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INEQUALITIES FOR THE COMPLETION TIMES OF
STOCHASTIC PERT NETWORKS*

LUC P. DEVROYE
McGill University

A stochastic PERT network is one in which the durations of the activities are random
variables. In the absence of complete information about the distribution of these random
variables or for the purpose of a fast rough analysis of the network, inequalities relating the
mean E { T} and the variance ¢2( T} of the completion time T of the project (network) to the
means and the variances of the individual random variables can be useful. In this note new
upper bounds for E { T} and a2( T} are derived that are distribution free: they can be applied
for all distributions of the durations of the activities.

1. Introduction. In a PERT network with n nodes the times needed to reach these
nodes are called the completion times T,, ..., T,. The nodes are ordered such that
whenever i and j are connected, then i <. (Thus, T, = 0 since 1 is the starting node.)
The problem addressed in this paper is the one of the relation between the completion
times and the durations of the individual activities. When i and j are connected by an
arc (ij) in the network then the duration of the activity (i) is a random variable, T.
Stochastic PERT networks were studied by Burt and Garman [1], Charnes, Cooper
and Thompson [2], Clingen [3], Elmaghraby [5], Fulkerson [7], Hartley and Wortham
[10], Kleindorfer [11], MacCrimmon and Ryavec [13], Martin [14], Ringer [17] and
Robillard and Trahan [18], [19]. Most of these papers are concerned with the
distribution of T,, or approximations of it, if the distributions of the 7T}, are known. In
this paper we are interested in what can be said about the distributions of the T, if one
merely knows the means

m; = E{ Tij }
and the standard deviations

S; =0 { T; }
of the durations of all the activities. We are only considering single-arc networks. If
nodes i and j are connected via k arcs with corresponding duration times
T;(1), ..., T;(k), then we replace these arcs by a single arc (ij) with duration time
T, = max(T,(1), - . ., T,(k)).

If B, is the set of nodes which connect to node j via a single arc, then the 7; can be
recursively defined by

T, =0,
;= max(T,+ 1) M

From this it easily follows by Jensen’s inequality (Mitrinovic [15]) that

E(T)) > E{max(E(T,) + T,)} >max(E(T,) + E(T, }). )
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The first inequality is discussed by Fulkerson [7], Elmaghraby [5], Clingen [3], and
Robillard and Trahan [18], [19] when the distributions of the 7}; are known.

From the second inequality in (2) it follows that if we defme the numbers E { T, }
recursively by

E{T,} =0 and

E(T)} =max(E{T,} +m,) ©)

then E{T,} < E{T}} for all j. Thus, lower bounds on the E { T;} that only depend

upon the mean duration times m; are easy to compute. In a practical situation,
however, upper bounds seem more important because they provide one with informa-
tion about when a project (the complete network) is expected to be finished. In this
note we present a simple recursive method for the computation of upper bounds for
the E{T;} and ¢{T}} from the m; and s; if the T, ; are independent random variables.

2. Main results. Let n; be the number of arcs arriving at the jth node and let the
number sequences £ {7} } and o*{T, "} be recursively defined by

o} T} =0; T} = X (XT,} +57); @)

i€ B;

E{T;} = max(E(T} +my)+ \/"/max_("z{Tf} +s7) 5)

or

+ \/(nj— l)(%ag(2oz{ﬂ} +s,]2.)+inéig(202{7",.} +s,;)) . (6)

J

THEOREM. If the T} are independent random variables, then

N

02{7;-}@2{1}, E(T)<E(T]. 1

j j J Jjsn

REMARK 1. The bounds following from (4)(6) are distribution free: they apply to
all cases; in particular, the T, can be continuous or discrete random variables or
mixtures of both. Without addmonal information about the distributions of the T, it
is unreasonable to expect very tight bounds. One should notice, however, that some of
the theoretical inequalities (e.g., Inequality 1 from the Appendix) used to arrive at (5)
and (6) are the best possible distribution-free bounds involving means and standard
deviations only. Furthermore, for deterministic PERT networks (that is, s; = 0 for all
i, j) (3) and (4)«(6) are identical in form. This means that in the deterministic case,

E {Tj} E{T}=E(T;} for all j, and that one can therefore expect reasonable

tightness for stochastic PERT networks in which the standard deviations s; are small
compared to the means m;;.
REMARK 2. If only one arc arrives at node j, say arc (kj), then (6) reduces to
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{T }=E{T,} + my,. (6) can replace (5) whenever the resulting value for £ { T, }i } is
lower.

