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A sequential random search method for the global minimization of a continuous function is
proposed. The algorithm gradually concentrates the random search effort on areas neighboring
the global minima. A modification is included for the case that the function cannot be exactly
evaluated. The global convergence and the asymptotical optimality of the sequential sampling
procedure are proved for both the stochastic and deterministic optimization problem.
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1. Introduction

The global minimum of a real-valued function Q can be found by means of
random search (see [10], [16] for surveys of the literature). If B ~ Rd is the
search domain in which the minimum must be located, Q can be evaluated at
XI,. .., Xn, a sequence of independent random vectors with a common dis-
tribution (e.g., if B is a hypercube, take the uniform distribution in B). The
estimate X':; of the minimum is the Xi with the lowest value Q(Xj). This method, ,
called crude search [3,4] is discussed by Brooks [2] and compared on a
theoretical basis with uniform grid search by Anderssen and Bloomfield [1]. Both
methods have the drawback that they are essentially nonsequential and thus
require a very large number of samples to estimate and locate the minimum with
a high probability of achieving a certain accuracy.

A combination of local hill-climbing techniques and nonsequential global
search appears to be the most popular technique nowadays in global minimiza-
tion problems of smooth functions [6-8, 11-12, 14-15, 20, 23]. Hartman [7] and
Cockrell and Fu [5] experimentally compare several techniques. Torn [20]
attempts to define the classes of functions in which one technique is theoretic-
ally more efficient than the other. The global convergence of most random

I search methods is covered by the theorems found in [6] and [14]. The overall
convergence rate of an algorithm is mainly determined by its global search
routine, while the hill-climbing component in the algorithm merely insures the
accuracy of the solution.

* The research is sponsored in part by the Air Force under Grant AFOSR-72-2371.
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Shubert [17] reports an interesting sequential non-random search algorithm for
the global minimization of Q when Q is Lipschitz, that is, there exists a finite
number C such that for all x, y E B,

IQ(x) -Q(y)l:s Cllx -yll. (1)

Requiring the knowledge of the constant C, he finds that for d = I the number of
function evaluations needed to locate the minimum (relative to uniform grid
search) decreases drastically. All theoretical comparisons of random search and
non-random global search seem to indicate that for d > 6, on the average,
random search is more efficient [1]. Thus, for high dimensions, a randomized
sequential global search may be very effective. In this paper, a method is
developed that differs from crude search only in that gradually larger and larger
sections of the search domain are excluded from further search, thus concen-
trating the global search effort on unexplored areas and areas that, based on the
available information, can possibly contain the global minimum. Brooks [3]
excludes from further search small spheres with a given radius and centered at
previously investigated points. However, his method of exclusion does not
depend upon the values of Q at these points. In the method developed below,
the radii of these spheres are adapted as the search proceeds. Two versions are
studied, one for which Q satisfies (1) and C must be known, and one for which
Q can be any continuous function.

The convergence and rate of convergence of the algorithm is studied in the
first part of the paper. In the second part, we assume that Q cannot be exactlyl 
evaluated and we discuss the changes that are necessary to still insure the

i overall convergence of the algorithm.

2. Progressive global random search

Assume that B = [0, l]d and that (1) holds. Thus, there exists a point Xo E B
with Q(xo) = qrnin = infB Q(x). If A is a subset of Rd, let OA denote the uniform

distribution function on A n B. Consider then the following sequential global
search method:

(i) Let XI be a random vector with distribution function Os; evaluate Q(X J.
(ii) Given XI, Q(XJ,. .., Xn, Q(Xn), let

Mn = m.in Q(Xj)
1~I~n

and compute Rj = (Q(Xj) -Mn)/C, 1:S i:s n.

(iii) If An is the complement of U;=I S(Xj, Rj) (S(x, a) denotes the closed
sphere centered at x with radius a), X n+1 is a random vector with distribution
function 0 A.; evaluate Q(X n+ J and return to (ii).

