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Abstract. D. Efficiency. In deterministic schemes, a lot
P d h d t . d h of computer time is spent in deciding where the

ure ran om searc , a ap lve ran om searc , .. I t d I. t . I . th I next probe pomt should be. In random search
Slmu a e annea lUg, gene IC a gon ms, evo u- ...
t. t t . t . t. t. th procedures, thIs tIme IS saved, at the expense
Ion s ra egles, nonparame nc es lma Ion me -.

ods bandit problems simulation optimization perhaps of a few more probes. Accordmg to the

clu;terin g methods
P'robabilis tl.C ut t d' minimax criterion, random search is more effi-

, a omaaan . h d ...
random restart. These are a sample of the ran- clent t an any eter~lDlstl~ search. This sa~s
dom S h th d th t . d . th O that random search IS best m the worst possIble

earc me 0 s a are revlewe m IS .
paper. The discussion focuses on computational clrcu~st.ances. Jarvis (1975) in his ~urvey claims
issues as well as behavior in difficult optimiza- t?at .It IS one. of the best ~ethods m the worst
t. bl sItuatIon possIble (granulanty, plateaus, holes,

Ion pro ems. ...

dlscontmulties, high dimensionality, multimodal-
ity) and perhaps the worst method in the best

Books. situation (smoothness, continuity, low dimen-

This survey starts with the mention of a few sionality, unimodality)".
good books on the subject matter. These in- E. Flexibility. Random methods fill the en-
clude Zhigljavsky (1991), Torn and Zilinskas tire gap between pure random search (which
(1989), Aarts and Korst (1989), Van Laarhoven tota~ly ignores any ~r~vi~usly obtained infor-
and Aarts (1987), Holland (1975), Schwefel (1981), matlon) and determlDlstlc methods. In fact,
Schwefel and Manner (199.1), Ackley (1987), many are geared towards efficient combinations
Goldberg (1989), Ermoliev and Wets (1988), and of methods.
Wasan (1969). F. Information extraction. During the op-

timization process, the information gathered can
Ad f d h be used to guide the search; this is especially

vantages 0 ran om searc . f ..use ul when globalmformatlon about the shape
Below are some reasons why you may wish to of the function has to be extracted.
look at random search algorithms more closely. G. Easily parallelizable. Many random
A. Ease of programming. Simple easily un- search procedures either totally igllore past in-

derstood programs, that can be implemented on formation, or proceed with a number of simulta-
nearly any computer. neous searches or moving clouds of points, with
B. Inexpensive realization. Many of the only an occasional need for communication be-

methods require very simple storage and com- tween the various components. This lends itself
parison facilities. There is virtually no overhead, superbly to parallelization.
so that the cost of a run is virtually borne only H. Insensitivity to noise. Function eval-
by the number of function evaluations. uations that are perturbed by noise affect the

, C. Insensitivity to the criterion function. performance of random search algorithms much
Convergence of most random search procedures less than that of deterministic algorithms. Ran-
can be guaranteed for any function, regardless of dom search is also ideally suited for multimodal
its smoothness properties or its multimodality. stochastic optimization problems.
The particular shape (granularity, discontinuity, I. A simple startpoint selection method.
presence of holes or plateaus) of a function has Pure random search and some of its variants can
virtually no effect on most random search proce- be used as a method for the selection of a suit-
dures. able startpoint of a local search algorithm. It is
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still nearly the only way to select startpoints. A veraging may lead to a sequence Y n with the
J. A standard for comparisons. In tests given convergence property.
and simulations, pure random search can be B. In simulation optimization, Yn may repre-
(and is being) used as a simple benchmark against sent a simulation run for a system parametrized
which we can gauge the goodness of other algo- by x. It is necessary to take n large for accuracy,
rithms. This is especially so since pure random but taking n too large would be wasteful for op-
search provides us with enough information to timization. Beautiful compromises are awaitingdecide how "difficult" the optimization problem the analyst. .

is. C. In some cases, Q(x) is known to be the ex-
pected value or an integral, as in Q(x) = fA q(x,t) dt

.or Q(x) = Eq(x,T) where A is a fixed set and T
Why are we doing random search? is a given random variable. In both cases, Yn

Of course, it is in the human nature to optimize, may repr~ent a certain Monte Carlo estimat.e of
' t so optimization is here to stay. But we also want Q(x), ~hlch may be made as accurate as deSIred

, to explore new terrain. And to explore in an by takmg n large enough.

, unbiased manner, nothing really beats random, sampling-look for example at the continued Ordinary random search.

success of (random) opinion polls. Randomness The simple ordinary random search algorithm is
is an ideal and unequaled information gathering given below:
device. X' - {Xn+l if Q(Xn+l) < Q(X~)

n+l -X~ otherwise.

