Now, Theorems 2.1 and
2.2 have straightforward extensions to 8¢, and in particular,
for the optimal A, E(NV(x)) ~ valume unit sphere in £ - phd -
[ . If the data structure is sophisticated enough so that this
lower bound is achieved, then we will have made great progress
in our search for a fast algorithm: indeed, the optimal & is
often = =10 *48) and thug phd = pd/(d+a). thus, the savinges
in computation rime hecome more sutspoken as o griws larger,

It seems natural, for example, to extend the bucke! structure
of 11-C by dividing each axis into n'/¥ equal pieces. The stor-
age and T, are both ==n, while T, = ad¥: for cach x, we need
only locate its bucket, snd then travel to all buckets interieat-
ing the sphere centered at x with radius & (and there are of the
order of nh? such buckets). This seems ane of the most Prom-
ming structures 4t this paint.

To extend the ideas of Section 11, we could proceed as fol-
lows, Let us start, for the sake of simplicity, with the bucket
structure described in the previous parngraph. If Se.ris the
sphere of radius r centered at x, and # is o piven bucket, then
we could partition all the buckets into three sets: £, all the
buckets completely covered by N, e 5 8, 5, 83, all the buck-
ets not in By but intersecting U, ¢ g S, jy; and By, all leftover
buckets. 8, forms a core of buckets, #, is 3 shell (doughnut)
of buckets, and B groups all faraway buckets. Store the par-
tial coefficients of the paraboloid for all the Xi's in &, for
bucket B, and repeat this for all buckets B. To evaluate f,(x),
we must form the sum of K{(x - A;)h). Far those Xj'sin 8,
this sum takes time 0(1); the contribution of the X' in By is
of course 0; and for the contribution to the sum coming from
the X;'s in B3, we need only travel to the buckets in the thin
shell B; (there are about (nh?)@—1Nd qich buckets, with
proportionally many points). Thus, . seems to grow as
(nA9)(d-1)d_ The impravement over the open data structures
is no longer as spectacular as it was for o = 1, but it should be
naticeable for d =2, 3 too. Because the shell becomes more
voluminous as d zrows (which is reflected in the fact that
(d - 1)/d -+ 1 as d = =), the improvement over the open data

Structures seems hardly worth the trouble for large d. The

setup time can be kepr small by a careful extension of the re-
cursive method ford = 1.

We finally note the attempt by Postaire and Vasseur [15] to
reduce the computation time in 82 when [ must be evaluated
at @ mesh only, and K is the product of & univariate densities.

APPENDIX WITH PROOFS

Proaf of Theorem 2.1
Proof of A: We note that

x &k I x+h
EiN(x))=n J- = 2nh (,:_—J‘ f) =~ 2qnfif{x)
x—h ih x-h

for almost all x, by the Lebesgue density tneorem (see, e,
[19, ch. 7 and 9] or |5, ch. 1-3]).
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Proof of 8: Let us define fu(x)=1/2h J£*} f. Thus, M x4+ he(M=m)/(n-1)
P= fa=qlx)= £
ff{m.r}}m]u'.n'mnn}=ﬁ,,ﬁ m k= (M-m)f{n-1)

. . For fixed €20, let 4 be the vent [(M - m)in - 13< eh),
By Fatou's lemma, Kmpy—= inf [ /=] limpe= inf fiuf= with complement A4°. Then, for & >0, we can find €20
T f*. In the last step we used part A of this theorem. This  gmall encugh such that

gshows that we can assume that [ 2 <= But fix)=f"(x)=
x4+

BUP. = o (277" [325 [, the maximal function corresponding to ae = P(.F Bi i R I MY\ = uE A
£ 1t is known that [ *? <oo when [ f2 < o= [5]. Thus, by VD) o ik p s % I

the Lebesgue dominated convergence theorem, [ /i ==J /%,

ey M- m
which concludes the proofl of 8. < +5 5[ =2 (, g ) ! )
Proof of C: Let us introduce y = ess sup f{x). We have, by (fx)+0) & p =LA

part A, M-
n =
Efsup Mx}) _ esssup E(N(x)) *[ox)E (_ 2 (h e | ) 'ral"')
- - =y +oll) P i
2nh Inh | M-m
a2 s g
Thus, we need only worry about upper bounds. For every € > S(/lx)+8)2nh E(F > hin - 1”1)
0, 0t is troe thal
& o) 2! (E+1)F( M- m )
Fos NI N x)dnh = | E —Y .
M;;J,_,,c,,LP(M?}}.,w)_ € hin=10p
2nh 2nh 2nh