After the n-th iteration, the estimate of the global minimum is X~ = Xj if i is
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the smallest integer for which

Q(Xj) = Mn = iQf Q(XJ.
Islsn

The region excluded from search, S(X I, RJ U. ..U S(Xn, Rn), contains only j
points y with the property that

~

Q(y) ;:?: Q(Xj) -CRj ;:?: Mn all i, j

and is of no interest anyway. If a combination of local and global search is ~
desired, the following model suggested by Jarvis [10, 11] and others [5,6] is both I
simple and practical. Replace (iii) by

(iv) Let X n+1 have distribution function anGAn + (1- an)G*n where 0:5 an :5 1 is
a given number and G~ is any distribution function; evaluate Q(X n+J and return

(.. ) 1 to 11.

The distribution function G~, a measurable function of XI, Q(XJ, I a
..., Xn, Q(Xn), accounts for local hill-climbing. For example, it is not un- p
common to let G~ be Gaussian centered at X~ with a small variance u; in all W
directions (see Matyas [14]). Or else, G~ can be the distribution function tr

corresponding to Zn, the outcome of a few steps of gradient descent started at X~.
Theorem 1 deals with the convergence of Q(X~) to qmin as n grows large. It is

applicable regardless of the choice of the G~. It is further assumed that in (ii) the If
radii are determined by stl

Rj = Yn(Q(Xj) -Mn), 1:5 i:5 n, prl

where Yn is a nonnegative number depending upon n only. at

Theorem 1. Let {an} be a sequence from [0, 1] with wh

~ we

~ an = 00, (2) COI
n=1

let Yn:5 l/C for all n large enough, and let Q be Lipschitz with
constant C (see (1». Then Q(X~) ~ qmin with probability one. In particular, for all
E > 0 there exist constants N (depending upon {Yn}, C and E) and KI > 0 Th~
(depending upon C and d) such that sea

P{Q(X~»qmin+E}:5exP(-KIEdj=~+laj) alln;:?:N. (3)

If Q is continuous, if (2) holds and if
thell

Yn ~ 0, (4)

Tt
then Q(X~) ~ qmin with probability one as well. Furthermore, for all E > 0 there the ~

exist constants Nand KI > 0 (both depending upon {Yn}, Q, d and E only) such its eJ

,.
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I
i
I that

P{Q(X~) > qmin + E}:5 exp( -K1 i=t+1 ai) all n ;2: N. (5)

Theorem 1 encompasses the case that C is unknown. The sequence {'Yn} must
then be picked by the designer in such a way that (4) holds. In the limit case
('Yn = 0 for all n) the method reduces to crude search provided that an = 1 for all
n. The larger 'Yn is, the more area is excluded from search, thus increasing the
sequential search effect. This shows the importance of selecting 'Yn as close as ~
possible to the true value l/C. In any case, it is obvious that we must let '"

'Yn:5 inf IIXi -XjII/IQ(Xi) -Q(XJI. (6)
i..j

The estimate (6) may be much larger than l/C however, and blindly using it for
all n may make the algorithm nonconvergent. One practical problem arises in the
process of the generation of X n+l. To find X n+1 with distribution function GA.,
we generate ZI, Z2,. .., a sequence of independent random vectors with dis-
tribution function GB and pick the first Zj satisfying all the inequalities

IIZj -Xiii> Ri, 1 :5 i :5 n.

If (6) holds with strict inequality, then this procedure will with probability one
stop after a finite number of Zj'S have been checked.

Let us now concentrate on the study of the efficiency of the new sampling
procedure relative to crude search. The relative efficiency of a search technique
at the n-th iteration can be defined as the function g(n, E):

g(n, E) = P{Q(XJ;2: qmin + E}/P{Q(X n+J;2: qmin + E} (7)

where X I has distribution function GB as in crude search. In the next theorem .
we show that for all E > 0, g(n, E) ~ 00 if the sequence {'Yn} satisfies the slow ,~
convergence condition ,;i~~

',':'~
n'Y~ ~ 00. (8) ..",f

Theorem 2. If B = [0, l]d and Q is bounded on B, if in the progressive random
search algorithm one lets an = 1 for all n, and if {'Yn} satisfies (8) and

'Yn, 1/'Y~+1- 1/'Y~ are nonincreasing for all n large enough,

d d d n
n'Yn(l/'Yn+l-l/'Yn)-+ 0, (9)

then Q(Xn) ~ q miD in probability whenever Q(X~) ~ q miD in probability.

