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We consider a large class of densities defined in terms of smoothness and tail conditions.
Assume that we want to generate n iid random variables from a given density f in this class,
and that the global cost of the generator is equal to the total number of evaluations of f We
demonstrate with the help of several examples how one can proceed to make the expected cost
grow at a sublinear (o(n» rate. Examples include the class of Lipschitz densities on [0,1] with
known Lipschitz constant, the class of bounded monotone densities on [0,1], and the class of
all densities with a characteristic function of bounded support and k th moment bounded by a
given constant. In the last example, we proceed to show how Nyquist's theorem can be
exploited to yield a generator with O(nl/(k-I» expected cost.

1. Global cost. We consider a ]arge class of densities defined in terms of smooth-
ness and tail conditions. Assume that we want to generate n lid random variables from
a given density f in this class, and that the global cost of the generator is equal to the
total number of evaluations of f. This cost measure is appropriate when f is assumed
to be present in a black box, and evaluations of f are time-consuming. In any case,
modulo proportionality constants, the real time cost of all generators is bounded from
below by the global cost as defined here.

We demonstrate with the help of several examples how one can pr~ed to make the
expected cost grow at a sublinear (o( n» rate. Examples include the class of Lipschitz
densities on [0,1] with known Lipschitz constant, and the class of all densities with a
characteristic function of bounded support and k th moment bounded by a given
constant. In the last example, we proceed to show how Nyquist's theorem can be
exploited to yield a generator with O(nl/(k-l» expected cost.

It is important to note that the proposed methods can be used on densities for which
we may already have good or expedient random variate generators. The novelty is only
in the way the expected global cost can be made small for large n.

The examples chosen in this paper illustrate two guiding principles that can be used
in the design of efficient generators. In the case of the Lipschitz class, information
about the value of f(x) can be inferred from the values of f at nearby points, because
the density is known to be smooth. The Lipschitz class clarifies what happens when
classes are defined in terms of smoothness properties. It is also possible to deduce
information about the value of f(x) from far-away points, as in classes of unimodal or
monotone densities, or in the class of densities whose characteristic function cf> vanishes
outside a finite interval [- a, a]. Densities in this class are extremely smooth, and, in
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fact, the value of f(x) can be obtained from the value of f at all the points ofa regular
.grid with grid size smaller than '1T/a (this is known as Nyquist's theorem). The fact that
this grid can be chosen once and for all before the generatof'is started up makes the
last class of densities special.

Most of the literature on random variate generation is concerned with explicitly
specified densities f (see e.g. Knuth 1969, Schmeiser 1980, Ripley 1983 or Bratley, Fox
and Schrage 1987 for surveys and definitions). Here we assume only that enough is
known about f to determine some of its properties (bound on the moments, unimodal-
ity, smoothness properties, position of some quantiles, and so forth). Furthermore, a
black box is available that can be consulted for the computation of f(x) for every x.

If we employ the standard rejection method n times to generate our sample, then the
expected global cost grows as this constant times n, because the expected number of
evaluations of f per variate usually is a positive constant. To obtain sublinear growth
in n, it is necessary to consider rejection constants that vary as 1 + 0(1) as n -+ 00 and
thus to update the dominating curve as n grows large. Since evaluations of fare
usually the main contribution to the time in a rejection-based algorithm, the savings in
computer time can be substantial for large n. In fact, since the time needed to generate
n random variates always grows at least linearly with n, we note that the (presumably
sublinear) expected global cost is asymptotically negligible compared to the overall
time taken by the generator. In effect, this means that we have gone a long way
towards making the algorithm's performance insensitive to the time required to
evaluate f.

2. First example: Lipschitz densities. In this section we consider densities that are
Lipschitz with known constant C, i.e. If(x) -f(Y)1 ~ Clx .:.- yl for all x, Y E R. For

the sake of convenience, assume that f vanishes off [0, 1]. We begin by setting up a
table of m entries for some integer m to be determined further on. We evaluate
fi =f(i/m) for i = 0,1,..., m. Let

( ) C ( ) C ..
gi=max fi'/;+{ + 2m' hi=min/;'/;.+l -2m' i=O,I,...,m-l.

Then f is bounded from above and below by the histogram-shaped functions taking
the values gi and hi on [i/m,(i + 1)/m) respectively. We can use the following
rejection-urn method, in which elements of von Neumann's rejection method and
Walker's alias method (Walker 1977; Kronmal arid Peterson 1979) are mixed together:

Rejection-urn method for Lipschitz densities.