Passive versus active algorithms. Here X~ is the best estimate of the (global) min-

In some settings, we have no control over the imum aft.er n iterations, and Xn+l is a random
probe points-they are part of the data given to pro~~ pom~. In p.ure random searc~: Xl, ..., Xn
us. The latter context leads to so-called passive are l.l.d. wIth a gIven fixed probablhty measure
algorithms (HardIe and Nussbaum, 1993): the over the par~meter space X, In local ra~dom
prototype problem dealt with is the simultane- search ~f a dlscrete.space, Xn+l usu~"::v IS a ran-
ous estimation and minimization of a regression dom neIghbor of Xn, where the defimtlon of a

..function. neighborhood depends upon the application. In
local random search in a Euclidean space, one
might set

Issues. Xn+l = X~ + Wn ,

I In optimization, it is important to know whether where Wn is a random perturbation usually cen-
t we have a discrete or continuous parameter space, tered at zero.
, whether we are dealing with a unimodal or mul-

timodal function and whether we can make use Pure random search.,
of parallel processors or not. In some contexts it The properties of pure random search are well
is out of the question to consider parameters at documented in nearly all books on the subject
which the function has not been evaluated, and since its early introduction by Brooks (1958),
in others, this does not matter. More modern al- The fundamental properties of the method are
gorithms tend to make better use of storage and related to the fact that F(Q(X~)) is approxi-
memory as they become cheaper and faster. mately distributed as E/n, where E is an expo-

nential random variable, and F is the distribu-
Noisy problems. tion function of Q(X1): F(u) d~f P{Q(X1) :5: u}.

This follows from the fact that if F is nonatomic,
Here is a rather general optiniization problem: { (Q( .)) / } ( / )n -t

: l' h (I " , V ) P F X > t n = 1-t n -+ e t > 0f lor eac parameter x Ivmg m some space,," ,n , .

~ we can observe a random process Y1, ...,Y n, ...Note first of all the distribution-free character of
with Yn -+ Q(x) almost surely, where Q is the this statement: its universality is both appeal-
function to be minimized. I will refer to this as ing and limiting, We note in passing here that

f the noisy optimization problem, Examples: many papers have been written about how one
A. Engineering noise: at x, we can observe in- could decide to stop random search at a certain
dependent copies of Q(x) + f., where f. is mea- point. In the case of pure random search, this is
surement noise satisfying Ef. = 0 and EIf.1 < 00. nearly always futile. For example, assume that
This classical setting is no longer important. we stop when no improvement of X~ is found
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in the last 100 iterations. Unfortunately, the and equality is reached for pure random search.
value of Q(X;") when we stop at such a time N Both examples given above describe the opti-
is independent of N, so information about im- mality of some version of global random search
provements of X~ is useless for stopping rules. in the toughest of situations, i.e., when no addi-
As a curiosity related to the theory of records, tional knowledge is available about Q except the
note that EN = 00 if we were to stop at time space of its argument. Let us briefly consider a
N, where N is the first time we find an improve- more restricted class of functions. We are quick
ment. on Xl. to add that most function classes immediately

lead to challenging analytical problems. The one
S .fi d d h that has received some attention in the litera-

tratl e ran om searc .. h I f f . Q h L. h.
ture 1S t e c ass 0 unctIons t at are IpSC ltz

Brooks (1959) looked at stratified random search, with a constant C on [0, l]d. We assume that
in which we partition X beforehand into a finite C is known. For mathematical convenience, we
number of sets A1' ..., Ak, and generate n/k suppose that Q is periodically continued and
probe points at random in each of these sets ac- continuous by replicas of the unit hypercube.
cording to a fixed distribution. If the partitions Also, the minimum of Q is exactly zero. If the
are such that the Xl of pure random search Xi's are the probe points, and X~ is the best
would fall equally likely in each subset, then one probe point seen thus far, we may measure the
can prove that Q(X~) is stochastically smaller performance of an algorithm by
in stratified pure random search than in pure d f
random search. This is not necessarily so if the Pn ~ n1/dsupE{Q(X~)} ,
probabilities of the partitions are unequal. Q

wher~ the coefficient is added for easy normal-
Minimax theory. ization. We may cover [0, l]d with circles of ra-

dius r at the points at which we have probed Q.
In the hope of pinning down the ultimate al- If r is the smallest such radius, then we know
gorithm, we may resort to a minimax strategy. that minQ ~ minQ(Xi) -Cr. Thus, Pn may
Let T be the time needed to reach the global be found by looking at the largest gap between
minimum of a function Q : {I,..., N} -+ JR. the points left by a certain algorithm. To make
A pessimist might consider as a measure of the the largest gap small, we need to sprinkle the
performance of an algorithm the quantity points out very densely but evenly. Here are

