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We consider uniform random walks on finite graphs with n nodes. When the 
hitting times are symmetric, the expected covering time is at least �89 log n -  
O(n log log n) uniformly over all such graphs. We also obtain bounds for the 
covering times in terms of the eigenvalues of the transition matrix of the 
Markov chain. For distance-regular graphs, a general lower bound of 
( n - 1 ) l o g  n is obtained. For hypercubes and binomial coefficient graphs, the 
limit law of the covering time is obtained as well. 

KEY WORDS: Random walks; covering times; graphs; vertex-transitive 
graphs; distance-regular graphs. 

1. I N T R O D U C T I O N  

For a finite Markov chain, let the covering time T be the time taken to 
visit all the states. Aldous (2) introduced an important approach to obtain 
results on the mean covering time in the context of rapidly mixing random 
walks on finite groups. He showed that E(T) is approximately Rn log n, 
where n is the cardinality of the group and R is the mean number of visits 
to the initial state in a short time. 

Matthews (1~ obtained bounds applicable to mean covering times for 
finite Markov chains: if the state space S =  {0, 1,..., n} then, for the chain 
starting at 0 

#_  -H .  <~Eo(T) ~<#+ -H.  (1.1) 

where H ,  is the n th harmonic number, 

#_ = min rain Ei(Tj), ~+ = max max Ei(Tj) 
l<~j<~n O<~i<~n,i~j l~j<~n O<~i<~n,i#j 
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and Ei(Tj) is the mean hitting time o f j  for the chain starting at i. Similar 
bounds for the moment generating functions of the covering times have 
also been obtained by Matthews. (H) 

Let G be a finite connected graph with n vertices and consider the 
nearest neighbor random walk on G: for a vertex i, if ve is the number of 
edges connected to i, the probability that a particle moves from i to a 
neighboring vertex j is 1/vi. For the nearest neighbor random walk on 
graphs several results have been obtained recently (see Aldous, 1989), 
foremost among which is a general lower bound E . ( T ) =  (2(n log n) for the 
walk started with the stationary distribution 7c. (4) 

I n  this note we consider graphs for which the nearest neighbor 
random walk has symmetrical mean hitting times, that is, E~(Tj)= Ej(Ti) 
for all distinct vertices i, j. We provide bounds for E(T) and study in more 
detail two classes of graphs, namely, vertex-transitive graphs and distance- 
regular graphs. For the properties of these graphs we refer to Biggs. (8) 

2. SYMMETRIC HITTING TIMES 

Let G be a finite connected graph with n vertices and e edges for which 
Ee(Tj) = Ej(T~) for all distinct vertices i,j. We call these graphs symmetric 
graphs; some families of graphs that are symmetric are considered in the 
next sections. It turns out that the symmetry hypothesis is powerful enough 
to obtain the following proposition. 

Proposition 1. Let the nodes be ordered according to increasing 
degrees Vl~< V1 ~< "" ~ vn and let the starting node be s. Then, for any 
integer k >~ 1, and any symmetric graphs, we have 

1. Es(T) ~> e-- Hk_ 1 
Vk 

n - k  H 2. Es(T)~>-- ~ k - l  

3. Es(T)/> �89 log n -- O(n log log n) uniformly over all symmetric 
graphs with n vertices. 

Proo f  For 1 ~< i ~< n, let n i = vJ2e be the stationary distribution. Since 
Eg(Ti) = 1/n~ we have ~7= 1 1/Ei(T~) = 1. Clearly then, since El(T1) ~> ...  ~> 
E~(Tn) 

1 = ~ 1/Ei(Ti) >/[A/EI(T ,)] --1- [ ( / ' / -  k)/Ek(Tk)] 
i~l 

>1 (n -- k )/Ek( Tk) 
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But, for 1 ~ i r j ~< k, we have by the triangle inequality, 

n - k < Ek(Tk ) ~< E~(T~) ~< E~(Tj) + Ej(T,) = 2Ei(Tj) 