[SET -UP]
Construct an alias table with entries hi, gi -hi, i = 0,1,..., m -1.
NOTE: it does not matter that the entries do not sum to one. Sampling from this
table means that an entry is selected with probability proportional to its value. By
Walker's method, this can be done in constant time.
[GENERATOR]
REPEAT

Select an item (i.e. an index i and a flag indicating whether hi or gi -hi is picked)
from the alias table by Walker's method.
Generate a uniform [0, 1] random variate U.

i+U
X+-- m ..



226 GLOBAL COSTS AND NYQUIST'S THEOREM

CASE
Item selected is hi: RETURN X
Item selected is gj -hi:

Generate a uniform [0, 1] random variate V.
T +- hj + V(gj -hi),
IF T < f( X) THEN RETURN X

UNTIL False
The construction of the alias table takes time proportional to m. A generalization,

called the alias-urn method (Peterson and Kronmal1982) usually is more efficient (at
the expense of space). The expected number of iterations in the rejection algorithm is
(ljm)Lgj ~ 1 + Cjm and the expected number of evaluations of f is m + 1 (in the
set-up step) plus (njm)L(gj -hi), This is smaller than 2nCjm but at least equal to
nCjm. Recall that n is the number of variates needed. Thus, in the course of
generating Xl"", Xn, the algorithm requires on the average not more than m + 1 +
2nCjm evaluations of f. Disregarding truncation, this is minimal when m is v'2n"C,
and the minimal value is 1 + ,fi;nC. Hence, the e~ted global time is at least 1
+ {4nc, and with m = r v'2n"Cl, it is at most 2 + v8nC. For Lipschitz densities with
infinite tails, the rejection-urn method needs adjusting, and the best obtainable
expected complexity in terms of evaluations of f can grow faster than rn.

The class of Lipschitz densities on [0, 1] can be artificially enlarged via nonlinear
transformations. One of the referees suggested the following example: the densities

f(x) = 1 e-(x/(l-x)ylu 0 < x < 1
r(1+a)(1-xY , ,

for 0 < a < 1 are Lipschitz on [0, 1], so they can be dealt with by the technique
described above. Interestingly, if X has densityf, then (Xj(l -x)y/a is gamma with
parameter a (i.e. its density is xa-le-x jr(a)).

3. Second example: Monotone densities. Assume that the density f is bounded
and nonincreasing on [0, 1] and zero outside this interval. If we set up the same table as
in the previous section, with hj = f«i + l)jm) and gj = f(ijm) for 0 ~ i < m,
then it is easy to see that the expected number of evaluations of f, or the expected
global cost, is m + 1 + (njm)L:"-ol(gj -hi), which telescopes to m + 1 +
(n(f(O) -f(1)))jm. The algorithm given in the previous section requires no modifica-
tion.

Arguing as in the previous section, we see that for this algorithm, the expected global
cost is at least 1 + /4n(f(0) -f(1». By taking m equal to f/n(f(O) -f(l») , it is

easy to verify that the expected global cost can be kept below 2 + 4n(f(0) -f(l)).
If we use intervals with geometrically increasing sizes, as advocated in Devroye

(1986, pp. 362-365), the expected global cost can be kept below (1 + o(l)){4iijj where
B = 10g(1 + f(O) + f(O)log(f(O))). This improvement should be used whenever f(O) is
large, i.e. the monotone density is very peaked.

4. Third example: Bounded spectrum characteristic functions.

4.1. Bounded spectrum characteristic functions. In the first two examples, we
exploited a local smoothness property and an order restriction respectively. It is
possible to obtain good global time from what could be called global smoothness
properties. The global smoothness of a density is usually described in terms of the tail
behavior of its characteristic function </I. For example, when Jltlkl</l(t)1 dt < 00, f has
a bounded continuous kth derivative tending to 0 as Ix I -+ 00 (see e.g. Kawata 1972,
pp. 438-439). Stronger still. if 1</I(t)1 = O(e-cltl) as It I -+ 00, for some c> 0, f is
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analytic on the line (see e.g. Kawata 1972, pp. 439-440). That is, all the derivatives of f

exist and are continuous, and f can be obtained at every point by computing the

Taylor series centered at the origin (say). The strongest possible smoothness condition

is obtained by requiring that <J>(t) = 0 outside some finite interval [-a, a], for then, by

Nyquist's theorem (see below), f can be represented as an infinite sum involving the

values of the density at a fixed grid of width smaller than 71"/ a. It is clear that Nyquist's

theorem should be useful in reducing the global time, because the grid can be held

fixed. On the other hand, one should be warned that the densities in this class

necessarily have a substantial infinite tail. For example, by the theorems of Ingham

and Levinson (Kawata 1972, pp. 288-298), it is impossible that f(x) ~ Ce-Dlxl for

some constants C and D. Thus, the tails in the infinite sum in NyqUIst's theorem can

be important, and the convergence can be slow.