sup E{T} .some strategies.
Q A. If we place the points in a rectangular grid,

It turns out that for any algorithm, the latter then P~ -+ C Vd74. .
quantity is at leat (N + 1) /2. Consider just three B. It IS. known that rectangular gIlds do n~~
strategies: p~k .pOInts v:ry well. Fo~ example, Voronol s
A. Pure random search with a uniform distribu- prmcipallattice leads to lInIn--+oo Pn = C')'d,
tion. Here E{T} = N. wl~ere, as d -+ 00, ')'d , ~. This is t.he
B. Cyclic (brute-force) search. Here too, we thmnest cover for d = 2, the thInnest lattIce
have E{T} = N. cover for d ~ 5, and .th.e thinnest know.n cover to
C. Random permutation search. A simple ex- date for d ~ 23. ThIs IS a remarkable Improve-
ercise shows that this is optimal in the sense ment. For a wealth of nice lattices, see Conway
stated above, as E{T} = (N + 1)/2. and Sloane (1988).
We might also look at C. Coxeter, Few and Rogers (1959) have results

on packing and covering that imply that no mat-
s~pP{Q(X~) > Qm} ter how we position the probe points,

where Qm is the m-th smallest value among liminf Pn ~ Cv(d + o(1))/(27re) .
n--+oo

.Q(l),..., Q(N). Here too, random permuta-
tion search is optimal, as the given supremum is In 1959, Rogers showed in a nonconstructive way
(N,;;n)/(~) when m + n ~ N. that there is a grid that would lead to

IfwemovetofunctionsQ:JRd-+JR,andletF I. ~ <C 1(.1' -/1\\"I\--\d(1))/( 2 )be the distribution function of Q(X), where X is I~S~P n -V tU + °tJ.JJ/t~7reJ.

as before, then
Interestingly, the optimal lattice covering is not

info sup E{F(Q(X~))} = -.!.- known except for small d, so this avenue is of no
all algonthms Q:Rd--+R n + 1 help when one is faced with d = 50, say.
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D. In pure random search, we have lim,.-+oo Pn = in this respect is by Matyas (1965), who suggests
Cr(l + l/d)/V]/d, where Vd is the volume of the making Un adaptive and setting

unit sphere in rn,d. The limit may be rewritten Xn+I = X~ + UnNn+I + Dn+I ,
as CV(d + o(1))/(21Te) and is therefore optimal r

I d P d h h d . l tper where Dn+I IS a preferred dIrectIon that IS made
lor arge .ure ran om searc an 1 y ou -

forms Voronoi lattice search despite its striking adaptive as well. A rule of thumb, that may
. I.. t Alth h th d t mI.nI.st.c al be found in several publications (see Devroye,
SImp ICI y. oug ere are e er 1 .

th th t . 11 d II I .. t d ter 1972, and more recently, Back, HoffmeIster and

gon ms a WI 0 as we , no exp ICI e -.... t. I . th . k t d t th tuld Schwefel, 1991), IS that Un should mcrease af-

mInIS IC a gon m IS nown 0 a e a wo .

b t d h . th O t ter a successful step, and decrease after a faIl-
ea pure ran om searc m IS respec ..

ure, and that the parameters should be adjusted
to keep the probability of success around 1/5,

Random covering methods. Schumer and Steiglitz (1968) and others investi-
..., gate the optimality of similar strategies for local

LIpschItz functIons may be dealt wIth by cover- h.ll I. b.
Altt Ib £ d b' 1 -c 1m mg. erna e y, Un may e oun y a

ing methods, ConsIder for example the method d'. I h I th d. t..
, ...one- Imenslona searc a ong e Irec Ion gIven

of Shubert (1972) m one dImensIon, At the trIal b N (B 1968 G . 1975).. Q . d d d Y n+I remermann, ; aVIano, .

POInts, lInear bounds on are pmne own, an

the next trial point is given by . I d I.
Slmu ate annea mg.

X -ar gminmax {Q( X' ) -C llx -X. II}n+I -xEX i<n I I' In simulated annealing, one works with random

h C . th L .- h.t t t Th ' .probes as in random search, but instead of let-
were IS e IpSC 1 Z cons an , IS IS a .* .... £ tmg Xn+I be the best of Xn+1 (the probe pomt)
beautIful approach, whose ImplementatIon or d X * (th ld b t . t) d . d d . .an n e 0 es porn, a ran omlze eCI-

large d seems very hard. For nOISY problems, or ,. .

t d d th t b £ It d...,sIon IS m ro uce, a may e re ormua e as
when the dImensIon IS large, a random verSIon £ II ( ft H . k d S k.

