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Summary. We consider the maximal k-spacing M , =  max (U,,i+ k -  U,i ) 
O<i<-n+l- -k  

where U~I < ... < U,, are the order statistics of an i.i.d, sample of size n from 
the uniform distribution on [0, 1], and U,o=0,  U, ,+1=1.  The integer k is 
allowed to vary with n at a rate not exceeding log n. We obtain laws of the 
iterated logarithm for all the k's in the given range. For small k, the 
methods used in the proofs are borrowed from extreme value theory. For 
larger k, the techniques are reminiscent of those used in the proof  of the 
Erd/Ss-Rdnyi theorem. 

1. Introduction and Results 

Let U1,..., U, be i.i.d, uniform [0, 1] random variables with order statistics 
U,I<=Un2 < ...<=Un, , and set U , o - 0 ,  U, ,+1=1.  We define the maximal k-spac- 
ing by 

M, = max (U, i .k-  U,i) 
O<i<=n+l--k 

where k is an integer between 1 and n. We will allow integers k--= k, that vary 
with n, but in any case, k, is assumed to be nondecreasing. The following 
strong law of large numbers is known for M,, (see e.g. Mason, 1984): 

Theorem 1. A) I f  k,=o(logn), then nM,/logn---,1 a.s. 
B) I f  k ,~c logn  ( 0 < c < ~ ) ,  then nm, / logn~c~  + a.s. where ~+ is the 

unique root greater than 1 of 

t C" 

C) I f  k,/nl.O, k,/logn--.o% log(n-- t / loglogn~oo (these are called the 
CsdrgS-R~v~sz-Stute conditions), then \t%/ / 

(nM,-k , )  log n --+1 a.s. 
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Theorems of this type are important  in the study of the oscillation behavior 
of the uniform empirical quantile process (Mason, 1984) and the strong uni- 
form consistency of density estimators (Hall, 1981; Stute, 1982a, 1982b; R6- 
v6sz, 1982). Also, in the context of goodness-of-fit tests, it seems better to take 
either a large constant k or a slowly growing k (del Pino, 1979). 

In a series of papers (Devroye (1981, 1982), Deheuvels (1982)), the authors 
were able to obtain upper and lower class sequences for M n when k =  1. For 
example, limiting ourselves to the first term, we have 

lira sup (n M,  - log n)/2 log log n = 1 a.s. (1) 
n ~ o o  

and 
lim inf(n M n -  log n)/log log log n = - 1 a.s. (2) 

In this paper, we obtain similar results for all k growing at a rate of log n or 
slower. In the spirit of the standard law of the iterated logarithm for sums of 
i.i.d, random variables, we will limit ourselves in most cases to one or two 
additional asymptotic terms as in (1) or (2). Occasionally, the arguments yield 
more terms, and we will indicate so in small remarks further on. Our main 
theorem is 

Theorem 2. When k--*oe, k=o(logn), then 

n M , -  log n 
71 a.s. 

Theorem 2 shows us very clearly that n M, is of the order of log n plus a 

"correction term", (k-1)log(~--~ Just how far nM,- logn is fromthis 

correction term is indicated in Theorems 3, 4 and 5, and depends very heavily 
on the rate of increase of k. 

Theorem 3. (Extremely small k.) If log k = o (log log n), then 

n M , - l o g n - ( k - 1 )  log (e l ?  ~ n )  
lira sup - 1 a.s. 

,~ o~ 2 log log n 

If log k = o  (log log log n), then 

n M . -  log n - (k -1) log ( e l ?  ~ n  ) 
lira inf . . . .  1 a.s. 

, ~  log log log n 

Theorem 3 includes the case of fixed k, and can thus be considered as an 
extension of (1) and (2). The lira sup part of Theorem 3 is valid for all k that 
vary as (log log n) p for any power p > 0. The lim inf part is only valid for a more 
restricted class of k's. 
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Theorem 4. (Intermediate k.) I f  k = o (]/Fog n), then 

lira sup 
2 log log n 

= l + c d  a.s. 

where c ~ [ -  3 ~ , - � 8 9  is a constant and d = l i m i n f  
between 0 and 1/2). Also, ,~oo 

log k 

2 log log n 
(which is a number 

n M , -  log n - ( k - 1 )  log ( ~  - )  

lim inf - c - d' a.s. 
.~ oo log k 

log log log n 
where c is as above, and d ' = l i m s u p  (which is a number between 0 

,4 ~ log k 
and co inclusive, but in the latter case (d'= oo), we refer to Theorem 3). 

Theorem 5. (Large k.) I f  k=o( logn )  and k / l /~ogn~oo ,  then 

*1 a.s. 