ReMARK 3. From the Cantelli-Frechet-Uspensky inequality (Frechet [6, p. 137];
Uspensky [21, p. 198]) it is known that for any random variable X with mean m and
standard deviation s, P(X —m > cs} < 1/(1+ ¢ and P{(X —m< —cs} < 1/(1 +
c?). We can therefore conclude from Theorem 1 that

P{T,>E{T,} +co{T;}}<1/(1+c% and

P{T,<E(T)) ~co{T;} | <1/(1+ ¢}

O]

for all j and all ¢ > 0.
ReMARK 4. Notice that o?{ T} is the sum of all the s% corresponding to nodes k

from which j can be reached (ancestor nodes).
REMARK 5 (multiple arcs). For the case that

T;= 2‘132‘”( (1))

where n; is the multiplicity of the arc (i), and T (/) has mean m,(/) and variance
(l) a]l that is said above remains true if in (3) we replace m;; by

max m;(/
I<I<n,j U()

and in (4)«6) we replace s; by 37, sZ(/), and m;; by either

|1<nla<xn my(1) + Vn max_ s; HE)

max m,/(l)+ \/(ny— l) max sj (l)+ mm 5 (l))

1</<n

or

Both changes follow trivially from Jensen’s mequality and Inequality 1 given in the
next section.

REMARK 6 (tightness of the bounds). One may be interested in finding out when
the bounds derived here are tight. For easy analysis and quick insight, consider two
extreme cases:

() A chain-type network where 7\ =0,and T, =T,_, + T,_,, all j.

(ii) A 2-node parallel network wnh T, =0, and T, = max( T,z(l) , T1(N)).

All other networks can be constructed by proper combmatlons of networks of types
(1) and (ii). It is clear that for (i) we have exact bounds:

E(T}=E{T)=E(T)]. (%] =o(T;}).

For the network (ii) the answer depends upon the tails of the distributions of the
duration times. Assume for the moment that all 7',(/) are distributed as Y with mean
m and standard deviation s. Our bounds are E{T,} =m and E{T,} =m+ syN if
we use (3) and (5). If Y has ess sup ¥ = ¢ < oo, then E {T,} - ¢ as N— 0. Thus, for
bounded random variables with relatively large standard deviation s (relative to
¢ — m) appearing in short heavily branched networks, our upper bound is not
attractive. The situation improves with the size of the tail (here, the ratio (¢ — m)/s).
Consider now an infinite-tailed distribution such as the exponential: P{Y > y} =
exp(—y), y > 0. Clearly, m=s=1 and E{T,} ~log N (see Gumbel [8]). If Y has a
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still heavier tail,

1, 0<y<l,

P{Y>y}=[y_”, y> 1,

where p > 2 (otherwise, o{ Y} = 00), then
1
E(Ty) = [ Nu=/r(1 =) 'du= O(N'/).
0

Thus the rate of increase of £ {T,} as N — oo can be made arbitrarily close to the rate
of E{T,} =m+ syN for p close to 2. In these cases, the classical lower bound
E {T,} seems almost useless. We conclude that our upper bounds seem best suited for

long stretched-out networks and networks with duration times that have heavy tails
(that is, in situations with high uncertainty about the duration of one or more jobs).
For short fat networks with low-variance duration times another approach seems
necessary. One involving Chernoff-Bernstein like exponential inequalities is currently
being studied by the author.

3. Proofs. The crucial result used in the proof of the theorem is an upper bound
for E{max; X;} in terms of E{X;} and o{X,}, 1 <i< n, where X,,..., X, is any
sequence of random variables (possibly dependent). For independent identically
distributed random variables, bounds of this type are discussed in David’s book [4].
The original inequalities are developed in a series of papers by Moriguti [16], Gumbel
[8], Hartley and David [9] and Rustagi [20].

