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Abstract -Zusammenfassung
I

-i Expected Time Analysis of a Simple Recursive' Poisson Random Variate Generator. We consider a
well-known recursive method for generating Poisson random variables with parameter A, and show how
it can be manipulated to produce random variates at an expected time cost of 0 (log log A). Despite the
fact that the expected time is not uniformly bounded in)., the algorithm should prove useful for extremely
large values of A because virtually all numerical problems associated with the evaluation of the factorial
function are eliminated. The probabilistic analysis presented here is applicable in other situations as
well, in which there are a random number of levels of recursion.
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" ., Untersuchung des mittleren Zeitverbraucbs flir die rekursive Erzeugung yon Poisson-verteilten Zufallszahlen.

Wir betrachten einen bekannten Generator flir Poisson-verteilte Zufallszahlen mit Parameter A und
iindern ihn so ab, daB der mittlere Zeitbedarf O(Jog log A) wird. Die Zeit ist zwar in A nicht gleichmiiBig
beschriinkt, der Generator ist aber gerade fiir sehr groBe A niitzlich, weil die Berechnung von Faktoriellen
vermieden wird. Die hier beschriebene Methode liiBt sich auch in anderen Situationen anwenden, wenn
die Anzahl der Rekursionen selbst Zufallsveriinderliche ist.

1. Introduction

In this paper, we consider random variate generation for the Poisson distribution
defined by the probabilities

;.1 -).e . 0PI = --=,- , l ~ .
l.

The Poisson distribution plays a key role in probability, statistics and simulation.
Hence the need to have a battery of good random variate generators. Desirable
properties include

1. Time efficiency for fixed A..
2. Universally bounded expected time (over all A.).
3. Space efficiency for fixed A..
4. Space efficiency for the entire range of A. 's.
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5. Number of uniform random variates needed. ~
6. Numerical accuracy of the solution. i
7. Length of the program.
8. Understandability of the algorithm.
9. Lack of reliance on external non-uniform random variate generators.

10. Independence from external function calls.

These features are sometimes contradictory. Table methods are notoriously fast,
but require considerable space, and do not allow frequent changes in A between
calls (Devroye, 1986, Ch. 7). Moderately fast methods with good space efficiency
and uniformly bounded expected times were developed in Devroye (1980, 1987),
Ahrens and Dieter (1980, 1982, 1987), Schmeiser and Kachitvichyanukul (1981), As:
Kachitvichyanukul (1982), Ahrens, Kohrt and Dieter (1983), and Stadlober (1988), tirr
using standard principles such as rejection, acceptance-complement and ratio-of- Sir:
uniforms. All of these papers, without exception, have had to deal with the serious o(
problem of computing logarithms of large factorials when A is large. For surveys ica
on Poisson random variate generation, one can consult Devroye (1986) or Stadlober avi
(1988), where most algorithms are compared in extensive tests.

Ne
In this paper, we reconsider an old recursive method mentioned e.g. in Ahrens and
Dieter (1974), Pokhodzei (1984) and Stadlober (1988). It is simple in conception, ~\
and effectively avoids the computation of large factorials. In addition, its expected ah ~
time complexity grows extremely slowly (O(log log A)) as A -+ 00. We also believe t c
that the probabilistic analysis of the given recursive method may prove fruitful in pa
other situations as well. To understand the algorithm, we require the following basic ch
properties of the Poisson distribution. arJ

A:
A. The sum of two independent Poisson random variables with parameters J.t and

A is Poisson (J.t + A). wi
B. Let X be a gamma (n) random variable. Given X, let Y be a binomial (n -1, Pc

(X -A)/X)randomvariablewhenX;;:: A,andletZbeaPoisson(A -X) random th,
variable when X < A. Then (1~

(n + Z)4X<A] + (n -1 -Y)I[X;?;A] Rc

is Poisson (A), where I is the indicator function. if,

Property B is shown in Pokhodzei (1984) among other places. In fact, it requires
no proof when we consider a homogeneous Poisson point process on the line with
unit intensity, and keep in mind that in such a process the intervals are i.i.d.
exponentially distributed random variables. Thus, X is the position of the n-th point
in the point process. The returned random variate is the cardinality of the interval
(O,A). If X < A, we need to count how many points fall in the interval (X, A), and
this is obviously Poisson with parameter A -X. Ifhowever X ;;:: A, then n -1 points
fall uniformly and at random in the interval (0, X). To obtain the number falling
in (0, A), just subtract from n -1 a binomial (n -1, (X -A)/X) number of points.