The covering time T is at least equal to T{~,2,...,~} where T{~,2,...,k} is the first 
time to cover the set {1, 2,...,k}. By Matthews's lower bound (1.1) we 
conclude that 

E,(T) ~> ~ H~_ > n - k  

Part 3 of the proposition follows after taking k = k(n) such that k ,-~ n/log n. 
Thus, uniformly over all symmetric graphs, 

Es(T) >~ �89 log n -- O(n log log n) [] 

For symmetric regular graphs all Ei(Ti) are equal to n. Hence, for all i r  
Ei(Tj) ~> n/2 and thus E,(T) >~ (n/2). H~ 1" 

For the upper bound we use the eigenstructure of the transition matrix 
P. A general upper bound for E(T) has been obtained by Aleliunas et aL (6) 
in the from E(T) <<. 2e(n - 1 ) where e is the number of edges in the graphs. 

The transition matrix of the nearest neighbor random walk is given by 
P = DA where A is the adjacency matrix and D is the diagonal matrix D = 
(D, = 1/vi). From the fact that P and the symmetric matrix Q = DreAD ~/2 
are similar it can be shown (see, for example, Mazo O3~) that the mean 
hitting times Ei(Tj) for i r  can be given by the following spectral 
representation: 

E~(T,)= ~ [ u~{--J) ur(i)ur(j)] I_ {2.1) 
r=2L=; ,7<,,7g,,1 

where (~, 1 ~< i ~< n) is the stationary distribution, u~ = (ur(i), 1 <.i<~ n) t is, 
for 1 ~< r ~< n, a complete set of orthonormal eigenvectors of Q, associated 
with the eigenvalues 2 .  

Combining the spectral representation with the symmetry E~(Tj)= 
Ej(Ti) for iCj ,  produces 

1 n ~IXr(i ) Ur(d !~2 1 (2.2) 
E ' (TJ)=2r~2L re, xj j 1--2r 

Further, the assumed symmetry is equivalent to 

~.. u2(i) 1 ~ u2(j) 1 (2.3) 

r=2 rC'i 1--2r r=2 7rj 1 - 2 r  
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Observe that the mean hitting times, starting from the stationary distribu- 
tion = are 

by using the spectral representation with ul ( j )=  x/--~J, 1 <~j <~ n. Hence the 
symmetry hypothesis is equivalent to E=(Ti)= E=(Tfl for all i, j. Denote by 
Cn this common value, 

C.--~, rc/E~(rj)=~, rtj ~ u2(j) i 
j j r = 2 7[j  i - -  /~r 

_~ ~ 
- -  r = 2 1 -- 2~ by the orthonormality of u~ 

From (2.2) and (2.3), 

E i (Tj )=Cn_ ~ u~(i)Ur(j) 1 
~=2 , / < . ~  1 ~r 

and by the Cauchy-Schwarz inequality, 

[u r ( i )  Ur( j ) [  1 . ~ Cn 

Thus, 

" t 
E;(Tfl ~< 2Cn = 2 r~ 1 - 2 r  

= 2  

which combined with (1.1) gives 

- - = 2  n - I  r ~ z l - - ~ ' r J  

( E(T) ~<2 n - l +  Hn-1 
r = 2  

Hence we have proved the following proposition. 

Propos i t ion  2. For a symmetric graph with n vertices, let 
1 = 21 > 22 ~> .." ~> A, >~ -1  be the eigenvalues of the transition matrix P. 
The covering time T, starting from any vertex, is bounded by 

n A r  + 
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Remark. If we assume in addition that the graph is regular we can 
obtain from the proof of Proposition 2 that 

1 1 
n - - ~ E i ( T j ) < ~ n  for i # j  

1 - 2~ 1 - 22 

and then, by (1.1), the covering time T starting from any vertex is bounded 
by 

1 I 
n - - . H , _  ~ E(T)-G< .H,, 1 - 2 , ,  l n 1 _ - ~  2 -1  

3. VERTEX-TRANSITIVE GRAPHS 

As an example of graphs to which the previous remark applies, let us 
consider the class of vertex-transitive graphs. A vertex-transitive graph 
G = (V, E) is a graph for which the group of automorphisms H(G) acts 
transitively on V, that is for each node i, we can find for each j e  V -  {i} 
some g~H(G) such that gi=j.  