The tails of f thus do matter. In fact, we will see that the expected global cost with

the method to be proposed below is heavily influenced by the size of the tail, as it is

(O(n1/(k-1») for k ~ 3 whenever the kthabsolute moment, ILk' is finite. Note that the

method below uses the information about the distribution very well, since merely using

the fact that the densities are Lipschitz with constant C = a2/(271") (which is easy to

verify) could at best give an expected global cost of O( In) by the method outlined in

§2.
The densities hr £ cr(sin(x)/x)2r (where r ~ 1 is an integer and Cr is a constant)

have bounded support characteristic functions and can easily be dealt with by the

standard rejection method (see Devroye 1984). The support is contained in [- r /2, r /2],

so we can take a = r/2. Furthermore, for r> (k + 1)/2, the kth absolute moment is

finite. The point of this paper is that even if we know very well how to generate such

random variables, we can gain a lot from the present method if we are asked to

generate a big batch of such random variables.

Sometimes, the distributions are truly difficult to work with. Consider, for example,

densities defined in terms of their characteristic function, and in particular Polya

characteristic functions (which are real and convex on the positive halfline) with

bounded support. Evaluations of f require inversions of a characteristic function and

are thus extremely costly. --

Consider next the convolution density f = h.* h where h is an arbitrary density. Here

too evaluations of f are costly since they involve numerical integration. The character-

istic function of f is the product of the individual characteristic functions, and hence

has support contained in [-r/2, r/2] as well. And the kth absolute moment is

bounded by 2k-1 times the sum of the individual kth absolute moments. Such

densities are thus also covered by the method developed below.

Finally, there is a large class of densities related to Bessel functions (and their

generalizations such as Struve functions) that have compact support characteristic

functions. For example, if J, is the Bessel function of order v with v > 1/2, then the

Fourier transform of the function (1 -t2)'-1/2 on [-1,1] is J,(x)(2/x)'f(v +

1/2)f(I/2) (see Gradshteyn and Ryzhik 1980, formula 8.41.10). By the boundedness

of the Bessel functions when v ~ 0, and the fact that J,( x)/X remains bounded as

x -+ 00, we see that even powers of J,(x)/x' are proportional to densities with

bounded spectrum.

4.2. Nyquist's theorem.

THEOREM 1. Nyquist's theorem. Let f be a density whose characteristic function

vanishes outside [-a, a]. Then, forb> a,

f( ) =;, £;, f( .l! ) {-I)Jsin(bx) x """ a J """ b bx -j7l" .

J=-OO J=-OO
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(For the sake of convenience, let us call this Nyquist's series even though this is not its
official name in the literature.)

PROOF OF THEOREM 1. See Feller (1971, p. 631). .
Theorem 1 is a particular form of a property sometimes attributed to Shannon in the

information theory literature, which states that a function with bounded support
characteristic function can be reconstructed from its values at the points jl where j is
integer and I is a small enough positive constant. It should be noted that when x is a
multiple of 'IT/b, the series seems to be nonsensical because we are dividing by zero.
That this is not so follows from the fact that (-l)isin(bx) = sin(bx -j'IT), so that the
series can be represented as

f(x) = .1: f(Lf )S(bX -j'IT),
J--OO

where S(u) £ sin(u)/u is a function bounded by 1.

4.3. A generator based on the series method. A random variate with density f can
be generated by the rejection method provided that we know a density g having the
property that f ~ cg for some constant c ;;:!: 1:

Rejection method.
REPEAT

Generate a pair (X, T) where X has density g, T is distributed as Ucg(X) and U
is a uniform [0,1] random variable.