Theorem 6. (The limit case.) I f  k = c log 17 +o(log log n), for some constant c >0, 
then 

n M , - ( 1  +a)  c logn 
V. - log log n 

satisfies 

and 

l + a  
lim sup V. = c* - -  almost surely 

.~oo a 

l + a  
lim inf V,--- - c' - -  almost surely 

n ~  c-Az a 

where a is the unique positive solution of  the equation exp ( - ~ ) = ( l  +a)e -a ,  and 

c* and c' are constants taking values in [ - � 8 9  3] and [ s - ~_, - �89  respectively. 

The only case not covered by Theorems 3-6 is when k ~ c ~ n  for some 
constant c. However, what happens in this border case is not difficult to 
deduce from the various detailed lemmas given below. Theorem 6 is an Erd6s- 
R6nyi type theorem (after Erd6s and R6nyi, 1970) in the style of Deheuvels 
and Devroye (1983). 

Examples. 1. If k Log k =o(Log  2 n), where log~ is the j-times iterated logarithm. 
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We obtain 
n M n -  log n - k log 2 n 

lim sup 
n~ ~ log 2 n 

l imin fnMn- l~176  - 1  almost  surely. 
n~oe log 2 n 

2. If k = [-(log n)~], 0 < c~ < 1, f rom Theorem 2, we conclude that  

= 1 almost  surely, 

n M ,  - log n 
+ 1 - a almost  surely. 

(log n) ~ log 2 n 

3. If  k = [-(log z n)~], c~ > 1, we have 

n M r - log n - (log 2 n) 1 + ~ 
c~ almost  surely. 

(log 2 n) ~ log 3 n 

The other theorems yield of course finer expansions. 

2. Top Bound. Outer Class Sequence 

In this section, we will let u, be a sequence of positive numbers.  Our  goal here 
is to show the following: 

Theorem 7. 
P(M,> G i.o.)= 0 

when k, = o (log n) and 

1 (log n + ( k -  1) log (e ~ n )  + ( 2 +  e) log log n Un---- --n 

) 
where e, 6 are arbitrary positive numbers. 

F r o m  this, we obtain the outer class parts for th6 " l i m s u p "  results in 
Theorems 2 through 5, in view of  the relative sizes of the terms that  appear  in 
the expression for u,. 

Lemmal.  (About  the relative sizes of functions of k and n.) Let k=k, be 
nondecreasing, and let k = o (log n). Then: 

A) (k-1) log ( ~ )  =o(log n). 

B) l o g l o g n = o ( ( k - 1 ) l o g ( ~ ) ) w h e n e v e r  k~c~. 

C) l o ~ g n ' ( k - 1 ) l ~  - -  = o  /clog , =o(logk)=o(loglogn) 

(whenever k = o (l/log n)). 
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o{{k - l ] ( k -1 ) log (e -~ lT f - ) )  D) loglogn and logk are both \ \ logn!  

when k/l/log n ~  oo. 

Proof of Lemma 1. We start with the elementary remark that the function (u 

- l ) l o g  ( e l ~  ~ n )  is strictly increasing for uE[l, logn]. 

Statement A follows from the fact that l im- l log t=0  after taking t 
t~oo  t = (e log n)/k. 

To prove B, consider first any subsequence along which loglogn/k remains 
bounded. Then, 

( loglogn)  

log log n k 
*0 

klog ( ~  t log ( ~ )  

in view of l o g n ~ ,  
k 

k/log log n--, 0, then 

and we are done. 

still along this subsequence. If on the other hand 

log log n log log n 1 

t   og,og  

The first half of C is trivial for all k > 1. The second half follows from the 
observation that 

k 2 1 ~ 1 7 6  k2 ) /{ l~ ~ 0  
log k. log n ~ / \log log n J 

when k2/log n~0.  Statement D follows from the fact that 

�9 /[ log n '~-~0 log logn l o g n = 2 ( ~ ) 2 1 o g _ l ( ( l ~ f _ ) 2 ) / \ ~ n !  

log n 2 w en 
Next, we need a few elementary lemmas: 

t t Lemma2. ((Uni+l--Uni), O<i<_n) are distributed as E z Ei , O<_i<_n 
J 

where E o, E~ .. . . .  E, are i.i.d, exponential random variables. 

Lemma 3. I f  [A n, B,] is the unique (a.s.) interval such that B n - A  n = M,, then the 
event [Un+ 16[A n, BJ ]  implies [M,+ 1 ~ Mn]. 

Lemma4. Let u, be a nonincreasing sequence of positive numbers. Then 
P(Mn>u . i.o.)=0 when 
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(i) P(M.>u.)~O; and 

(ii) ~. u. P(M. > un) < oo. 
tl 

Proof of Lemma 4. By a lemma of Barndorff-Nielsen (1961) (see also Devroye, 
1981), (i) and (iii) below suffice for P(M.>u i.o.)=0: 

(iii) ~ P(m.+i <u.+l,M.>u.)< oo. 
n 

But the n-th term in (iii) does not exceed 

In what 
density, 

P(U.+ ls[A.,A. + 2u.], M.> u.)< 2u.P(M.> u.). 

follows, we will need the probability in the tail of the gamma 

~u k - l e - U  

6k(x)= x ( k - l ) !  du, integer k. 