Property B allows us to generate a Poisson random variate recursively by choosing
n in a careful fashion. Consider first the following naive nonrecursive version, with
A = n integer.
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generate a gamma (n) random variate X
if X < n

then return n + Z
(Z is a Poisson (n -X) random variate
generated by a simple linear time method
(Devroye, 1986, pp. 504-505))

else return n -1 -Y

(Y is a binomial ( n -1, ~ ) random variate generated

by a waiting time method such as shown in Devroye (1986), p. 525))

Assume that a gamma random variable is generated in uniformly bounded expected
time. The expected time in case X < n is bounded by 0(1 + Eln-XI) = 0(1 +In).
Similarly, in case X ~ n, the expected time is bounded by 0(1 + EIX -nl) =
0(1 + In). Even in this form, the algorithm is quite attractive. Indeed, the numer-
ical problems alluded to earlier are no longer present, since they are effectively
avoided in the simple Poisson and binomial generators mentioned above.

Next, suppose we recurse based upon the choice n = L).J. Then we don't really gain

much since we inherit the O(Jn) complexity from the binomial portion of the
algorithm. An improvement is possible however if we carefully choose n -). so that
the binomial portion is reached rather infrequently, while keeping the recursion
parameter). -X reasonably small so that the recursion step is efficient. The crucial
choice is n -). ~ -Jc"ilOgl for some constant c> 2. However, to make our
argument more transparent, and to provide a simpler analysis, we will take for
). > 1,

n ~ r). -).Pl,

where p E (t, 1) is a constant to be picked later. We also stop recursing when the
Poisson parameter drops below a threshold level t > 21/(t-p). The choice of n makes

,the algorithm shown below different from Ahrens and Dieter (1974) or Pokhodzei
(1984).
Recursive Poisson generator

if).~t
then return a Poisson ().) random variate

generated by a waiting time method (page 524 of Devroye, 1986)
else compute n +- r). -). Pl

generate a gamma (n) random variate X by a uniformly
fast algorithm

if X ~ ).then return n -1 -Y

(Y is a binomial (n -1,~) random variate

generated by a waiting time method (page 524
of Devroye, 1986))

else return n + W
(W is a Poisson (). -X) random variable generated
by recursing)



168 L.Devroye

The main result of this paper is

Theorem 1. Let t > 21/(I-p) and p E (t, 1) be fixed constants. Then, for J. ~ t, the Th(
recursive algorithm takes expected time bounded by C + D log log J., where C and D we
are constants depending upon t and p only. lar~

2. Analysis of a Related Algorithm
Aft

The recursive algorithm shown above has a random number of recursive levels
which is possibly unbounded, but remains in fact below O(log log J.) with high
probability. To break the analysis up into understandable independent pieces, we
first consider an algorithm in which the number of recursive levels is determinist- WI:
ically bounded by a constant plus O(log log J.). of I

Modified recursive Poisson generator

if J. ~ t then return a Poisson (J.) random variate
generated by a waiting time method (Devroye, 1986, p. 524) Th

else compute n +- rJ. -J.Pl
generate a gamma (n) random variate X by a uniformly ~a

fast algorithm '
wecase
h el

A: X > J.: return n -1 -Y .- ( ) SID (Yis a binomial n -1,~ random variate alg

db ...X h d exi generate y a waiting time met 0

(Devroye, 1986, p. 524))
B: X ~ n -J.P: return n + W + z

(W is Poisson (J. + J.P -n) generated by recursing)
(Z is Poisson (n -J.P -X) generated by wb
a simple method (Devroye, 1986, pp. 504-505)) tin

C: n -J.P < X < J.: return n + W
(W is a Poisson (J. -X) random variable generated
by recursing)

The correctness of the algorithm flows from the observation that in view of property Tb

A, case B returns X plus a Poisson (J. -X) random variable ~ just as in case C.
We will show that it is extremely unlikely to enter cases A or B when J. is "large".
Thus, we keep going to case C, thereby reducing the parameter quickly. In at most
a double-logarithmic number of recursive steps done this way, the parameter I:
becomes 0(1), at which time we may occasionally enter case B, or we may even quit ~I:
because of case A or because J. < t. At this stage of the algorithm, J. is so small that T
none of these excursions contributes anything substantial to the overall expected e

complexity.