These inequalitics are only valid st Lebesgue paints x, f.e., ot
and we are done If we can show that the last term is of1) for  Points where the Lebesgue density theorem isapplicable, We are
all € > 0. Using the fact that M(x) is a histogram with jumps st done if we can show that E(1/p) = 1, and E((M - m)/hnp) -
X, hand X, +h, we sce that 0. We can use a tr:cr for :3!!: latter l:xrlll‘l.‘“h_:lﬂ' let @ be the

distance between the § and § quantiles of /. Then,

. foup Nx) . W -
" ( Sak O E) E (-’H——"!) <2 (%) 4 r:‘(-t-),

hnp L] hn P
= i PIN(X, - ) > 2nh(y +€)) and this s ol 1)+ o B0 p)) by our assumptions. Thus, we are
i=1 left only with the proofl of E(1/p)—= |. Note that | = p i5 dis-
tributed as the range of n Lid. uniform [0, 1) random vari-
+ PINUXG 4 ) = 2eh(y + €)) ables. It has density nln = 1 x{1- )", 0< x < | (see, 2.,

|4, pp. 8-111). Thus,
<n fn.ﬂ (A )+ P(By ) dx

1
- nlm=1)
E(_)=.‘- f1-x)x""? x
where Aqe=1{lx - 2k, x] conlains at least 2eh(y +€)- 1 # o X
of the X;s}, and B,; is defined similarly for the interval aln = 1) n
[x, ¥+ 2h]|. Take a new € equal to the old € minus 1/(2mh). = g =
We have obviously asymptotic equality., Let 2 be a2 binomial (n-1jn-2) n-2

{n.fi*“' {} random variahle, Then which was to be shown.

Proof of B: We will mimick the proof of B of Theorem
2.1. First, we note that

x+1h
E(N*(x)) no 1 M- m
= “ * — E = -=—"2[k* — 13.
exp (~n(2he) /(2 (f I+‘.!hf)) Sk f i;}F(p o (: . ))

I

PA ) S P2 2> 2nh(y + €)= PE - E(Z)> 1nhe)

=3 This top bound is int2grable with respect to f(x) dx for all n,
< exp (-,,h ) at least when [ /2 <Cos. And its integral has a limit
ety

where we used Bennert’s version of Bernstein's ineguality [2]. e lim E (l (| - M)) =fj*f{ fj"’ < oa
The same bound is valid for P{B,:). Collecting bounds gives - P Rin- 1) o
s Thus, by an extended version of the Lebespue dominated con-

E (sup NEx)) P e vergence theorem, and part 4 of this Theoreém;,

——————— = ytet+t—exp (—nh )

2nh i e+y

Lfmwrxn feyae= | 12,
The last term is o(1) when nh/log (n/h) ===, But this follows 2"/
from 1/ = win) and nhflog n—+=2, This concludes the proof of &
Proof of C: Let H= (M- m}f{n— 1), and define & "(x)and
Proof of Theorem 2.2 N'(x) as Nix) with §h and H instead of &, respectively, where
Because N*(x) = N(x) for all xr, we can apply Theorem 2.1 5 >0 is a constant to be s;:cciﬂl:d further on. Obviously, sup
to obtain lower bounds, In the remainder, we only consider N*(x)=sup N(x)+sup N (x). Since F (sup N(.r}':ﬁlqh]-'
upper bounds. ¥ by Theorem 2.1, we need only show that E (sup NV (x))Y
Propf af A- Throughout the proofs, we will set {2Zrh)— 0. But we observe that for 0<<& <1,
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E (sup N'(x))
ik

g Elsup N(x))
2nbh

sup N'(x)
*E( =5 le:a-ah])

=5(y+o(l)+ E{JH,'{.EM sup N "(x)/(2nk))

E (sup ¥ "(x))
2nh

=6y +allld+
sup N"{ﬂ)
2nbh

+ E(hE
| £ (sup Nix))

‘:35[]'-?:){1}}-}5 2ih

1

where f denotes the indicator function. Notice that given m,
M, the remaining n - 2X;'s are ild. andom varisbles with
density [fp restricted to [m, M ], Its essential supremum can-
not exceed »/p. Define e=(¥/p)- (1/2nh), and let 7 be so
large that, 1/2afk <»/2 (s0 that € > »/(2p)). We condition
first on m_ M and use the exponential bounding technique of
the proof of Theorem 2,1.C!

! M
P (M ,,,_M)
2nh
"5 Al r(—-—’“"M” 225 | mom
o 2mh 2nh p
pr 2 el
"-:1""+-'Eexp (—{n- 2)
po 2k e+ylp

¥..n hy
o= +— ax (-iu'zj—')
gk . ap
hy
exp (-(n-2)—1.
s (i-22)
Thus,

E ; 2
2o VOW & onip +oty + 228 (ﬂ)

‘;2;::-+_r1
goh

2nh & ph

& (2)2 cp (-0 2]
T ™ Vil Wi

The first term on the nght-hand side can be made small by
choosing & small. The second term is o(1) since E(H/{ ph)) =
(1) (see prool of Theorem 2.1.A). Both factors in the third
term are o{1) by our assumptions about & (ie., E(H)=o(h))
and b (i.e., nhflog n == ==}, This concludes the proof of C.

Froof of Property 2.1: By Jensen's inequality, Ec"¥) <
oo gnd log it = alnh),

:mu].‘l’jl

1
£ (max X[ '-'-I? log (Ele 1]

1 i
< log ( M E[e'lela

j=1

1
= —log (n£e! ¥ 1))
i

= %Iogn + %lug (Ee"1¥1y)

0 (log n)
oinh).

]

It

{31
[4]
151
6]
171

18]

191

(1o

[13]
[14]

151

[16]

[¥7]

18]
119]
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