Vertex-transitive graphs are k-valent, for some k, since the transition 
probabilities are H(G)-invariant: 

e(i, j )  = P(gi, gj) 

for all i , j~  V, g~H(G). For the hitting times Ti=min{n>~0, X , = i }  we 
observe the following: 

L e m m a  1. For any vertex-transitive graph G with n vertices, for any 
vertices i,j, and for ]ul ~< 1, we have 

1. E,(u~) = Ej(u% 

1 2. E~(ur') = 
I + (1 --  /,/) Ern=2 1 / ( |  - -  2rU ) 

where 1 = 21 > 22 >/ ... >/2, >~ -1  are the eigenvalues of the transition 
matrix P. 

Proof For this, consider any permutation h of the vertex set V with 
permutation matrix M = (h~ = 1 if i = hj, 0 otherwise), h ~ H(G) if and only 
if MA = AM where A is the adjacency matrix of G; then, for any integers 
n >i O, A" = M'A'M. 

Using the vertex-transitivity it follows that (A') , i=(A') j j ,  for all 
i, j E V, n >/0. In particular, since the transition matrix associated with the 
nearest neighbor random walks (Xn) on G is P =  (1/k)A, where k is the 
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common valency of the vertices, we have P;(X, = i )=  (1/k")(A")~ is inde- 
pendent of the vertex i. As P(i, j)= P(j, i) for all vertices i, j, it follows, by 
Chapman-Kolmogorov that 

P,(Xn=j)=Pj(X,,=i) forall i , j~V, n~O 

Conclude by using the well-known relation 

Ei(ur,) = Z.>o u'Pi(Xn = J )  
Z.~oU%(X.=j) 

(3.1) 

For the second part consider the spectral representation of the symmetric 
matrix P, from which we have, for lul < 1, 

Z umPi(Xm=j) = 1--2rU 
m>~0 r = l  

- -  Xr( i  ) x r ( j )  

where Xl ..... xn are orthogonal eigenvectors associated to the eigenvalues 
1=21>22~> ... ~>2n~ > - 1  of P. 

Hence, from (3.1) and the symmetry Ei(u~)=Ej(u ~') it follows 
immediately that 

Ei(u~)- 
1 + ( 1 - u ) n  ~ 1 

r~2  1 -- ~r~--'-U Xr(i) Xr(J) 

1 
l + ( 1 - u )  ~ l~--~rU 

r = 2  

and then 

1 
E~(u~)- [] 

1 + ( l - - u )  ~ 1 
r=2 1 - 2 r u  

Note that sharp conditions for the asymptotic exponentiality of the 
hitting times have been obtained recently by Aldous. (5) 

A connection with particular random walks on groups can be made by 
introducing the Cayley graphs. Let F be a abstract finite group with 
identity 1 and set of generators g2 with the properties O = s -1 and 1 r s 
The Cayley graph C(F, ~) of F is the graph with vertex set F and edge set 
{(x, y)[x-ly~(2}. 

The Cayley graph C(F, g2) is vertex-transitive and the nearest neighbor 
random walk on C can be viewed as the random walk on the group F, 
defined by the probability measure # on F, which support g2 and 
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P(x, y )=#(yx  -1) such that /1 is constant on the conjugacy classes: 
t~(xyx-X)=bt(y) for all x, yeF,  and # symmetric: #(x)=#(x -1) for all 
xEF. 