Lemma 5. (Large deviation result for the gamma density.) If Yn is a sequence of 
real numbers, and k = k. is a sequence of integers, and if lira y./k = o% then 

yk  n -  1 e -  y .  

G(Yn) ( k - l ) !  " 

Proof of Lemma 5. For k < y., the following inequality is valid: 

oo 

yuk-te-Udu 
I<__Y" 

- -  y k  n -  1 e - y~ 

from which the lemma follows trivially. 

1 

k '  
1 - - - -  

Y~ 

L e m m a 6 .  Let k = k .  be a sequence of integers with k=o(logn), let z. be a 
sequence of real numbers with Iz.I =o(logn), and let u. be defined by 

u.= nl (logn+(k-1)log ( ~ ) +  z,) 

Then 

log (n ~Pk (n u.)) = 1 + o (1) -- z. -- 1 log (2 ~ k) 

+(k-1)log(l  + ( z . + ( k - 1 ) l o g ( ~ - ) )  /logn), if k "[oo, 

and if kTK<oe, we need only replace l -�89 by R(K)=(K-1) log(K)  
- l o g ( K -  1)!.  

For example, if e >0, O<=G=o (klog (l~ and k'~o% then the choice 

log n 
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gives 
log(nOk(nu,))<2--G, all n large enough. 

Proof of Lemma 6. By Lemma 5, log(nOk(nu,) ) is equal to o(1) plus 

logn+(k-1)log~l~~ 

which gives us our result if we can show that R(k)=(k-l,log(!)-log(k-1)! 
=l - �89  as k ~ ,  and this follows directly from StMing's ap- 

proximation and the fact that (k -1 ) log  ( k / ~  1 )=1  +o(1). 

The second part of Lemma 6 is obtained by simply replacing z, in the 
asymptotic expression for log(n~k(nU,,)), which now becomes 

l+o(1)_tl,+(k_l)[log(1 z, k - l ,  

for all n large enough. Here we used the fact that for a, beR, e>0,  log(1 +a+b) 
-(l+e)b<a-ebandthatG=o(klog(l~n)). 

Lemma 7. 

P(M,>u,)<exp (-~-)+n~k(u,(n-n3/'~)), any u,>O. 

Proof of Lemma 7. Using the notation of Lemma 2, and the symbol G i for a 
gamma (i) distributed random variable, we have 

( ~  1 (  i+k--1 ) P(M,>u,)<=P Ei~n-n 3/4 +P Max ~ Ej>un(n-n 3/4) 
i = 0  / \O<-i<n+l -k j~i 

~p (Gnnn~-n-1/r 

__< e x p ( -  n n3/4)), 

by an inequality for the tail of the gamma distribution (see e.g. Devroye (1981, 
Lemma 3.1)). 

Proof of Theorem 7. By Lemmas 4 and 7, we must only show the following: 
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(i) n6k(u.(n--n3/4))~O; 

(ii) ~ nu.  ~Pk(u.(n--n3/~))< oo. 
n 

If we write u.(e) to make the dependence upon e explicit, then it is easy to 

t h a t u . ( ~ ) ( n - n 3 / ~ ) > u . ( ~ ) n  for all n large enough. Indeed, the difference 
g ~ 

verify 
\ . r  

8 
between left hand side and right hand side is ~log log n -O( log  n/nl/4). Now, to 

b o u n d t P k ( n u . ( 2 ) ) , w e u s e  Lemma6wi th the fo l l ow ing forma l rep lacemen t :  

z . =  

In case kToo, we have for n large enough, 

Clearly (i) is satisfied. For  (ii), we note that nu .~ logn ,  so that we need only 
verify the summability of 

n - n(log n) 1 +~/2, 

and we are done. If k ] ' K <  o% a similar argument implies (i) and (ii) also. 

3. Bottom Bound. Outer Class Sequence 

The main result of this section is: 

Theorem 8. 
P(M,  < u n i.o.) = 0 

when k = o (log n) and 

1 6) k - 1  (e l ? n )  

-- �89 k) -- log k -  log log log n - et 
! 

where 6>0  is an arbitrary positive number, and e is a constant greater than e o 
=log2  - 2 .  I f  k'F oo, we can take % = 1 o g 2 - 1 .  

From this, we obtain directly the outer class parts for the "lim inf" results 
in Theorems 2 through 5. (See also Lemma 1 for the relative sizes of the terms 
involved.) Assume for the time being that Theorem 8 is proved. In view of 
Lemma 1, we have thus obtained Theorems 2 and 5 as immediate corollaries of 
Theorems 7 and 8, since for these results inner class sequences are not needed. 
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To prove Theorem 8, we start with some fundamental inequalities for key 
probabilities: 

Lemma 8. Let un~R. Then 

P(M,<u,) <exp ( - ~  l / n ) +  exp ( - [ k ]  Ok(un(n + n3/4))) ' n>16.  