Inequality 1. If X,,..., X, is an arbitrary sequence of random variables with
finite means E {X,}, ..., E{X,} and finite variances 6*(X,}, ..., 62(X,}, then
E{maxX,} <mlaxE{X,.}+\/;z_mlaxo{X,.} (®)
and
E { maxX, } <mlaxE{X,.}+\/;——lmjin 1}13}(0{)(,.-—/\’].}. )

PrOOF. Define the events 4,, 1 < i < n, as follows:
4,={Xx, >r}133(X/} Nn{x > max X, }-

Clearly, the A, are disjoint and exhaust the entire space. Further,

n n
E{maxX} = EIE{X,.I(A,)} = .EIE{E{X,I{A‘,) | X })
i= i=

= é E{XiE{I(A;) | Xi}} <,~§1(E{Xi2 }E{(E{I(A,-) | Xi})z})‘/z'

i=1

Here we used standard properties of conditional expectations [12]. The symbol /
denotes the indicator function of an event. The last inequality in the chain is a form of
the Cauchy-Schwartz inequality (see Loeve [12, p. 156]). Let us assume that £ { X}
=E{X,}=-+-=E{X,} =0. Then

E{X?} <maxe’(X,}.
Regardless of the zero mean assumption we always have

E{(E {14y ;X,.})Z} < P{4,).
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Thus,

n

E{m?xXi} <maxo(X;} > VP {4}

i=1

<mlaxo{X,.}n'V$P{Ai}/n =Vn maxo{X,}, (10)

by Jensen’s inequality and the fact that P{4,} + - - - + P{A4,} = 1. Next, since
E {max,; X;} = E {max; X, - X}+E{X,}—E{max X X} = E{max,,, (X; -
X)), } where u, = max(u, 0), and since E {(X, — X,)2 } < E {(X; — X,)*} we have

E{maxX,-} <yn—1 mazxo{(Xi -X)}
! i>
The choice of X, was arbitrary. Hence, the following is also true:
E{m?.xXi} <yn-—1 mjin qlfjxo{(X, - X))}
Finally, if the X,’s are arbitrary, we can use
E{maxX;} < E{max(X, - E{X,})} + maxE (X;)}.

Note. If X,,..., X, are also independent then o(X, — X)) = 0*{X,} + 0*(X)},
and (9) reduces to

E{maxX,} <maxE({X,}+yn—1 \/maxoz{X}+mmoz{X} 1))
which is at least as sharp as (8) whenever
mlaxoz{X,}/miinoz{Xi} >n-1

Inequality 2. 1If X, ..., X, are random variables (possibly dependent) then

o?( maxX, } < S o’ X, ). (12)

i=1
PrOOF.

{ maxX;, } E{ maxX E mlalxXi})z}
<E{ (max.X; - maxE{X}) }
{

< E{max(X,- E X})}
n n
E{ > (Xi = E{Xi})z} =2 OZ{XI}'
i=1 i=1
Note. One would expect a tighter bound of the type
o?{ maxX; } < cmaxo®{X;}, somec>0. (13)

However, even if the X,’s are independent, the best possible ¢ cannot be smaller than
n, which makes (13) weaker than (12). Indeed, consider n binomial {0, 1}-valued
random variables with equal mean p. Since max; X; is a {0, 1}-valued binomial
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random variable with mean I — (1 — p)”, it follows that
maxo’(X; ) p(1-p) p—0
= n n -
o*{maxX;}  (1-p)'(1-(1-p))

and thus that ¢ > n.
PROOF OF THE THEOREM. From Inequality 2 and the independence of T, and T}, for
all i, it follows that

1
n

o*{T,})=0
and
HT} < 2 T+ T))= T (T +5)).

i€ B; € B

Also, Inequality 1 implies that £{T,} = 0 and that

E(T) <maxE(T,+ T} + Vo, maxo(T, +T,)

= . y . 2T 2
?éaé(E{ﬁ} + my) + \/';f%aé(o (T} +s;

This shows the validity of the theorem for the inequalities (4) and (5). At all times (5)
can be replaced by (6) because from (9) we have

E{T) <§réa;j((E{Ti}+m,-j)+\/nj-l Péigjr';;az(o{T,+7jj— Ty — Ty}
i€B

By the independence of T, — T, T, and T}; we have
T, =T+ T;= Ty} = (T, = Ty} + s+ 5§, <26%(T,} + 5} + 26°(T, } + 5.

(Here we use the fact that for any random variables X and Y, o*{X + Y)
< 26%(X ) + 20%{ Y }.) The applicability of (6) now follows trivially. u
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