UNTIL T ~ f(X)
RETURN X
This algorithm requires on the average c iterations and thus c evaluations of f. For

n random variates, the expected cost is thus about en. For a cost reduction, we can
turn to Theorem 1. Indeed, notice that for the rejection method to work properly, we
need an indicator I which is equal to one when Ucg( X) ~ f( X) and to zero otherwise.
Since we have a convergent series expansion for f (Theorem 1), the value of I can be
determined without ever computing the entire series. This observation is at the basis of
the series method, developed and analyzed in Devroye (1981), adapted here to our
example:

The series method.
REPEAT

Generate a pair (X, T) where X has density g, T is distributed as Ucg(X) and U
is a uniform [0,1] random variable.
T +- T -f(O)S( bX), j +- 1
REPEAT

T +- T -(f( Lf )S(bX -j'IT) + f(~ )S(bX +j'IT))

j+-j+1
Compute W, an upper bound on the absolute value of the tail sums in Nyquist's
series defined from j upwards and -j downwards.

UNTIL ITI ;;:!: W
UNTIL T < 0
RETURN X
Let us call X generated at the top of one iteration good if for this value,

lim i +-- 00 W = O. The algorithm halts with probability one and is correct if P( X is
good) = 1. Thus, two things are needed, a convergent series (without this, it is futile to
look for a converging upper bound), and a converging upper bound. We do not
normally compute W by computing the tail sums, for if we did, we would in fact be
evaluating f exactly, and this is too costly at this stage. The first requirement therefore
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is for a simple expression for W as a function of easy-to-evaluate quantities. In §§5, 6
and '7, we will give a few pointers.

There is but one other stumbling block, the determination of c and g in the
inequality I ~ cg. We will not treat this issue lightly because, after all, I is not
assumed to be given explicitly. Thus, preferably, c and g should depend upon general
quantities such as the mean, variance, median, square integral, etcetera.

We also analyze the performance of the series method based upon Nyquist's series
and verify under which conditions the number of evaluations of I is drastically
reduced. To see how such savings are possible, we suggest using a dynamic array in
which values I( j'fT / b) are stored for integer j. Let J n be the largest absolute value of
the index j in the algorithm encountered in the process of generating Xl"", Xn' The
dyn,amic array holds 2Jn + 1 entries, and I is evaluated precisely 2Jn + 1 times. The
efficiency study boils down;o a comparison between cn, the expected cost for the
rejection method, and E(2Jn + 1), the expected cost of the series method. In many
cases, the latter expression grows at an 0 (n) rate. This implies that the contribution
from the evaluation of I to the total expected time is asym:ptotically negligible
compared to the contribution from other sources such as the generation of {X, T), the
management of the loops and so forth, and should therefore lead to relatively
I-invariant timings.

4.4. The dominating curve. To tuck I under a dominating curve, we recall first
that I has an infinite tail (see ~.g. Kawata 1972, pp. 278-279). In fact, I is an analytic
function op the real line. Both observations should guide us in the search for a
dominating curve. We have to look at dominating curves with possibly fairly large tails.
One possible upper bound can be obtained as follows: if the kth moment of a
distribution function exists, for k ~ 1, then cj> is k times differentiable, and cj>(k) is
continuous and is given by

cj>(k)(t) = j(ix)keitxI(x) dx.

Since cj> has bounded support, cj>(k) is absolutely integrable, and xkl(x) can thus be
recovered by inversion:

Jxkl(x) I = fwlfe-itXi-kcj>(k)(t)dtl

~ iwjlcj>(k)(t)ldt

~ ~SUplcj>(k)(t)1
1.

~ ~jlxlkl(x) dx.

We can summarize as follows.

THEOREM 2. Let k ~ 1 be a fixed integer, and let I be a density with finite kth
absolute moment Jl.k and with characteristic/unction vanishing outside [-a, a]. Then

jlcj>U)(t) I dt
/(x) ~ 2'fTlxJi

aJl..
~-1-" j=O,l,...,k.

'ltlxlJ
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One single bound in Theorem 2 yields a useless dominating curve with infinite
integral. One could for example combine the Oth and kth bounds with k ~ 2. Using
the notation cjlxl-j for the jth upper bound in Theorem 2, we thus have

I(x) ~ min(co, cklxl-k) = cg(x).

Here, c is a positive constant and g is a density. The dominating curve consists of a
flat part near the origin, and two monotonically decreasing tails. The area under cg is

c -~ (C(k-l)/kCllk )-k-l 0 k.