1989) .

f h . d ' D (1978) If v 0 ows a er aJe an asa 1, .

0 t IS was propose m evroye ,"-
is compact, X~+l is taken uniformly in X mi- X* - {Xn+1 if Q(Xn+1) -Q(X~) ::;: tnEn
nus the union of the n balls centered at the Xi'S n+1 -X~ otherwise.

(1 ';:;,i ,;:; n) with radius .(~(Xi) -Q(X~))/C. where tn is a positive constant depending for
If C IS ~nknown, replace It m the formula for now on n only and E1' E2, ...is an i.i.d. se-
the radIUs by Cn and let Cn -+ 00 such that quence of positive random variables. The best
C,~/n -+ 0 and (Cn+I/Cn)d = 1 + o(1/n) (ex- point thus walks around the space at random.
ample: Cn ~ exp((logn)P) for p E (0,1)). Then If tn, the temperature, is zero, we obtain ordi-
Q(Xn) -+ mmQ almost surely. nary random search. Iftn = 00, Xi,X2,...

is a random walk over the parameter space. If
Local random search. tn > 0 and En is exponentially distributed, then

we obtain the Metropolis Markov chain or the
Random search ma.r ?roceed in a local manner, Metropolis algorithm (Metropolis et aI, 1953;
yet find a global mmlmum. Assume for example Kirk patrick Gelatt and Vecchi 1983. Meerkov, ",
that we set 1972; Cerny, 1985; Hajek and Sasaki, 1989).

X - X * + "" N Yet another version of simulated annealing has
n+1 -n vn n+1, ,

emerged, called the heat bath Markov cham
where NI, N2,... are i.i.d. normal random vec- (Geman and Hwang, 1986; Alufli-Pentini et aI,
tors, and Un -+ 0 is a given deterministic se- 1985), which proceeds by setting
quence. The new probe point is not far from the .f
old best point as if one is trying to mimic local {Xn+1 1 Q(Xn+I) + tnYn, X* -< Q

( X* ) + t Z

descent algorithms. However, over a compact n+1 --n n n

I I k I h X' otherwiseset, g oba convergence ta es p ace w enever n,
O'nyTOgn -+ 00. This is merely due to the fact where now Y1,Zl,Y2,Z2,... are i.i.d. random
that NI, N2, , ." Nn form a cloud that becomes variables and tn is the temperature psarame-
dense in the expanding sphere of radius .,;2rogii. ter. If the ¥i's are distributed as the extreme-
Hence, we will never get stuck in a local mini- value distribution (with distribution function
mum, The convergence result does not put any exp(e-X)) then we obtain the original version of
restrictions on Q. the heat bath Markov chain, Note that each Yi
The above result, while theoretically pleasing, is then distributed as log log(1/U) where U is
is of modest value in practice as Un must be uniform [0,1], so that computer simulation is not
adapted to the problem at hand, A key paper hampered.
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The two schemes are not dramatically different. proportional to e-Q(i)/t. Interestingly, this is in-
The heat bath Markov chain as we presented it dependent of the structure of the graph. If we
here has the feature that function evaluations now let tn --0 then with probability tending to
are intentionally corrupted by noise. This clearly one, X~ belongs to the collection of local min-
reduces the information content and must slow ima. With probability tending to one, X~ be-
down the algorithm. Most random search algo- longs to the set of global minima if additionally,
rithms take random steps but do not add noise 2:::n e-~/tn = 00 (for example, tn = cj log(n + 1)
to measurements; in simulated annealing, one for c ;::: ~ will do). Here ~ is the maximum
deliberately destroys valuable information. It of all depths of strictly local minima (Hajek,
should be possible to formulate an algorithm 1988). The only condition on the graph is that
that does not corrupt expensive function evalu- all connected components of {x : Q( x) :$: c}
at ions with noise (by storing them) and out per- are strongly connected for any c. The slow con-
forms the simulated annealing algorithm in some vergence of tn puts a severe lower bound on the
sense. One should be careful though and only convergence rate of simulated annealing.
compare algorithms that occupy equal amounts
of storage for the program and the data.
We now turn to the choice of tn. In view of Random walks on graphs"
the representation given above, it is clear that
E{Q(X~) -minQ} is bounded from below by Simulated annealing may be considered as a ran-
a constant times tn as tn is the threshold we al- dom walk on a graph if X is discrete. It finds
low in steps away from the minimum. Hence the global minimum only because it exhausts the
the need to make tn small. This need clashes entire space. Therefore, some results from the
with the condition of convergence. The condi- theory of random walks on graphs are very rele-
tion of convergence depends upon the setting vant here. Consider a fixed graph with n nodes
(the space X and the definition of Xn+l given on which we perform a random walk by picking
X~). We briefly deal with the specific case of a neighbor with equal probability from all neigh-
finite-domain simulated annealing in the next bors. If Q is one everywhere except at one point,
section. In continuous spaces, progress has been where it is zero, it is immediately clear that sim-
made by Vanderbilt and Louie (1984), Dekkers ulated annealing must take as long as it takes
and Aarts (1991), Bohachevsky, Johnson and our random walk to discover the zero-valued
Stein (1986), Gelfand and Mitter (1991), and node. Related to this (but slightly larger) is the
Haario and Saksman (1991). Other key refer- cover time T, i.e., the time needed to visit all
ences on simulated annealing include Aarts and nodes. The following results are known: there
Korst (1989), Van Laarhoven and Aarts (1987), exists a universal constant c > 0 such that for
Anily and Federgruen (1987), Gidas (1985), Ha- any connected graph, and any n, ET ;::: cn log n
jek (1988), and Johnson, Aragon, McGeoch and (Aldous, 1989). Note that this grows faster than
Schevon (1989). linear in n and is not competitive with even
Further work seems required on an information- brute force search, in which all nodes are looked
theoretic proof of the inadmissibility of simu- at. This casts a great shadow on any method
lated annealing and on a unified treatment of that must find a global minimum by some sort
multistart and simulated annealing, where mul- of random walk, be it local (each node has just
tistart is a random search procedure in which a few neighbors) or global (each node has many
one starts at a randomly selected place at given neighbors), Even for the complete graph, we
times or whenever one is stuck in a local mini- have ET "'" n log n. Graphs that have small val-
mum. ues of ET and yet few edges allow rapid travel