I f  also un>u,+ 1, then 

P(Mn+ 1 <un+ 1, M,>un) 

<2u,+  1 [exp ( - ~ l / n ) +  (1+ [k] Ok(un(n+n3/4)))e--([~]--l)Ok(I~in(l'l+n3/4)'] ' 

for n > 16, where [u] is the largest integer not exceeding u. 

Proof of Lemma 8. In the notation of Lemma 2, 

P(Mn<un)<-_P Ei>n+n 3/4 + P (  Max Gi<un(n+n3/4)), 
\ i  = 0 0 <= i < [n/k] -- 1 

where Go,...,G i .... are i.i.d, gamma(k) random variables. By an inequality 
* gamma(n+ 1) random found in Devroye (1981, Lemma 3.1), if Gn+ 1 is a 

variable, 

P(G*+I > n + n a/4) = P {G*+ 1_ -(n_ + 1) > n 3 / 4  - 1 
- \ n + l  = n + l  ] 

<exp(_�89 (1 n3/4- 

< exp(- �88  n>16. 

Furthermore, the second term in our upper bound is exactly equal to 

(1--Ok(u"(n+n3/~)))[}]<exp ( - [ k ]  Ok(n+n3/4)))" 

The second inequality in Lemma 8 can be obtained as follows: let S i be the i-th 
uniform k-spacing determined by X 1 .. . .  , X n, i = 0, 1, ..., n + 1 - k. Then 

P(Mn+ 1 <u,+ 1, M~>=un) 
<P(Xn+ la[A, ,  B,], Bn-A,<=2u,+ 1, second largest of 

S o ,  S k ,  S 2 k  . . . .  iS <b/n+1) 
<2u.+ ~ P(second largest of So, S k .... is <un) 

oui  =0 - 
\ 

< u.(n + n3/4))) 

=<2u n e x p ( - � 8 8  Ok(l--Ok) Lkj ), n>16,  



324 P. Deheuvels and L. Devroye 

where Ok=Ok(u.(n+n3/4)). We obtain the desired result now by elementary 
observations. 

Lemma 9. Let u. be a nonincreasing sequence of positive numbers, such that 
log n 

u. ~ . Then, if for some e > O, and all n large enough, 
n 

[~] l~k (un(n + n3/4)) >= (2 + g) log log n, 

we have P(M, < u, i.o.) = O. 

Proof of Lemma 9. By Lemma 8, for n large 

P(M, < u,) < exp ( - �88 ]//n) + exp ( - (2 + ~) log log n) ~ 0. 

Also, by the monotonicity of the function (1 + u) e -", u > 0, we have 

P(M.+ , <u.+ 1, M.>u.)  

< - - 3 l ~ 2 4 7  ( l§247 

for n large enough. But since this upper bound is summable in n, we have 
P(M,+ 1 <U,+x, M,>u, )< oo. Thus, once again we may employ Barndorff- 

n 

Nielsen's Borel-Cantelli type Theorem and conclude that 

P(M,<u,  i.o.) =0. 

Proof of Theorem 8. We verify the condition of Lemma 9. First, as in the proof 
n 

of Theorem 7, it suffices to look at ~Ok(nU,). Assume first that kToo. Then, in 

Lemma 6, the probability tPk(nU,) can be estimated by setting 

z , = ( 1 -  l ~ g  n ( k -  1) log - � 8 9  

so that 

where 

= 1 +o(1 )+  e+ log  log logn 

+ ( k - l )  (log / zn b, \ bn 
tl  + long n + long n) - (1 - 6) logng n) 

Now, we are done if we can show that for all n large enough, 

log (1 zn+bn\ 
+ l ~ g  n ) - ( 1 -  fi) lo--~n > 0. 
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z, +b 
But clearly, by Lemmal ,  the first term in this sum ~ , so that the 

log n 
difference ~(zn+6b,)/logn. (Since z,=o(b,,) and b,=o(logn), we need not con- 
sider higher order terms to obtain a correct asymptotic expansion.) This 
concludes the proof of Theorem 8 for the case kToo. When k = K <  ~,  we note (n ) 
that the 1 +e  in the asymptotic expression for log ~Ok(nu,) must be replaced 

by R(K)+�89 For this to be greater than log2, we need a universal 
lower bound for R (K) + �89 n K): for K = 1, we have �89 n) > -~. For K > 1, 

( a lower bound is given by ( K - k )  log 1 2 ( K- l ) "  But since log 1 

+ > ~ ,  we obtain the weaker lower bound 1 - ( 2 K ) - l - ( 1 2 ( K - 1 ) ) - 1 > l  

- 4  - 1 - 1 2  -1 =-~. Thus, in all cases, the choice e> log2  - 2  will do. 