Theorem 2 links the convergence of Q(Xn) to the convergence of Q(X~). For
the sampling procedure to be asymptotically optimal (that is, to concentrate all
its effort on that subset of B for which Q(y) is near qmin whenever y E B), it is

- -.."..,
C\;"".{!,i';'",
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necessary that n'Y~ ~ 00. It is clear that if Q is Lipschitz with constant C, and
'Yn = l1C, then (8), (9) hold. Notice however that Theorem 2 remains valid even if
Q is not continuous. The reason why (8) must hold is because at the n-th
iteration every Xi excludes an area of size proportional to 'Y~( Q(X;) -Mn)d from
further search, and the total volume of the excluded search area is strictly upper
bounded by Kn'Y~ for some constant K. Since B is compact and n'Y~ ~ 00, we
see that Q(Xi) -Mn must be small for large i and n. If 'Yn tends to 0 so quickly
that n'Y~ ~ 0, then the sampling procedure will asymptotically approach crude
search, the relative efficiency g(n, E) will tend to 1, and nothing is gained by
using the progressive random search algorithm.

Condition (9) insures that 'Yn varies slowly enough so that the holes that are
created in B by decreasing 'Yn can be filled up with new Xi before they grow too
large. (J

r.

d n. n
Example (i) If 'Yn = n-a, 1> a > 0, then (8) holds and "fn -'Jo 0, but (9) IS not tc

satisfied. Cn n .
(ii) If 'Y~ = n -a. where an -'Jo 0 and an log n -'Jo 00, then (8) and (9) hold. Taking e;

an = (log log n/log n) gives 'Y~ = 11l0g n. With an = (log n)P-\, 0 < p < 1, we obtain. q
'Y~ = exp(-(log n)P). -I Sl

(iii) The conditions of Theorem 2 are trivially satisfied for constant sequences J s,
'Yn = 'Y\. st

th

3. Minimization of the empirical risk
Stl

The above mentioned sequential random search procedure fails to give good sa
I.

results if Q cannot be exactly evaluated. Assume that l, ,1~,)
.;,1rLo
~ , ,;

Q(x) = J q(X, y) dF(y) (10) Sc

co
where q: Rd X Rm ~ R is a given or computable function, and F is an unknown ex
distribution function on Rm. Instead of being able to evaluate Q(x), we can thc
observe values for Y\, Y2,..., a sequence of independent random vectors with to
distribution function F. Given Y\,. .., Y n, Q(x) can be estimated by the empiri- F
cal risk int

Qn(x) = ,,-I f q(x, Yi). (11) i
i=\

Since by assumption Q(x) is finite for all x, we know by the strong law of large
numbers [13] that Qn(X) ~ Q(x) with probability one. At the n-th iteration, we Thc

replace the unknown regression function Q by its estimate QA. where {An} is a Iq(;
given monotone sequence of integers. The modified algorithm proceeds as by:
follows: unij
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(i)* Let X I be a random vector with distribution function GB; obtain and store
YI,..., Y>'r.

(ii)* Given XI".., Xn, YI,..., Y>.., define Mn = minlsisn Q>..(Xj and compute
the radii Ri = 'Yn (Q>.. (Xj -Mn), 1:5 i:5 n.

(iii)* X n+1 has distribution function anGA. + (1- an)G~ where 0:5 an :5 1, G~ is
any distribution function and An is the complement of S(X I, RJ U. ..U
S(Xn, Rn); obtain values for Y>..+I,. .., Y >'.+r and return to (ii)*.