For our rejection method, we need a random pair of random variables (X, T) =
(X, Ucg(X)), where X has density g, and U is an independent uniform [0,1] random
variate. This can best be obtained as follows.

Generator 01 (X; T).
Generate lid uniform [-1,1] and [0,1] random variates U, V.
T +- C Vk/(k-l)

0( ck )llk X+- UI -

T
RETURN (X, T).
This method is based upon the fact that (X, T) is uniformly distributed under the

curve of cg. Using the symmetry and monotonicity of g, we argue by swapping the
coordinate axes. Thus, T can be generated by inversion of a uniform random variate,
and X can then be obtained as Ug-1(T). See Devroye (1986) for more generators of
this type. This generator can be used in the first line of the series algorithm of the
previous section. We will base the remainder of the paper on the premise that I is
bounded from above by

min( co' cklxl-k) = cg( x).

4.5. Estimate 01 tail sum in Nyquist's series. We can write Nyquist's series as

I( ) -~ ~ ~. 1(L! ) S-I)jsin(bx)x-. £... a j -.£... b bx -j7/" .
J--OO J--OO

Recall that b > a is a constant picked by the user. Let J be a positive integer. Let us
first bound I};:;j>Jajl. We have for 0 < bx < J7/",

Ij~Jajl ~ ~j~OI/(i:! !ill!) -/(i~_i~i-iJl!) I

r. ( j+l)7/" )/ 1 1
r+ j>JI b bX~ -bx- (j + I)7/"

1 100 , ~ ( j+l)7/" ) 7/" ~ J7/" -bx II I + £... I b
(b . )2. J,,/b j>J X-}7/"

Until now, we have only used the fact that I is absolutely continuous (and this follows
from the fact that I is analytic). The bound on the tail sum obtained thus far is useless
since it involves the indefinite integral of 1/'1. We suggest two solutions to this
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problem. The first solution is applicable to unimodal f only (with a mode at 0), while
the second is universally applicable, provided that an upper bound for the k th absolute
moment of f is available.

4.6. Unimodal densities. For unimodal f with a mode at zero, the upper bound
for the tail sum becomes

~ -1---f(J'lT/b) +f ( (J + 1)'lT ) ~ 'IT
J'lT -bx b ""' (b . )2

j~J X -J'lT

1 ( (J + 1) 'IT) j OO 'IT

~ h""="""bXf(J'lT/b) +f b ( b )2 dy
J-l y'lT- X

( (J+1)'lT )f(J'lT/b) f b

= +
J'lT -bx (J -1)'lT -bx

f(J'lT/b)~ 2 (J -1) 'IT -bx'

For the anti symmetric negative tail sum, the corresponding bound is

2 f( -J'lT/b)
(J -1)'lT + bx'

It is easy to see that both bounds are simultaneously valid whenever(J -1)'lT > blxl.
We can summarize the algorithm:

The series method for unimodal densities based upon Nyquist's series.
Emp)oy the series method in which W is computed as follows:

IF (j -1)'lT ~ blXI
THEN W+-oo
ELSE

W+- 2 f(-j'lT/b) + 2 f(j'lT/b)
(j -1) 'IT + bX (j -1) 'IT -bX

This algorithm can be streamlined to some extent by re-using values of f previously
computed. Typically, one sets up a dynamic array in which in position j is stored
f(j'lT/b) for all integer j up to a dynamically adjusted maximum. If in the course of
the run a value of j is encountered which is smaller in absolute value than the
maximum, f need not be reevaluated. Otherwise, f is evaluated, its value is stored in
the array, and the maximal array index is adjusted by one. Notice that for every X, the
bound W used in the algorithm decreases to zero with j. Thus, the algorithm is valid
(i.e., halts with probability one) for all unimodal densities with a mode at 0 and bounded
support characteristic function with support on [- a, a] for some a < b. The only a priori
knowledge required is that of a bounding curve cg. Note that for Co we can take f(O)
(by unimodality), and that for Ck we can take kp.k-l (Devroye, 1986) or ap.k/'lT (see
above).

4.7. Tail estimates for general distributions. To be able to translate the upper
bound for the tail sum in general, we need a good estimate for the tail integral of If'l.
m analogy with Theorem 2, we offer
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THEOREM 3. Let k ~ 1 be a fixed integer, and let f be a density with finite kth
absolute moment p. k and with characteristic function vanishing outside [- a, a]. Then

, (j + 1) !ltll<jlU)(t)1 dt
If'(x) I ~ 2'ITlxlj

(j + 1)a2p.j .
~ ., ]=O,l,...,k.