4. Bottom Bound. Inner Class Sequence 

We have already proved Theorems 2 and 5. Thus, there is no harm in 

assuming from now on that k=0(l / logn).  Using the fact that P(Mn<u,)--*l 
implies that P(M,<u~ i.o.)= 1, and reconsidering the proof of Theorem 7, we 
notice that P(M,<un i.o.)= 1 for the following sequence u,: 

U'=nl (log n + (k - 1) log ( ~ ) - � 8 9  log(2n k) 

[e log n \ \ 
+(1 + ~) l ~ g  in ( k -  1) log t ~ )  + ~/,) 

where qn---~, and 3 > 0  is arbitrary. This, together with Theorem 8 is strong 
enough to obtain the second half of Theorem4 at least for the case 

logloglogn=o(logk), k=o(V/logn). But because we want to see the 
"log log log n" term in u~, just as in Theorem8, in the hope to cover both 
Theorems 3 and 4 simultaneously, we are forced to use a more sophisticated 
argument. We will follow the "small k" technique developed in Devroye (1981). 

We begin with a useful inequality. 

Lemma 10. Let X 1 . . . . .  X n be independent random variables, and let "]1 . . . .  , Jm be 
subsets of {1,..., n}, where m is another integer. Then, for all integers k I ..... kin, 

P ( ~  X~>__k~, ..., y, X~>km)> [ I P ( ~  X~>__kj). 
i~J1 i~Jm j -  1 i~Jj 

Proof of Lemma 10. We argue by induction on n. For n = 1, it is clear that for 
any m 

m 



326 P. Deheuvels and L. Devroye 

Assuming that the inequality is valid for n - l ,  we need to show that for all 
1 _< l _< m and all m, 

P(X,+ ~ X i>k  1 .... , X , +  E X i ~ k l ,  E X i ~ k l + l , " "  E x i ~ k m )  
ieJt ieYl iedl + 1 iEYm 

>= P(ZXi>=kj)I-[P(X.+ ZXi>=kj) 
j = / + l  ieJj j = l  ieJ 3 

(which we shall call inequality *) and this, for all possible subsets Jj, 1 <j <m, 
of {1, ..., n -1} .  But, by conditioning on n and using our induction hypothesis, 
we see that the left hand side of (*) is at least equal to 

P ( ~  Xi>kj)E ~ [ P ( ~  X ~ > k j - X ,  IX.) . 
j = / + l  iEJj j = l  ieJj 

l 

The random variables in [ I  are all of the form fj(X,) where the f fs  are 
j=t 

nonnegative nondecreasing functions. But, by Gurland's inequality, 

l 1 

j = l  ; j = l  

Now, taking expectations again gives the right hand side of (*). This concludes 
the proof of Lemma 10. 

This lemma allows us to obtain the following rather crude lower bound for 
P(Mn <u,): 

Lemma 11. For u>O and 26(0, 1), we have 

P(M. < u) > (1 - ~k(n U(1 -- )0)) "+1 -- exp(-- n 2z/2). 

I f  2=2 , ,  k=k,, and u=u, are such that )~6(0, 1), all n, and 

(i) n~2k(nu(1--2))--*O; 

(ii) tPk(nU(1--2))/22~O, 

then 

P(M, < u,) > (1 + 0(1)) exp ( - n Ok(n u(1 - 2))). 

Proof of Lemma 11. We will use Lemma 2 again, together with its notation. 
Clearly, if Jj<= {j,j+ 1 .... , j + k -  1}, then 

P(Mn <u)>=P ( Max ~ E~<un(1-2) ) -P  Ei=<n(1-2) 
O<--<-J ieJj i = 0  

j<=n+ 1 k 
n+ l - k  

> I~ P(~E~<un(1-Z))-exp(- �89 
j = O  iedj 

= (1 - O~(u n(1 -,~)))" + ~ -  ~ -  e x p ( -  �89 n,~:) 
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which gives us the top inequality. The second part of Lemma 11 follows from 
the first part after noting that log(1 + z ) = z + O ( z  2) as z~0 .  

The main result of this section can now be announced as follows: 

Theorem 9. I f  k = o (]/l~gng n), and 

~ 0 o ~ + ~ - ' ~ o ~ ( ~ )  l o g ~ o g l o g . - ( ~ - ~ ) l o g ( 2 ~ )  t ,  >0 ,  u ,=  n + l  e 

then 
P ( M ,  < u, i.o.) = 1. 

Theorem 9 can of course be improved for fixed k, and the constant 2 is 
chosen for practical convencience only. Nevertheless, even in this crude form, it 
is powerful enough to give us the "lim inf" parts of Theorems 3 and 4, when 
considered together with the outer class result of Theorem 8. 

Proof  o f  Theorem 9. We employ the technique for k fixed of Devroye (1981), 
that is, we show that 

, P(M,~ < u,~ ~.o. (in i)) = 1 

where M*,, is the maximal k-spacing formed by X,~_~+~,...,X,,, and 
l=<n t<n2< . . ,  is an increasing sequence of integers. We will choose n~ 
=[exp(2ilogi)] .  (Technical note: the reason for choosing such a sequence, 
roughly speaking, is that n~-n~_ ~ and n~ are of the same order of magnitude, 
so "forgetting" a subsample of size n~_ ~ does not matter too much.) 