The estimate of the minimum of Q after n iterations is X~ = Xi whenever i is
the first integer for which

Q>.. (Xj = min Q>.. (XJ = Mn.
Isjsn

For an = 1, 'Yn = 0, an empirical version of the crude random search method is

obtained. It should be noted that the empirical risk minimization technique
requires the storage of the sequence YI, Y 2, For applications requiring the
minimization of Q (10) for special classes of functions q, the reader is referred

t to the work of Vapnik and Chervonenkis [21], [22]. Sysoev [19] studies the

convergence of Q(X~*) to qmin where X~* is the exact minimum of the: 
empirical risk (11). However, to exactly minimize Qn requires a large number of

l ..q-evaluations. In situations in which evaluations are costly, a suboptimal method

such as progressive global random search may be more economical. Another
i suboptimal method requiring the convexity of Q and the differenti~bility of q is

studied by Sysoev [19], who at every iteration takes one step in the direction of
the gradient of q(x, Y...) at X~ and compares X n+1 and X~ using (11).

The conditions that we will impose upon q are not as strict as the one's
suggested by Sysoev [19] or Vapnik and Chervonenkis [21-22]. We say that q

I satisfies a uniform Lipschitz condition if there exists a finite C such that

Iq(x, y) -q(z, y)l:5 Cllx -zll all y E Rm all x, z E B. (12)

I) Sometimes the convergence of (i)*-(iii)* can be guaranteed under the weaker
condition that q is equicontinuous, that is, for every x E B and every E > 0 there

rl exists a 8> 0 such that Iq(x, y) -q(z, y)1 < E whenever Ilx -z/l < 8, regardless of
rl the value of y. Both conditions are concerned with the variation of q with regardb 

to x. We further require, turning now to the variation of q with regard to y, that
-F is such that the collection of random variables {q(x, YJlx E B} is uniformly

integrable, i.e.

J lim sup J Iq(x, y) -Q(x)1 dF(y) = o. (13)
.--xEB

Iq(x.y)-Q(xJI",e

e The collection of random variables {q(x, YJlx E B} is uniformly dominated if
a Iq(x, y) -Q(x)l:5 f(y), all x E B, and I If(y)! dF(y) < 00, a condition that is required

n
IS by Sysoev [18] to show that SUPxEBIQn(X) -Q(X)/- 0 with probability one. Clearly,

uniform domination implies uniform integrability. In the next theorem, we show

i
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that if An grows unbounded, then the empirical and deterministic versions of the

algorithm have the same asymptotical properties.

Theorem 3. Let B = [0, l]d, let Q and Qn be defined by (10), (11), let q be

equicontinuous and let {q(x, YJ I x E B} be a uniformly dominated collection of

random variables. If in (i)*-(iii)* we let

Yn ~ 0, (14).

n
An -+ 00, (15)

and
~

L an = 00, (16) .'
n=1

m<

then Q(X~) ~ qmin with probability one.
The same conclusions are valid if the equicontinuity condition and (14) are! COI

simultaneously replaced by the condition that q is uniformly Lipschitz with 8(.
constant C and lim sup YnC :5 i. : n c

Explicit expressions for upper bounds for P{Q(X~»qmin+E} can only be f
obtained if additional assumptions are made regarding q and F such as the i LeI

existence of a finite number K such that thE
, n(-

sup f Iq(x, y)- Q(x)1' dF(y):5 K, some t> 1. , '

xEB ! Prc

We will not investigate this point any further in this paper. In conclusion, we l/y
state a trivial extension of Theorem 2 to the noisy (empirical) case. , Y~:

Theorem 4. Assume that B = [0, l]d, that Q is bounded on B and that

{q(x, Y1) I x E B} is uniformly dominated. If in (i)*-(iii)* we let an = 1, An ~ 00,
and ny~ ~ 00 such that (9) holds, then Q(Xn) ~ qmin in probability whenever an<

Q(X~) ~ qmin with probability one.