2'ITlxlJ

PROOF OF THEOREM 3. We note first that

f'(x) = iw!e-itX(-it<jl(t» dr.

Thus, using inversion and the techniques of Theorem .2 again, we have

!1(-it<jl(t»U)ldt
If'(x) I ~ 2'ITlxlj

[1(-it)<jIU)(t) ':'-ji<jlU-l)(t)ldt :1,-

=
2'ITlxl!

(j+ l)fltll<jl(j)(t) I dt
~ '

2'ITlxlJ
'0

since fl<jlU-l)(t)! dt ~ fltll<jlU)(t)1 dr. This inequality follows from the fact that <jIU-l)
is absolutely continuous, and thus equal to the indefinite integral of <jIU). A simple
change of integral argument gives us the inequality. .

Let us use the following inequalities in this section:

f(x) ~ min(co,cklxl-k), If'(x)1 ~ dklxl-k,

where the various constants are given in Theorems 2 and 3. Then for 0 < bx < J'IT,

I I .1 f oo , ( (j + 1) 'IT) 'IT L aj ~ J'IT -bx If 1+ L f b
( . b )2

j..J J"jb j..J }'IT -X

d (b) k-l ( . 1) ) -k k ] + 'IT '0 'IT
~ (k -l)(J'IT -bx) h + j~JCk b (j'IT -bx)2

dk ( b )k-l f OO( U'IT ) -k 'IT ~ -+c -du

(k -l)(J'IT- bx) J'IT k J b (J'IT -bX)2

d ( b) k-l ( b ) k-l k Ck'IT ~ (k-1)(J'IT-bx) h + h (k-1)(J'IT-bx)2

( b )k-l ( d C'IT
)= h (k -1)(;'IT = bx) + (k -1)(~'IT -bX)2.



LUC DEVROYE 233

The last upper bound is convenient for practical use for it only depends upon known
quantities. Combining a similar bound for the left tail with the present bound, we see
that for all Ixl < Jw/b,

I I ( b )k-l ( dk ( 1 1 )U~Ja j ...h k-=1 Jw -bx + Jw + bx

Ckw ( 1 1 ))+-+k -1 (Jw -bX)2 (Jw + bX)2 .

£ W(J, x).

The algorithm can be summarized as follows.

The series method based upon Nyquist's series.
Employ the series method in which W is computed as follows:

IF jw ...blXI
THEN W+-oo
ELSE W +- W(j, X) (see above for definition)

The algorithm is valid if limj-+oo W(j, x) = 0 for all x, i.e. for all k ~ 2. Thus, the
algorithm is applicable to all densities with finite second moment whose characteristic
function has bounded support [-a, a] for some a < b.

4.8. Analysis of performance. In this section, we briefly look at the expected time
performance of the algorithms when Xl,..., Xn are generated. There are many
contributors to the expected time. Roughly speaking, most of these can be accounted
for in one of three ways:

A. The expected number of iterations of the outer loop in the rejection algorithm,
cn. For an explicit computation of c, see §2.

B. The expected number of queries of f, i.e. the expected number of instances that
some value of f is required. The number of outer loop iterations in the generation of XI
is called NI (this is geometrically distributed with mean c). Let Ji.I' i = 1,.. ., NI be
the li"'~est value of j in the Nyquist series used in the ith iteration for XI, This is
equivalent to saying that 2Ji. I + 1 queries of f are needed. The expected value is easily
computed by Wald's equation (see Chow and Teicher 1978):

( n N, )E I~l i~1(2.1;,1 + 1) = nE(Nl)(2E(J1,l) + 1) = ?2E(Jl,l) + 1).