Since we need only verify that 

P(M.* < u.)  = o0, 
i=1 

it is important to have a reasonable lower bound for the i-th probability. The 
lower bound of Lemma 11 will be used here with 

k=kn,,  bl=blnp ,~=(ni--Hi_ l) -1/4, 

By elementary calculus, we verify first that 

ni/ni- 1 ~ (e i)2, (ni - ni 1) = ni (1 
\ 

n~-ni -Hi_  I . 

1+o(1) ]  

(see also Devroye (1981, Lemma 5.2)). If we can show now that for all i large 
enough, 

(h i -  ni- 1) @ki((ni- hi- 1) Hni(l --(HI- Hi_ 1)- 1/4))~ log i, 

then obviously, (i) and (ii) of Lemma 11 are satisfied, so that the last inequality of 
Lemma 11 can be used. But this gives a lower bound of ( l+0(1))exp(-log(i))  
for the i-th probability, and this is not summable in i. 

The argument of ~ki is 

n lu , . (  1 1+0(1 )~ (  1 1+0(1)~ ~ ] e il~ ] = n l u , ~ ( 1 - ( l + O ( 1 ) ) ( e i ) - 2 )  �9 
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This can be rewritten as 

{e log nil _ log log log n i + 1 l~ ni + (ki-1)  l~ \ ki ] 

2i log i 
- ( � 8 9  log(2nki)- (1  +0(1)) e~ ~ . 

Assume first that k+  0% so that we may apply the first estimate of Lemma 6. 
We have, omitting the argument of ~'k,, 

(ni--n i 1)~ki(.)~nil/Iki(.)~exp(1--elog(2~zki)+logloglogni--1 +o(1) 

+ (k~- 1) log(1 + vi/log n~)) 

(elognl]  
where v i = ( k i - 1 ) l o g \ ~ - ,  j - l o g l o g l o g n i + l + o ( 1 ) - ( � 8 9  By 

t 

adding log log log ni to v~, we obtain an upper bound for our expression. We 
check quickly that vi =o(log n~) and that k~ v]log n~ = o(logki)(here we need the 

fact that k=o(lo]/ i~)) .  Thus, an upper bound for our expression is 

exp (o (1) - (5 + o (1)) log (2 n kl) + log log log hi )  ~ (log i)' e-  (~ + o (11)logt2 ~ k0, 

and we are done. When k = K  < ~ ,  exactly the same upper bound is valid. To 
see this, note that the quantity R(k)+�89 for all k (see Lemma 6 for 

the definition of R(k), and use the fact that l o g ( k - 1 ) , > ( k - 1 ) l o g ( ~ ? )  

+�89 k > l ,  and that log(l+z)_<_z, to obtain the bound (k-�89 
-1)<1, k>l). 

5. Top Bound. Inner Class Sequence 

Theorem 10. Assume that k=o(] / log  n) and that 

t u . = ~  - -  + ( 2 -  

for some e > O. Then 
P(M,>  u,, i.o.) = 1. 

Theorem 10 together with Theorem 7 imply the "lim sup" results found in 
Theorems 3 and 4. In the proof we make heavy use of the fact that k changes 
very infrequently. 

Proof of  Theorem 10. Consider a strictly increasing sequence of integers n i. We 
will show that P(M,, > u~, i.o.)= 1 by a technique that could be called "bridging 
between the lim inf and lira sup bounds" (see Devroye, 1981, for another 
example of this technique). Let us define 
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and recall f rom T h e o r e m  8 that  M ,  > v, f.o. almost  surely. 
Now,  if v , > u  . . . .  for all i large enough, then we are done if P(C~ i.o. (in i)) 

= 1 where 
ni+l 

C i =  ("] [ X j ~ [ A j _ I , A j _ I  + U j ]  ] .  
j=ni+ l 

But, by the condi t ional  independence version of the Borel-Cantel l i  lemma,  this 
is true if 

~ P( C~) = oo. 
i = 1  

In view of 

P(Ci) = (1 -u . ,+ l )  . . . .  - " '  => e x p ( -  u., +l(n i+l -n i ) -uZ+~(n i+l -n l ) )  

exp( - u.i+~) (n i + 1 - hi)) 

for i large enough, if 
Hi + 1 - -  Ill 

log2 ni+l . n/2+ 1 ~0, 

we see that  it is only necessary to find a subsequence n~ verifying the following 
condit ions:  

(i) v.>u,,,+l, all i large enough;  

(ii) l~ 2 hi+ 1 = o ( n 2 +  1 / ( n i +  1 - nl)); 