SUC

bet

Appendix I:

Proof of Theorem 1. Let Ld be the constant such that the volume (Lebesgue
measure) of the sphere S(x, r) is given by Ldrd. Let N be so large that Yn :5 l/C

for all n ~ N. Assume first that Q is Lipschitz with constant C and that Xo E B is
a point for which Q(xo) = qmin. Then, we

P{Q(X~) > qmin + E} = P {a {Q(X;) > qmin + E}}

= p{Q {Q(X;) > qmin + E};=Q+I{Xie S(XO, E/C}}.
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But for every i > N,

P{Xi+1 E S(xo, E/C) I Q(XJ> qmin+ E,..., Q(X;) > qmin+ E};:?:

;:?: ai volume(S(xo, E/C))/volume(B);:?: a;Ld(E/C)d/2d.

Hence,
n

P{Q(X'J:) > qmin+ E}:5 ;=IJ+I (1- aiLd(E/2C)d):5

:5eXP(-Ld(E/2C)d i=t+1 ai)~O.

This proves that Q(X'J:) ~ qmin in probability since E is arbitrary. By the
monotonicity of Q(X'J:), Q(X'J:) ~ qmin with probability one as well.

If Q is merely continuous (and thus uniformly continuous on B since B is a
compact set) and if c5(E) > 0 is so small that IQ(z) -Q(x)l:5 E whenever Ilz -XII:5
c5(E), then the same argument can be used if N is such that Yn :5 c5(E)/E for all
n ;:?: N, and if (E/C) is replaced by 5(E).

Lemma A.I. If {Yn} is a sequence of nonnegative numbers satisfying (8), (9), then
..n n d n

there exists a sequence of Integers {bn} such that bn -00, bnln -0, bnYn -00 and
d d n

n(Yn-b. -y.)- O.

Proof of Lemma A.I. Without loss of generality we can and do assume that
IIY~+I- Ily~ and y. are monotone for all n. Thus, it is possible to write
Y~ = I/(tl + ...+ fa) where the t. are nonnegative and nonincreasing, and (tl +
...+ t.)/n ~ O. Let b. be the nearest integer to c5.ly~ where

c5. ~ 00, c5.lny~ ~ 0, 5'+1:5 5.(1 + tIn),

and
d d d n

c5.ny.(lly.+I- Ily.) -o.

Such a sequence {c5.} can be found since ny~': 00 and n:=I(1 + tIn) = 00, and, d d d'

because ny.(lly.+I- llYn) -O.
..d n .

It is easy to check that b. -00, b.ln -0 and bny. -00. Also, since
( .-1 )c5.:5 c5.-b.(1 + tIn -b.). ..(I + tIn -1):5 5.-b. exp i=~b. IIi

:5 c5n-b./(I- b.ln),

we have
n( Y~-b. -Y~) = n(t n-b.+1 + ...+ t.)/(tl + ...+ t.)(tl + ...+ t .-b.)

<: bt d d-n ..-b.+IY.y .-b.

:5 c5.(n- b')Y~-b.(IIY~-b.+I- IIY~-b.)/(I- b.ln)

:5 c5.-b.(n -b.)Y~-b.(IIY~-bn+l- IIY~-bn)/(I- b.ln)2
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,

which tends to 0 as n grows large since bn/n ~ O. '

I
Proof of Theorem 2. If B = [0, I]d, then Tn = P{Q(Xn+J > qmin + E I XI, ..., Xn} is ]
the volume of An nB n{x I Q(x) > qmin + E}. Clearly, , ;

rP{Q(X n+J > qmin + E} =
,I c

= E{T n}:S E{T nI {T.s28}} + P{Q(X~) > qmin + 2E}

+p{{Q(X~):sqmin+!E}i=6b.{Ti2:6}} (17) j ~

where 6 > 0 is to be specified later and c is a specially selected integer. First we
find XI, ..., XN in B with the property that for every z E B, there exists a j with I
Ilxi -zll < !'YnE. .It is obvious that we can pick Nn = a/'Y~ where a depends upon d
and E only. Assume now that Tn-b.,'" Tn 2: 6, then at most Nn of X c+I,"', Xn can
have Q(Xi) > q miD + E provided that Q(X~):s q miD + !E. Indeed, for every such; > c,
find an xi with II Xi -Xi II < ! 'YnE. The same xi cannot be used for two different values I
of ;, say ;1 and ;2, because that would imply that IIXit- XiJI:s IIXil -xiii + IIXi2 -xiII < i
!'YnE, which by the monotonocity of {'Yn} and the fact that from the c-th iteration on, j
Ri > ! 'YnE whenever Q(X;) > q miD + E, is impossible. If Tn 2: 6, then at most c + a/ 'Y~ h
of the XI,. .., Xn have Q(X;) > qmin + E.