over the space of n nodes. For example, for
F " "t d " " 1 t d al " the hypercube graph, we have ET "'" n log n

Inl e ommn simu a e anne Ing" 2as well. Cycle graphs have ET ~ n and are
On a finite connected graph, simulated anneal- thus to be avoided. Kahn et al (1989) showed

, ing proceeds by picking a trial point uniformly that for all regular graphs, ET = O(n2), and

at random from its neighbors. Assume the graph Aleliunas et al (1979) showed that in any case
is regular, i.e., each node has an equal number ET = O(ne), where e is the number of edges.
of neighbors. If we keep the temperature t > 0 Various bounds based upon probabilistic argu-
fixed, then there is a limiting distribution for ments or the Perron-Frobenius theory for the
X~, called the Gibbs distribution or Maxwell- second largest eigenvalue of a transition ma-
Boltzmann distribution: for the Metropolis al- trix may be found in Devroye and Sbihi (1990),
gorithm, the asymptotic probability of node i is Matthews (1988), or Broder and Karlin (1987).
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Continuous-space simulated annealing. from these points, and the worst point of this
L t 'd t " t ' t f simplex is replaced by a trial point, if this trial

e us consl er op Imlza Ion on a compac 0 , , " , ,
md d I t Q b b d d th If I t X pornt IS better. The trIal pornt IS pIcked at ran-In, ,an e e oun e ere. we e n+I - d " d h .

Ix.. h fi d d .t f th t . b d d f om rnsl e t e SImp ex.
nave a xe enSI y a IS oun e rom

b I b t t t . th ' d. t f Independently, the German school developed
e ow y a cons an Imes e mIca or 0 a h ." I ., "

(Re h b 19 3II .t b II f .t ' d. th X". t elr Evo utlonsstrategle c en erg, 7;
sma urn a 0 pOSI Ive ra IUS, en n rn
th M t I. I .th t th I b I Schwefel, 1981). Here too we have a popula-

e e ropo IS a gon m converges 0 ego a. .,., ,... b b'l.t .f t ! 0 t t I tlon of base pornts, each gIvrng rIse to some trIalmrnlmum rn pro all y 1 n , ye n og n -+ . ( . ) 0 .,
B h h k J h d St ' (1986) ad pornts mutatIons. f the group of trIal pornts,00. 0 ac evs y, 0 nson an em -

. t t d . th h t k th b b.l 't we keep the best N, and repeat the process. In
JUS n unng e searc 0 ma e e pro a 11 yf t.

t . I . t h t t space, If we draw the pornts rn dIfferent gener-
0 accep rng a na porn over near a cons anN th I .

f t . t k b th t f atlons, we wIll obtarn a certarn tree that moves
ever e ess, 1 n IS a en as a ove, e ra eo. .