4. D I S T A N C E - R E G U L A R  G R A P H S  

In this section we consider graphs having the following regularity in 
their paths: given a graph G of diameter d, we assume that, for any vertices 
u, v at distance i, the number shj(u, v )=  # {w: d(u, w)=h, d(v, w ) = j }  for 
0~<h, j~<d, is independent of the choice of the vertices u, v. Denote 
shj(u, v) = shji. In particular the number of vertices at distance i of a given 
vertex is Si;o and hence the graph is regular. We define k /=  Silo. 

The purpose of this analysis is to obtain, in special cases, the limit 
distribution of the covering time T. Thus, in the two examples considered 
at the end of this section, we show that for all fixed x, 

p ( T - n l o g n  ) _ 
- -  < X  - + e  - e  ': a s  n - - ~ x 3  
/7 

where n is the number of vertices. Modulo a normalization it seems that a 
similar result can be obtain for other distance-regular graphs that are 
rapidly mixing (for more on rapidly mixing Markov chains see Aldous (1) 
and Diaconisl9)). 

A distance-regular graph G has the property (Ref. 8, p. 136) that the 
zero-one matrices Ao, A1,..., Ad where Ao = Ia, A1 : A adjacency matrix, 
Ar = [(Ar)/j = 1 if d(i, j) = r, 0 otherwise] form a basis for the algebra A(G) 
of polynomials in A. From this it follows that the transition matrix P of the 
nearest neighbor random walk (X,, /7/> 0) on a distance-regular graph G 
is such that 

1 1 a 
P " = - - . A  . . . .  ~ t ,s .As 

k" - k "  " s = O  

for some non-negative integers t .... and k = k~. 
In particular, for any vertices x, y at distance i, n >~ 0 

1 
P"(x, y )=-~ ' t . , i  

and for Ty=min{n>~O, X . = y }  

Ex(ury) Zn>~ountn, i 

~n>~O untn, O 

are both independent of the choice of the vertices x, y at distance i. 
Let Ex(Ty)=Mr for any vertices at distance r. Define Sl,r_l,r=Cr, 

S~ .... = a ,  and S~,r+~.r=b, where the parameters at, b,, c, have the 
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following meaning: for vertices x, y at distance r, dr, 1 <~r<<.d, is the 
number of vertices at distance r - 1  of y and adjacent to x; b~, 0 ~< r ~< 
d -  1, is the number of vertices at distance r + 1 of y and adjacent to x. 
Clearly a~ +b~ + c~ =k .  We can easily show that, for a distance-regular 
graph on N vertices: 

Lemma 2. For  1 ~< r ~< d, 

Mr ~ 
i=lki_lbi_ 1 ~ ky j=i 

is an increasing function of r with minimal value M1 = ~d= l kj = N -  1. 
Hence we have immediately, by using (1.1), the following proposition. 

Proposition 3. For distance-regular graphs with N vertices the mean 
covering time is bounded by 

min E~(T) >~ ( N -  1)HN ~/> ( N -  1) log N 
s 

Note that it is impossible to derive a general upper bound of the order 
of Nlog  N, since for the cycle graph, Es(T) = N ( N -  1)/2. 

Proof of Lemma 2. From the Markov property we have, for lu] < 1, 

Ex(u ry) = Gxy(u) = u ~ P(x, z) Ez(u T') 
z~V 

Ex(uTx) = 1 

for distinct nodes x, y, and arbitrary vertex set V. Then, if d(x, y) = r, 

U 
G~y(u) = Gr(u) = ~: ~ Ez(u Ty) 

z a d j a c e n t  t o  x 

d /./ 

= k  Z Sllral(bl) 
l = o  

since # {w: d(x, w)= l, d (y ,w)=l}=sl t~  and using the fact that the 
Pz-distribution of Ty depends on the distance between z and y only. 