C. The expected number of actual evaluations of j when evaluations are
stored in a dynamic array for future use. In the notation of point B, this is
E(2maxl~/~n; l~i~N,.I;,1 + 1). This is obviously less than the quantity in B for all
n ~ 1. In view of Lemma 1 presented below, it does not exceed

inf 1 + 2a + 2cnE( Jl l/ [~ >a ])'a;"O ' 1,1

The lemma needed above is

LEMMA 1. Let Zl' ..., ZI' ..., be iid random variables, and let N be a stopping time
(see Chow and Teicher 1978 for definitions). Then, for any constant a ~ 0,

E(max(Zl"'" ZN»)'" a + E(N)E(Zl/[ZI>a]),

where / is the indicator function.
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i PROOF OF LEMMA 1. Note that..:

E(max(ZI"'" ZN)) ~ a + E ( £ Zl[ZI>al
)1-1

= a + E(N)E(ZII[zl>a])

by Wald's equation. 8
Everything boils down to a comparison between

Qn£cn(2E(Jl,I)+1) and Rn£ inf1 + 2a+2cnE(J11I [ J >a l) '0 ' 1,1

For a = 0, the expression in the infimum is almost equal to Qn. The infimum usually is
much smaller. We need only be concerned with the properties of J1,1 from here on.

THEOREM 4. Assume that f is a density with characteristic function vanishing outside
[- a, a] for some 0 ~ a < b (where b is a constant used in the algorithm and in
Nyquist's series). If the series method based upon Nyquist's series is valid (i.e.,
J1,1 < 00 with probability one), then Rn ~ Qn' If E(J1,1) < 00, then Rn = o(n). Fi-
nally, iff has a finite kth moment ,ILk (k ~ 3) and this value (or an upper bound for it) is
used in inequalities of Theorems 2 and 3 that lie at the basis of the algorithm, then

Rn = O(nl/(k-l»).

PROOF OF THEOREM 4. The first inequality follows by considering that the infimum
in the definition of R n is at most equal to the value of the expression for one particular
value such as a = O. The second statement follows after first taking a so large that
E(J1,II[Ji,1>al) < f for some arbitrary f > O. Thus, Rn ~ 1 + 2a + 2fcn, and we are
done because f is arbitrary.

To prove the last statement, a careful analysis of J1 1 is required. For fixed X = x
we have '

P(J1,1 >j I X = x) ~ min(~,l) (j ~ max(l, blxl/w)).

Here W(j, x) is the tail estimate used in the algorithm. Taking the expected value with
respect to X gives

P(J1,1 >j) ~ ( min( 2W(j, x), g{x) ) dx
4xl~ffj/(2b) c

+] g(x) dx (j ~ 1).
Ixl>ffj/(2b)

Since g(x) ~ CkC-llxl-k, the last integral is O(j-(k-l»). Recall the definition of

W ( .X ) £ (~ )k-l ( ~ ( 1, + 1 )J, jw k -1 jw -bx jw + bx

Ckw ( 1 1 ))+ -+ x < 'w bk -1 (jw -bxY (jw + bX)2' I I ] / .
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Thus, for Ix! ~ j7l' /(2b), we have the following uniform bound:

. ( b )k-l ( 3dk 5ck7l'
) ( '-k )W(j,x) ~ y;;; {k-1)j7l' + (k-1)(j7l')2 = 0 j .

Thus, the first integral that we had to bound is

J . ( 2W(j,X) ( ))d 7I'j 2W(j,x)Dlln, g x x ~ -sup
Ixl~"j/(2b) C b Ixl~"j/(2b) C

= O(j-(k-l»).

Therefore, P(J1,1 > j) ~ Kj-(k-l) for some constant K. Now,

E(Jl,lI[JI.l>aJ) ~ L P(J1,1 >j) ~ L Kj-(k-l) ~ jOOKt-(k-l)dt
j>a j>a a

K-
-(k -2)ak-2'

Optimizing 1 + 2a + 2Kcn/(k -2)ak-2 with respect to a shows that it is advanta-
geous to choose a = (Kcn)l/(k-l). Thus,

k -1 ( ) l/(k-l) Rn ~ 1 + 2k""=""2" Kcn ..

We note first that the expected number of evaluations of f can grow at an arbitrarily
slow polynomial rate (just take k large enough). One can now work out the details and
compute explicit values for all the constants. By using a dynamic array, we do in fact
replace on the average Qn evaluations of f by Qn array accesses plus at most Rn
evaluations of f. Taking a = 0 in the proof of Theorem 4 shows that

Qn = cn(2E(Jl,1) + 1) ~ cn(3 + 2j~oKj-(k-l») ~ cn(3 + 2K~).

All the performance measures, c, Qn and Rn, depend upon the smoothness and the
size of the tail of f. For some choices of the constants in g, the performance improves
when a decreases (the density is smoother) and/or the kth absolute moment of the
density decreases and/or k in the moment condition increases (the density has a
smaller tail).
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