Theorem 2. Let t > 2I/(I-p) and p E (t, 1) be fixed constants. Then, for ~ t, the
modified recursive algorithm takes expected time bounded by C + D log log J., where Tl
C and D are constants depending upon t and p only.

I
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!~
3. Proof of Theorem 2I.

The key in the proof is the observation that we cannot recurse too often. Indeed, if
we begin with a parameter )., then after one recursion, the input parameter is not
larger than

).+).P-n=).+).P- r).-).Pl ~2)'P.

After k levels of recursion, the input parameter does not exceed

21+p+--_+pk-l).pk ~ 21/(1-p»).pk.

When this drops below t, we cannot possibly recurse any further. Hence the number
r of recursive levels does not exceed

,. log log). -log log(t2-1/(1-P»

f log(1/p)

Thus, the expected time cost due to the fixed portions of the algorithm (if and case
statements, gamma generator) is bounded by A + B log log). for some constants
A, B depending upon p, t only. Note also that without the middle case statement,
we would not have had a deterministic upper bound on the number of recursions,
hence its inclusion. The additional expected time complexity is entirely due to the
simple binomial and nonrecursive Poisson calls. Employing time bounds for these
algorithms mentioned e.g. in Devroye (1986), we note that if X is gamma (n), the
expected time bound due to the binomial portion does not exceed

~~~ E{ (1 + (n -1)~)I'X~AJ}' (1)

while the nonrecursive Poisson calls in part B of the case statement yield expected
time not exceeding

(A + B log log ).) sup E(n -).p -X)I,x<n-APJ. (2)
A~t

The expected value in (1) does not exceed

E(1 + X -)')I'X~AJ ~ E(1 + X -n)I,x~AJ

~ ((Var{X} + 1)P{X -n ~).P -1})1/2

where we used the Cauchy-Schwarz inequality. Obviously, Var{X} = n. Also,
Chernoff's exponential bounding method (Chernoff, 1952; Bennett, 1962; Chow and
Teicher, 1978) implies that for any e > 0, we have

P{X ~ n + e} ~ (1 + ~)ne-e ~ e-e2/(2n+e).

Thus, we have

I
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(1) ::s: sup In+1e-(AP-l)2/(4,,+2(AP-l)) ::s: sup ~+1e-(AP-l)2/4A
A~/ A~/

= sup ~+1e-A2P-l/4eAP-l/2e-l/(4A) Frc
A~/ the

::s: e/P-l/2 sup jme-A2P-l/4, inel
A~/

which is a finite constant. Note that we used the fact that t ~ 1. A similar exponential
left tail bound is valid for the gamma distribution:

P{X::s: n -t:} ::s: (1 -~)"et::s: e-t2/2".

an<
Using this and the Cauchy-Schwarz inequality, we see that for A ~ t ~ 1, the ver
expected value in (2) does not exceed eql

(E(n -AP -X)2P{X < n -AP}f/2 ::s: «Var{X} + A2P)e-A2P/2")I!2

::s: ~12Pe-A2P/4" ::s: ~~e-A2P-l/4,

which is uniformly bounded over A ~ t. Hence, (2) does not exceed a constant plus
a constant times log log A when A ~ t ~ 1. This concludes the proof of the Theorem. Th

cal
spe

4 .. h Th .Fine-tuning T eorem 2
COt

0(1
Under the conditions of Theorem 2, we see that the expected complexity due to the anI
nonrecursive binomial and Poisson calls is 0(1). Thus, virtually the entire expected eql
c(jmplexity is hidden in the if statement, the computation of n, the gamma generator, wh
the case decision and the recursive call As A -+ 00, the expected time is asymptotic exi
to a constant times log log AjIog(1/p). From this, we are tempted to conclude that rec
the best value is p = 1/2. However, for p = 1/2, the proof breaks down! To prove
that Theorem would still work when p = 1/2, we let Ao, AI' ...be the (random)
sequence of input parameters as we move down the recursive levels, where Ao = A.
Let ni be the value of n corresponding to Ai' and let Xi be gamma (nj. Even though Le
the Ai'S and n;'s are random, we have A;+1 ::s: 2Af. Replace (2) by the following upper evt
bound: kn

00 00 AL E{ (n; -Af -XjI[x,<".-A!,]I[A.>/]} ::s: L E{2Afe-l/4A:P-' I[A.>/]} .
i=O ';=0

= E {~ 2APe-l/4A:P-l1 }L... [A,>/] .
;=0

However, when t > 21/(I-p), the sequence A; decreases at a better than exponential
rate to zero, so that the random variable behind the last expectation is in fact B.
deterministically bounded. Hence the claim that for large A, the expected time is
about equal to the expected time needed to generate about log log A gamma