t th ... b d d f over the space towards the global mrnlmum. We
convergence 0 e mlrnmum IS oun e rom. ...
b I b 1/ I h. h ' h I th th wIll say more about thIS rn the sectIon on ge-

e OW y og n, w IC IS muc s ower an e . I '
hI . I Id h .f Q It .netIc a gont ms,

po ynomla rate we wou ave 1 were mu 1- .
d I b t L. h' t ( all th t h d -l Id BIlbro and Snyder (1991) propose tree anneal-

mo a u IpSC 1 Z rec a we an. ...
t th ) rng: all trIal pornts are stored rn tree format,

ra es ere. . h d I . k d I . h' lTh 'd t add . t h I th h ' t WIt ran om y pIC e eaves spawrnng two c 1-
e 1 ea 0 noIse 0 e p e searc IS noI th II d h b II th d .

t ' dren. The leaf probabIlItIes are determrned as
new. n e so-ca e eavy a me 0 ,lIS " ..

d t k d. t d t b t (U k.products of edge probabIlItIes on the path to the
use 0 ma e gra Ien escen more ro us osa 1 .
t I 1970' B k d U 1974. G d root, and the tree represents the classIcal k-de a, , e ey an ng, , eman an .. f h Th . h .H 1986. K h 1987) A t . I t tree partItIon 0 t e space. elr approac IS at
wang, , US ner, .yplca s ep ." II ffi ' d fth .

X + X - Q' (X ) + R N h the same tIme computatlona ye clent an ast.ere IS n+I n an n I-'n n, were F' II d al . h h. h d " .
IN . I . t Q'. th t rna y, to e WIt Ig -Imenslona spaces,n IS a norma noIse vec or, IS e vec or gra- ..,

d. t d R . t ' the coordrnate prOjectIon method of Zakharov
len, an an, I-'n are pOSI Ive sequences.

(1969) d H (1973) dan artman eserves some atten-
..tion, Picture the space as being partitioned by a

Novel Ideas In random search. N x '" x N regular grid, With each marginal

Several ideas deserve more attention as they lead interval of each coordinate we associate a weight
to potentially efficient algorithms. These are proportional to to the likelihood that the global
listed here in arbitrary order. minimum is in that interval, A cell is grabbed
In 1975, Jarvis introduced competing searches at random in the grid according to these (prod-
such as competing local random searches, If N uct) probabilities, and the marginal weights are ,, is the number of such searches, a trial (or time updated, While this method is not fool-proof, it

unit) is spent on the i-th search with probabil- attempts at least to organize global search effort
ity Pi, where Pi is adapted as time evolves; a in some logical way,
possible formula is to replace Pi by api + (1 -

a)(c/Q(Xi))b, where a E (0,1) is a weight, c and G t. aI .thb d x ,
h ' I ' £ h ene IC gorl ms.

are constants, an i IS t e trIa pornt or t e
i-th competing search, More energy is spent on Consider a population of points, called a genera-
promising searches, tion. By selecting good points, modifying or mu-
This idea was pushed further by several researchers tating good points, and combining two or more
in one form or another, Several groups realized good points, one may generate a new genera-
that when two searches converge to the same 10- tion, which, hopefully, is an improvement over
cal minimum, many function evaluations could the parent generation, Iterating this process
be wasted, Hence the need for on-line clustering, leads to the evolutionary search method (Bre-
the detection of points that belong somehow to mermann, 1962, 1968; Rechenberg, 1973; Schwe-
the same local valley of the function. See Becker fel, 1977; Jarvis, 1975) and the body of methods
and Lago (1970), Torn (1974, 1976), de Biase called genetic algorithms (Holland, 1975), Mu-
and Frontini (1978), Boender et al (1982), and tations may be visualized as little perturbations

, Rinnooy Kan and Timmer (1984, 1987). by noise vectors in a continuous space, How-

The picture is now becoming clearer-it pays to ever, if X is the space {O, l}d, then mutations
keep track of several base points, i.e" to increase become bit flips, and combinations of points are
the storage, In Price's controlled random search obtained by merging bit strings in some way,