(iii) ~ e x p ( - u . , + l ( n i + l - n i ) ) =  o9. 
i = 1  

In our  hunt  for such a subsequence,  the sequence h i=  [ -exp(] /2 i logi ) ]  seems to 
fulfill the role, were it not  for the fact that  (i) is not  satisfied when k increases 
in the i-th block between n i and ni+l.  To  c i rcumvent  this problem,  we collect 
all integers i for which kni+l=k, ,  in a set G, and all other  integers in its 
complement ,  G c. Since (ii) is obviously satisfied, we see that  we are done if (iv)- 
(vi) hold:  

(iv) vn>u,i+l , all i large enough, leG; 

(v) Un,+l(ni+l--ni)<=logi+O(1); 

1 
(vi) ~ , _ = o o .  

iaG 1 

We will proceed in reverse order,  s tart ing with (vi). Let  N m be the number  of 
integers i <  m in G c. Then, 

m 1 
_1 => lim inf ~, _ = co 

ieG l m~oo Nm l 

when l o g ( m / N m ) ~  , i.e. when Nm=o(m ). Now,  by the mono ton ic i ty  of  k, 
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N m _-< k . . . .  = 0(l~ (nm+ 1)) = 0 ( l / m  log m), 

and (vi) follows. 1 1/~g i 
By a simple exercise in analysis, we see that n~+l-ni~ni  [ / ~ - ,  and thus 

that ng+ 1 ~ n~. We note that (v) is nearly proved since 

u . ,+ , (n ,+-n  i) l~ " ] / l ~ 1 7 6 1 7 6  n~ =log/ .  
1 ni+ 1 [/ 2i \ 2i 

Unfortunately, this is not good enough, and we are forced to bound things 
with more care. First, by a standard Taylor series bounding technique, we have 

ni+l ( l+logi) .  n i + l - n i < l §  ~ 

Also, for i large enough, 

u . . . .  "hi+ 1 < log ni+ 1 + 2 I/log hi+ 1 log log ni+ 1 

<log ni+ 1 + 2(3 i log 01/4. log i. 

Combining this, (v) follows if 

1 + log /  (logn~+ 1 +il/3)<l~ �9 
]/2 i log i 

But l o g n i + l < l / 2 ( i + l ) l o g ( i + l ) = ~ "  1+~} \ log/ The i ~/3 

contribution to our  product is o(1), and the contribution of the factor 1 in "1 
+ log i" is 0(1). Thus, we need only show that 

log/- 1+ \- 1-o~g/ =<logi+0(1). 

1\ 1/2 1 log(i+ 1) 1 
This follows from the inequalities 1 + i }  < 1 + ~ and log i < 1 +_.l This 
concludes the proof of (v). 

For the proof of (iv), we note that hi+ 1~hi= 1 + (1 +o(1)) / log i] 1/2. Now, for 
\ 2 i ]  

i~G, i.e. k~+ ~ =k~, and writing logj for the j times iterated logarithm, 

/)ni g/i+ 1 

/An,+ 1 Hi 

(e log ni] -�89 ki ) - log(k i ) -  1 - l o g  3 n i log n i + (k i -  1) log \~k~-i ] 

e log hi+ 1 
l ogn i+ l+(k~- l ) log  \- ~- ) - �89176176176176  

Hi+ 1 ai 

n i b i" 
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[elogn A 2, ~ 
Now, fo r / l a rge  enough, ai<bi. Also, the term (k i -  1)log ~ / ~ - - .  ] -~ log tz~k i )  

-log(k/), which is positive for all i large enough, can be subtracted from 
numerator and denominator. This gives a strictly smaller ratio (a lower bound 
thus): 

hi+ 1 log nl-- 1 --log 3 n i 

ni logn/+~ +(2_Ologlogn,+(k/_l) log ( l o g n i + t ~ "  
\ logi ]] 

But 

Thus, 

(logi~'/21 
log(nz+l/n/)=(l+o(1)) \ 2i ! 

( l+oll)(logi lJ2  
logzni+l-logzni=log 17 logni \2i-t ] ]=(1+o(1))/(2i). 

( (1ogi]1/2] �9 
v,, > 1 + ( 1 + o ( 1 ) ) \ ~ - ]  ! 

Unz+ I 

(1~ 
= 1 + \  2i ] 

1+ 

1 (l + o (1)) log log i 

(2-e)�89 +o(1)) 

which is all we need for (iv). 

6. An Erdiis-R6nyi Type Theorem 

Deheuvels and Devroye (1983) have shown the following 

Theorem l l .  I f  k=[clogn] for a positive constant c, and if a is the unique 
positive solution of ~he equation 

e C = ( l + a ) e  -a, 
then 

"nM,- ( l+a)(c logn)  1 a + l  
Vn= , 

log log n 2 a 
in probability. 