distributed random variables.
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5. Optimizing p

From the previous section, we retain that p should ideally be close to 1/2. In fact,
the conclusion of Theorem 2 remains valid if p satisfies one of the following

inequalities,

~(1 log(210g A + C log log A») > 2p ~ + I 1 ' some c -,
2 ogll.

1( log(c log A»)p ~:2 1 + log A' some c > 2,

and p is truncated to [1/2, 3/4]. Also, the constant t should be larger than 16. The
verification of all this is left to the reader. Note that with the former choice of p with
equality instead of inequality, n -A --AP --J2~.

6. Theorem 1 and its Proof

The difficulty with the original recursive generator is that the number of recursive
calls is not deterministically bounded any longer. Nevertheless, the expected time
spent on the binomial generator remains 0(1), as we established in the proof of
Theorem 2. Thus, the overall expected complexity is bounded by 0(1) plus a
constant time the expected number of recursions. But this is easily shown to be
O(log log A). We proceed as follows. We take out the stopping rules in the algorithm
and recurse forever, thus starting with parameter Ao = A, and noting that Ai+l is
equal to (Ai -XJ+, where Xi is gamma (nJ and ni = rAi -Afl. Note here that
whenever Xi ~ Ai' we have Ai == 0 for all j > i, which is fine since this indicates an
exit via the binomial step in the algorithm. Note in particular that the number of
recursive levels, N, is given by

00

N = L 4",>1].
i=O

Let ~ be the u-algebra generated by Ao, Ai"'" Ai' and let Zi be the indicator of the
event Xi ::; ni -Af (case B of the modified algorithm): The following two facts are
known:

A. For t21/(1-p) = d > 1, we have

00 log log A -log log d
.i~O 4z,=0]4"i>l] ::; 10g(1/p)r

by an argument as in. the proof of ;heorem 2. Here we used the fact that when
Zi = 0, then necessarIly, Ai+l ::; 2Ai'

B. For all i,

E{4z,=1]4..,>I]I~} ::; P4..,>I]'

where P E (0, 1) is a constant. It suffices to recall from the proof of Theorem 2,

~
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that (omitting subscripts for now) when J. ~ t

P{X -1P } < -A2p/2ft < -A2p-I/2 < -t2P-I/2~ P Th, <n '" _e _e _e .
res,

Note the following:

CX) 1 CX)
N = i~ IIA,>tJ = "i-=7i i~ (1 -P)4A,>tJ

1 CX) [I
~ "i-=7i i~O E{4zi=oJ4A.>tJI:?)=j}. [~

Take expected values, and observe that [~

1 CX) [-
EN ~"i-=7i i~ E{4z,=oJ4A,>tJ}

1 { CX) } 1 log log J. -log log d [~
= "i-=7i E i~ 4z.=oJ4Ai>tJ ~"i-=7i x 10g(l/p) .[I

This concludes the proof of Theorem 1. r

We finally note that the choices for p mentioned in the previous section do not affect [I
I the log-log behavior of the expected time of the recursive algorithm. [!

[11
[1

7. The Binomial Distribution [1:

[1:
A related recursive algorithm for the binomial distribution was suggested by RelIes
(1972) and studied by Ahrens and Dieter (1974), Nekrutkin and Pokhodzei (1980) [1'
and Pokhodzei (1984). See e.g. section 10.4.5 of Devroye (1986) and exercise 7 on [1
page 545, where the reader is asked to use arguments not unlike those used in this
paper to prove that the expected time complexity of the recursive binomial method [1'
can be O(log log n) provided that the parameters in the algorithm are fine-tuned. [l

[1.

8. Implementation

The computation of n, oddly enough, can dramatically slow down the performance, i
las it involves the computation of J.p. The situation gets worse when p is picked as

a function of log J.. If we try to speed up matters by selecting n = cJ. with c E (0, 1),
the number of recursions becomes O(log J.). To obtain O(log log J.) expected com-
plexity, we seem to be forced to introduce a costly nonlinearity in the definition of
n. Our recommendation is to take p a fixed constant in the interval (0.55, 0.75). In
view of the bounds given on the number of recursive levels, the threshold t should

.be picked close to 21/(1-p) when p is fixed beforehand. However, the ultimate choice
of t and p will also depend heavily on the relative speeds of the different components
of the program.
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