( for example (Price, 1983), one has a cloud of The term cross-over is often used. In optimiza-
points of size about 25d, where d is the dimen- tion on graphs, mutations correspond to pick-
sion of the space, A random simplex is drawn ing a random neighbor, The selection of good
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points may be extinctive or preserving, elitist or ing the bits of the new individual, hillclimbing is
non-elitist. It may be proportional or based on done via neighbors at Hamming distance one un-
ranks. As well, it may be adaptive and allow for til a local minimum is reached. This new point
immigration (new individuals). In some cases, replaces a point picked at random from among
parents never die and live in all subsequent gen- those points in the population whose Q-value
erations. The population size may be stable or exceeds 8.
explosive. Intricate algorithms include parame-
ters of the algorithm itself as part of the genetic Th th d f t....e me 0 0 genera Ions.
structure. Convergence IS drIven by mutatIon
and can be proved under conditions not unlike As a second example of evolutionary search,
those of standard random search. this time in a continuous space, we present the
Evolution strategies aim to mimic true biologi- method of generations as designed by Ermakov
cal evolution. In this respect, the early work of and Zhigljavsky (1983). The population size
Bremermann (1962) makes for fascinating read- may change over time. To form a new genera-
ing. He conjectured in 1962 that "no data pro- tion, we pick parents with probability prop or-
cessing system, artificial or living, can process tional to k
more than 2 x 1047 bits per second-gram". So Q (Xi)
here is Bremermann's early computation on why Ej Qk(Xj)
biological evolution is indeed a very very hard and add random perturbation vectors to each
optimization problem. A DNA string of a hu- individual., where k is to be specified. The latter
man consists of 4 x 109 nucleotide bridges, each are distributed as 0" n Zn, where the Zn's are i.i.d.
taking values in the set {a, t, g, c}. To store this and 0" n is a time-dependent scale factor. This
requires thus roughly 1010 (in fact, 8 x 109) bits. tends to maximize Q if we let k tend to infinity
The number of possible humans is thus about at a certain rate.
21010, which is much more than the number of
particles in the universe. The number of second- ...
grams needed to solve this problem is staggering. AddItIve nOIse.

Not only is biological evolution hard, but so are If we have additive noise, i.e., each Q(x) is cor-
many standard problems encountered in game rupted by an independent realization of a ran-
playing, operations research, and applied math- dom variable Z, so that we observe Q(x) + Z,
ematics. In 1968, Bremermann advocated the then the standard random search algorithm may
use of evolutionary strategies in solving linear still be convergent. Formally, if Yl, ZI, Y2, Z2, ...
equations, for example. A mere optimization of aree independent realizations of Z, the algorithm
Q over {O, l}n with n = 300 would need more uses the following basic step:
than 1040 second-grams for a brute-force solu- , .
tion if Bremermann's conjecture is valid. If all ~ { Xn+l If Q(Xn+l) + Y n+l
of humanity would dedicate its entire weight to X~+1 =.. ~ .Q(X~) + Zn+1
this problem, this would still require about 1021 Xn otherwIse.

years for solution! In the face of such hard prob- Assume furthermore that with probability at
lems, we must set modest goals and consider the least a > 0, Xn+l is sampled according to
successes of biological evolution when designing a fixed distribution with support on X. Even
search strategies. though the decisions are arbitrary, as in sim-

ulated annealing, and even though there is no
A kI ' .t t d t. h ' II I . b .converging temperature factor, the above al-

c ey s I era e gene IC I C 1Ill mg.. ...
gonthm may be convergent m some cases, I.e.,

In Ackley's thesis (1987), we find a beautiful Q(X~) -+ infQ in probability. For stable noise,
example of a genetic algorithm in action. He i.e., noise with distribution function G satisfying
takes the population size to be about 50 and G( )
attaches great importance to 8, the average Q- lim ~ = 0; all f > 0 ,

.value over the population. The following steps r1-00 x

are repeated, starting from an initial random such as normally distributed noise, or indeed,
population. Two individuals are chosen at ran- any noise with tails that decrease faster to zero
dom and we create a new individual by perform- than exponential, then we have convergence in
ing a bitwise merge as follows: the new i-th bit the given sense. The reason is that for an i.i.d.
is obtained with probability p by flipping a coin. sequence '71, ..., 1]n drawn from G, min( '71, ...,1]n)-
Otherwise the bit is taken from one of the two an -+ 0 in probability for some sequence an. See
parents with equal probability. After construct- for example Rubinstein and Weissman, 1979.
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.
bI may minimize Q if we are given infinite storage. BandIt pro ems.

b . I .
t..Moreformally,letXI,X2,... etna pOluS,The classical set-up in bandIt problems IS that with the only restriction being that at each n,

it is possible to observe a sa~ple draw~ from. with probability at least an, Xn is sampled from
.distribution Fz; at each x, wIth Fz; ~ossIbly dIf- a distribution spanning the support of X (such

ferent for each x. The mean of Fz; IS Q(~). If as the normal density, or the uniform density on
there are just two x's, and the probe pomts se-. a compact). We also make sure that at least An
lected by us are Xl,..., Xn, then the purpose IS observations are available for each Xi at time
to minimize n. If the noise is additive, we may consider the

-~ ~ X'). A~ pairings for all.the observations at ~a.ch ofAn -n ~Q( .Xi and Xj, recordmg all values of W(z,J), the