This result was obtained as a special case of a much more general result on 
the oscillations of partial sums of i.i.d, random variables. From it, we can only 

deduce that almost surely, the lim sup of V n is at least equal to . . . .  1 a +  1, and 
2 a 

the liminf of Vn is at most equal to the same number. Theorem6 stated in the 
Introduction is valid for less strict conditions on k, and gives also inner class 
sequences. Since it can be proved without a lot of extra effort, its inclusion in 
this paper seems natural. To obtain sharp inner class results however that 
improve on Theorem 11, quite a bit of new heavy machinery seems necessary. 
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First of all, we will need a large deviation result for the gamma density in 
the spirit of Lemma 5: 

Lemma 12. (Large deviation result for the gamma density.) If a > 0  is a con- 
stant, and a k, b k are sequences of real numbers satisfying ak=(l +a)k+bk, b k 
= 0 (]/~), then 

1 ( a )  
Ok(ak) al / /~ k exp k(log(l + a ) - a ) - i ~ a  b k as k ~oo. 

Proof of Lemma 12. Consider first the series 

k 1 M k - 1  

( k - 1 ) ! ~ a k J ( k - l - j ) ! - ~ =  ~ + ~ (for integer M<k-1) .  
j = O  j ~ O  j = M + I  

For fixed M, the first sum is at least equal to 

(k -M]J~ ~ [1-M/k]J_l--((1zM/k)/(l  +a))M+a 
j=o \ ak ! ~=o\ l + a  ] 1 - ( ( 1 - M / k ) / ( l + a ) )  

1 - (1  +a)  -{M+ t) 

1_(1 + a ) - i  , 

and is at most equal to 

2 (1 + a) -- /-  •=o j=o 1 - ( l + a )  1 

The second term is at most equal to 

(1+o(1)) ~ ( l + a ) - J = ( l + a )  -(M+I) 1+o(1) 
j=M+I 1 - - ( l+a )  -1 

Since M was arbitrary, we conclude that the series converges to - -  
Next, by elementary calculus, 

~0 as M ~ o o .  

l + a  
a 

~yk-te-Y /a~ le-ak 
jk dy / 

as k~oo.  

ak (Y  a l ( ' )  
- -  e -  (y ak) d 

1 \ak! 

= a k ~ ( l + u ) k - l e  a~ du 
0 

=akj= 0 

k-~=i ~ (k~l)zje-Zdz.a~q+l} 
"= a k j  = 0 

k-t (k-- 1)! 

j= ( k -  l - j ) !  a~-j 

l + a  
- +  a s  k ---+ o o .  

a 
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Next, by Stirling's formula, 

1 + a  a~-le -ak G(ak) 
a ( k - l ) !  

l+a ((l+a)ke)k-l (1 ~lbk \k-i 
a \ ~--1 +(l+a)~c] 

e-(1 +a)k--bk(27c k)-- l/2 

~1 + a ~  eX~a (~I~ +a~ +~+a ~ ) t ~  ~ ~, 

which concludes the proof of Lemma 12. 

Proof of Theorem 6. We will first show that P(M,>u, i.o.)=0 for 

3 a + l  n), ~>0. G=ln ((1 +a)(clogn)+(5+e)Tloglog 

We can apply Lemma 4 again since u, is eventually nonincreasing. Applying 
Lemma 7 to the conditions of Lemma4 leaves us with the simple task of 
showing that 

(i) nl~k(Un(n--n3/4))--,O, 

(ii) ~ logn-~k(u,(n--n3/r oo. 
n 

Un(~)(I'l--H3/4)~Un(~)n for n large enough, we see Because Un = Un(43) satisfies: 

that in (i) and (ii) the argument of 0k can be replaced by 

We write un (2) n as (l +a)k +bn (in the notation of Lemma l2) where 

3 ~) a + l .  bk=(l +a)(clogn)+ ~+~ ~ - l o g l o g n - ( l  +a)k 

3 = ( ~ + ~ + o ( 1 ) )  a+ l~  T log log n. 

Because obviously n=exp(!+o(loglogn)), and bk=O(1/k), we have by Lem- 
ma 12, 

- 2 - - - ~ -  o(1) 
= (log n) 2 

It is clear that (i) and (ii) hold for each e > O. 
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Next, we will prove that P(M, <u n i .o . )=0 when 

U"=n (l +a)(cl~ +~) a+ l l~176 e > 0 .  

Since u n is eventually monotone ,  and un~(1 +a)c lcgn, we are in a position to 
apply Lemma 9. For n large enough, we have n 

; ~k(U,,(~') (B q- rt3/4)) ~ ; ~lk (ldn (;) r~) 

a ex. loglo  o + loglog.  ! )  

which satisfies the inequality of Lemma 9 for all e >0 .  This concludes the proof 
of Theorem 6. 

Remark. We have used the fact that Theorem l l holds under the weaker 
conditions on k stated in Theorem6.  Note  however that if the o ( log logn)  
terms is replaced by a bigger term in the condition for k, the estimate obtained 
via Lemma 12 will be influenced to such an extent that the conclusion of 
Theorem 6 may no longer be valid. 
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