By definition, the parameters slur are null if l ~ r, r -  1, r + 1, hence we 
have 

Go(u) = 1 

u {c~G~_l(u)+arG~(u)+b~G~+l(u)}, l < . r ~ d - 1  G,(u) =lc 

Id 
G d(U) = ~ { c aG j_ l(/d) -[- adG d(u) } 
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tt follows immediately, by differentiating with respect to u and letting u ~ 1 
that the quantities Mr ~ Ex(Ty)=G;(1)  (for nodes x, y at distance r) 
satisfy 

Mo = 0 

( M r - M  r 1 ) ~ = I + ( M ~ + I - M r )  , l<~r<~d-1 

C d 
(Md-- Ma-  1) ~ = 1 

The desired result follows by using the relation k,.c~ = k~_ ~ b~ 5, 1 <~ r <~ d. 
[] 

In order to derive for the generating functions Gr(u), 0 ~< r ~< d, a more 
useful relation, we define a process (Yn, n>~0) on {0, 1,..., d} by 

Y,, -=- j if and only if Xb ~ Fj, 0 <<. j <. d 

where, for a fixed vertex, Fo, F1,..., Fa are the set of nodes at distance 
0, 1,...,d. It is easy to verify that (Yn, n>~0) is a Markov chain on 
{0, 1,..., d} with transition probabilities 

fi(il i + 1) bi fi(i, i) a, 
k '  k '  

/~(i, i -  1) =-ci 
k 

with c o = b d = 0 .  Hence the transition matrix /~= (1/k)B t, where B is a 
tridiagonal matrix. 

We state in the following lemma some known facts about the matrix 
B (Biggs, (sl pp. 141~143). 

Lemma 3. Let G be a distance-regular graph with N vertices, valency 
k, and diameter d. Then 

(i) G has ( d +  1) distinct eigenvalues 2 o = k >  .-. >2d~> - k  which 
are the eigenvalues of B. 

(ii) Let, for 0~<r~<d, Ur=(Ur(i), O~i<<,d)', vr=(v~(i), O<<,i~d)tbe, 
respectively, the left and right eigenvectors of B associated to 2r. Then, 
there are unique standard [ur(0)= vr(0)= 1, 0 ~< r~< d ]  eigenvectors ur, vr 
for which the inner product 

N 
(u s ,vl)=O, i # l ,  and (U~,Vr)=m(2r), 0~<r~<d 

where m(2r) is the multiplicity of 2~ as eigenvalue of G. 

860/3/4-2 
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d 
B = ~ 2 r - -  

r = O  

and, since/3 = (1/k)B t, it follows that 

From the lemma, B has the spectral representation 

VrHtr 

(ld r, Vr) 

1 d 

But obviously 
Pn(0, 0) =/3n(x, x) for any vertex x 

i d /2~\" 

and, for two vertices x, y at distance i, 

1 
/%(x, y ) =  ~/i/3"(0, i) 

1 d 2 r n  2 

Hence, using the relation (3.1) we obtain the following representation for 
the hitting time generating functions: 

Proposition 4. 
lul<l, 

a,(u)= 

and by differentiation, 

Under the notation introduced above, for 1 ~<i~<d, 

d Ur(i ) 1 
l + ( 1 - u )  ~ m ( 2 , )  

r= ~ ~ 1-- Us 
d 1 

l + ( 1 - - u )  ~ m(2~) l_u2r /k  
r = l  

Mi'= 2 m('~r) 1 k, J 
r = l  

Since Bvr = 2rV~ we have 

(4.1) 

~r(O) = 1, ~r(1) = 'L 

bi lv,(i- 1)+aiVr(i)+Ci+lV~(i+ 1)=2rYe(i), l<.i<~d-1 
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From this three-term recurrence relation an interesting property can be 
derived. Indeed, it can be shown (see, for example, Bannai and Ito, (7) 
p. 197, Theorem 1.3) that 

d 

v,.( i ) v,.(j ) m(,~.r)=N'k,'6i+ 
r = 0  

and that the vr(i)'s are obtainable from a family of orthogonal polynomials. 
A rich subclass of the distance-regular graphs is formed by the 

distance-transitive graphs (or two-point homogeneous graphs) defined as 
follows: for all vertices u, v, x, y of a graph G, with d(u, v) = d(x, y),  there 
is some automorphism g of the group of automorphism H(G)  such that 
gu = x, gv = y. By taking u = v, x = y it follows that H(G)  acts transitively 
on the vertex set. Stanton (14) shows that (H(G), K) (where K =  {ge  H(G), 
gx  = x} is, for a fixed vertex x, the stabilizer subgroup) forms a Gelfand 
pair, so that in this case the vr(i)/ki's are just the spherical functions of the 
Gelfand pair. In many cases the Vr(i)'s have been explicitly determined. Let 
us consider two examples. 