Also, whenever c < n -bn :S ; :S n, I

Tn -Ti:s Ldq*dn('Y~-b. -'Y~) (18)
tt.

where Ld is a constant depending upon d only and q* = SUPXEB Q(x) -infxEBQ(x). al

First we let 6 be small enough, noting that E{TnI{T.s28J:S26. Next we pick c a
so large that P{Q(X~) > qmin + !E} < 6. Then we find bn such that (18) is smaller,
than 6 (which in turn explains (17», c'< n -bn, (c + a/'Y~)/bn <!6 and I
exp(-2bnG6)1 < 6 (Lemma A.I). For such large n,

{ n pr
P {Q(X~):sqmin+!E}i=Ob.{Ti2:6}}:S

:S P {{i I {Q(X.-b +p>qm;n+Ej:S a/'Y~} .n {Ti 2: 8} } arJ=I. I=n-b.

:S P{ b;;-1 i (.Ui -6):S a/'Y~bn -6 }J=1

where UI,..., Ub. are Bernoulli random variables with P{Ui = I} = 6. Since ~~
a/'Y~bn <!6, we can upper bound' this last expression by exp(-2bnG6)1 using
Hoeffding'is inequality [9]. The theorem follows by the arbitrariness of 6 and E.

Proof of Theorem 3. If q is equicontinuous and B is compact, then for every
E > 0 there exists a 6(E) >0 such that for all y E am, x, z E B, Iq(x, y) -q(z, y)1 <
E whenever IIx -zll < 6. Indeed, by the equicontinuity of q, we can find S(E, x) such
that Iq(x, y) -q(z, y)/ < E for all z E S(x, S( E, X ». The collection of all open spheres

I,.,
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S(X,8(E, X)), X E B, is a cover for the compact set B. By the Heine-Borel property,
it is possible to find a finite subcover {S(XI, 8(E, xJ), ..., S(XK, 8(E, XK))}. We then

} is let 9(E) = min(8(E, xJ, ..., 8(E, XK)). Notice that the same 9(E) can be used for Q

and Qn, regardless of the value the sequence YI,.. ., Yn takes.
Before proving Theorem 3, we need two auxiliary results, which we state as

separate lemmas.

Lemma A.2. If B is compact, q is equicontinuous, {q(x, YJ I X E B} is unifonnly
17) dominated and An ~ 00, then SUpxEB /Q)", (X) -Q(x)1 ~ 0 with probability one.we

'ith Proof of Lemma A.2.. We need only show that for all 9> 0,

Il d { ~

}:an P ~ ~~E IQj(x)- Q(x)l> 9 ~ O.
> c, First, we find Nrt9) points XI,..., XNI in B with the property that for~~ 

every z E B, Ilz -x;jl < 8 for some 1:5 i:5 NI where ~ > 0 is so small that
IQ(z)- Q(x)1 <t9 and IQj(Z)- Qj(x)1 <t9, all j ~ 1, all Ilz -xll< 8, z, x E B. If (12)

I),
n; holds, then it suffices to let 8 = 9/3C. It is easy to deduce that
'Yn

sup/Qn(X)-Q(x)l:5 sup IQn(X;)-Q(Xj)/+~9.xEB l,sj,sNt

l8) A quick inspection of the proof of the strong law of large numbers [12] shows
that the following uniform version of the strong law is valid. If WI,.. ., Wn, ...x). 
are independent zero mean random variables with distribution function Fa where

~ c a is an element of an index set a, then for all E > 0,
ler .nd 

supp {U /j-1 t Wi/ > E}~ 0
aE~ I=n 1=1

provided that there exists a distribution function Fo such that

sup I dFa(w):5 I dFo(w), all s
aE~

Iwl>s Iwl>s
and

I Iwl dFo(w) <00.