..=1 ...number of wins of Xi over Xj, 1 ~ i ~ j ~
Sometimes, we may wIsh to mmIIlllze n. For each Xi, let Zi = minj#i W(i,j), and

n define X~ as the trial point with maximal Zi
Bn = Llx;#z;o value. If An/logn -+ 00, and Lan == 00, then

i=I ..Q(X~) -+ essinfQ(X) almost surely (Dev~oye,
where x" is the global minimum of Q. ThIS IS 1977; Fisher and Yakowitz, 1973). Interestmgly,
relevant whenever we want to optimize a system there are no conditions whatever on the noise
on the fly, such as an operational control sys- distribution. With averaging instead of a statis-
tern or a game-playing program. Strategies have tic based on ranks, a tail condition on the noise
been developed based upon certain paramet- would have been necessary. For non-additive
ric assumptions on the F z; 's or in a purely non- noise,
parametric setting. A distinction is also made .
between finite horizon and infinite hor.izo~ so- sup E { etlY'IX = x} < 00
lutions. With a finite number of bandIts, If at z;
least one Fz; is nondegenerate, then for any al-
gorithm, we must have EBn ~ clog n for some for all 0 < t ~ to (where Y is drawn from F z;)
constant c > 0 on some optimization problem suffices for example when X~ is obtained by
(Robbins, 1952; Lai and Robbins, 1985). ' minimizing the An-averages at the trial points.

In the case of bounded noise, Yakowitz a~d Lov:e Gurin (1966) was the first to explore the idea
(1991) devised a piay-the-leader .strategy m whIch of averages of repeated measurements. Assume
the trial point Xn is the best pomt seen thus again the an condition on the selection of trial
far (based on averages) unless n = L aek .~ b J points and let Q denote the average of An ob-
for some integer k (a and b ar~ fi~ed posItIve servations. Then, if fn ~ 0, Gurin proceeds by

numbers ) at which times Xn IS pIcked at ran- tt ' , .se mg
dom from all possible choices. ThIS guarantees
EB = O(logn). Thus, the optimum is missed ~ ~
at ~ost log n times out of n. X" = { Xn+l if Q(X~+I) < Q(X~) -fn
Another useful strategy for parametric families n+l X~ otherwIse.
Fz; was proposed by Lai and Robbins (1985).
Here confidence intervals are constructed for all This is contrary to all principles of simulated
Q(x), x EX. The x with the smallest lower annealing, as we are gingerly accepting new
confidence interval endpoint is sampled. Ex- .best points by virtue of the threshold fn. De-
act lower bounds were deriv~d ~y t~em fo~ thIS vroye (1976) has obtained some sufficient ;on-
situation. For two normal dIstrIbutIons wIth ditions for the strong convergence of Q(Xn) -+
means J.tI < J.t2 and variances ur and U~, Hol- essinfQ(X). One set includes fn == 0, SUPz; Var{YIX =
land (1973) has shown that EBn ~ (2ur/(J.t2 -x} < 00, and L 1/..[5:;. = 00 (a very strong
11.1) + 0(1)) logn. condition indeed). If fn > 0 and for each x,
Yakowitz and Lugosi (19~9)illust.rate ho,,: o~e IY-Q(x)1 is stochastically smaller than Z where
may optimize an evaluatIon functIon on-ime m EetZ < 00 for some t > 0, then fn -+ 0 and

.the Japanese game of gomoku. Here each F z;. An f2 I log n -+ 0 are sufficient as well. In the
represents a Bernoulli distribution and Q(:z:) IS latt:r case the conditions insure that with prob-
nothing but the probability of winning against a ability one', we make a finite number of incorrect
random opponent with parameters :z:. decisions. Other references along the same lines

include Marti (1982), Pinter (1984), Karmanov
Random search in noise. (1974), Solis and Wets (1978), Koronacki (1976)

In a noisy situation when X is uncountable, we and Tarasenko (1977).
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Optimization and non parametric estimation. S. Anily and A. Federgruen, "Simulated anneal-
...ing methods with general acceptance probabil-To extract the maXImum amount of InfOrmation .." J al fA I ' d P b b ' l ' t 1 24..

b- Itles ourn 0 pp le ro all y vo .from past observations, we mIght store these 0 ' 66 987 " .

d t t . t .pp. 657- 7, 1 .

servatlons an construc a nonparame nc es 1-
mate of the regression function Q(x) = E{YIX = R W B k d G V L "A 1 b 1 t.} . b . f F A ..ec er an ..ago, g 0 a op I-X , where Y IS an 0 servatlon rom x. ssume . t. 1 .th ". P d '
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