Since {q(x, YJ I x E B} is a uniformly dominated collection of random variables,ce 
this property can be used to show thatng

E. p{Q {~~EIQj(x)-Q(x)I>9}}:5

{ Nt ~

}r; :5P ~ ~{IQj(xj)-Q(xj)l>t9}

ch { .; }es :5NI sup P U {IQj(x)- Q(x)l>t9} ~ O.

xEB I=n
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I ,

If II .II is the maximum component norm, then N I can be taken smaller than w
Kd/8d + 1 where Kd is a constant depending upon d only. T

Lemma A.3. If B is compact, q is equicontinuous, {q(x, YJ I x E B} is uniformly
n n

integrable and An -00, then SUPXEB IQA,,(X) -Q(x)l- 0 in probability.

Proof of Lemma A.3. The proof is similar to the proof of Lemma A.2. The
crucial observation, a uniform version of the weak law of large numbers, is that w
if WI,..., Wn are independent zero mean random variables with distribution nt
function Fa where a is an element of an index set cr, then for all E > 0,

supp{ln-lt WiI>E }~O R.
aEa 1=1

provided that [I

I .--I sa~~ Iwl dFa(w) ~ O. [2

Iwl>' [3

Proof of Theorem 3 (contd.). Let E > 0 be arbitrary and let Xo E B be such [4
that Q(xo) = qmin. Find 8 > 0 so small that Ilx -zll < 8, x, z E B implies that
IQ(z) -Q(x)1 < tE and IQj(X) -Qj(z)1 < tE for all j (note that if (12) holds, then we [5
can let 8 = E/3C). Let CN denote the event [6

~
CN = nC1 {~~~ IQA,,(x) -Q(x)1 :5tE}. [7:

By Lemma A.2, find N large enough so that the probability of C~ is smaller [8]
than 411 and that 'Yn :5 8/E for all n ~ N. For k > N,

[9]

P{Qk{Q(X:» qmin+2E}} = P{Qk (] {Q(Xj) > qmin+E}}+P{C!f.}:5 [10]

{ ~ n n } [II] :5P Ykj=Q+I{{XjeS(Xo,8)}nCNn 01 {Q(Xj»qmin+E} +P{C~}.

[12]
However, if CN occurs and Q(Xj) > qmin + E for 1:5 i:5 n, then necessarily

Mn > qmin+~E. Under the same assumption, we show that whenever Q(Z):5 ~:~~
q miD + tE, z cannot belong to any of the S(Xj, Rj), n ~ i ~ N. Indeed, [15]

Q(z) ~ Q(Xj) -E(Rj/8) = Q(X;) -E(QA,,(X;) -Mn)'Yn/8 , [16]

~ Mn + QA (X;) -Q(X;) ~ Mn -tE ~ qmin+tE.
.[17]

Therefore, the set Ao = {x I Q(x) < qmin + tE} is properly included in An for all
n > N, and since S(xo, 8) is included in Ao, it is clear that for all n > N, [18]

{ I n [19]
p X n+IE S(xo, 8) n Q(Xj) > qmin+ E,

1=1 [20]

sup IQA,,(X) -Q(x)1 :5 tE} ~ Kdan8d
xEB

\



I;; LP. Devroyef Progressive global random search of continuous functions 341

tha~ where Kd is a constant depending upon d only. Arguing as in the proof of
" Theorem 1, we thus obtain for k> N,

nnly p{nQ {Q(X:) > qmin + 2E}} ~ i=U+l (1- aiKd8d) +!11

~ exp(-Kd8d t ai)+ !11
The i=N+l

that which is smaller than 11 for k large enough. Theorem 3 follows by the arbitrari-

Jtion ness of 11.
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