Example  I: Hypercube 

The vertices consist of m-tuples (Xl,..., xm), 1 <~xi<<.s, s>>.2, with two 
vertices are joined if their Hamming distance (number of distinct coor- 
dinates) is one. The covering time for the hypercube has been studied by 
Aldous, (3) Matthews, (12) and others for the case s = 2 .  Matthews has 
proved that [T -2m(1  + 1/m) log2m]/2m(1  + l /m)  converges in law to 
e x p ( - e  x) as m tends to infinity. We will consider the cases when s--+ oo 
or m --+ oo. For this family of graphs N = s m, d = m, m(2i) = k~ = (s - 1) ( ; ) , i  " 
O<<.i<<.m, and a i = i ( s - 2 ) ;  l<~i<<.m, b ~ = ( m - i ) ( s - 1 ) ,  0~<i~<m-1,  
c~ = i, 1 <~ i <~ m. The ~ r ( i ) ' s  a r e  given by the Krawtchouk polynomials: 

j : o  j i - j  

and in particular, vr(1 ) = 2r = m(s - 1 ) - sr, 0 <~ r <~ d. 

Lemma 4. For the hypercube, we have, for s I> 2, 

Mm ~sm(1 q_L+ms 2ms-m~2) 

S m E 1 2m ] 
1-~ (m-- 1 ) ( s -  1) (m---1)s m 
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Proof 

But since 

it follows that 

The expression of M~ in Proposition 4 reduces to 

( 7 )  [ V r ( m ) l m ( s -  1) M i =  _ ( s -  1) r 1 - 
r = l  rs k m J 

vr,m, ( ' ) r  
k m  �84 . . . . .  

Mm_m(s-1______) ~ s ~_ 
S r = l  r 

~ S  m 1 +  s-7.(m_r)(m_r+l)  
r = l  

By considering the sum for r <~ m/2 and r > m/2, respectively, 

- + m  Mm<~S m 1-F (m-~)2 ~ l s ,  r>m/2 

<~sm( l+8"-~-+2ms-m/2 ) m s  byusings-l>~s/2 

Lower bound follows trivially by using Lemma 2. [] 

The following proposition can be derived directly from Aldous (Ref. 5, 
Proposition 8). However, we use an analytic approach for some additional 
terms needed further on. 

Proposition 5. For every t < 1, uniformly in i, as m ~ ~ ,  s >~ 3, or as 
s--* oo, m >~ 2, 1 

Gi(e t /U)  --* 1 - -  t 

To obtain this result, the existence of Gi(u), for all i, in a ball of radius 
greater than 1, must be shown. For this, sufficient conditions are given by 
Matthews, (la) namely, that 

1 21 
1. 

1 )~m-1 
2. > - -  

lul k (4.2) 
m(2i) 

3. l+(1-1ul) ~ l_lulL/k>O 
i = i  

4. - ] - ~  
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Proof of  Proposition 5. Let 0, 0' be constants  (possibly depending 
upon  s, m, N, t) such that  [0[, 10'1 ~< 1. 

Define 

~, m(2~) N - -  1 
Q =  1- -  ~ / k  and V (1 _ 21/k) 2 

r = l  

Then,  we have f rom (4.1) for lul ~ 1, 

1 -  ( 1 - u ) M i +  ( 1 - u ) Q +  ( l - u )  2 0 V  
a i (u )  = 1 + ( l _ u ) Q + ( l _ u ) 2 0 ,  V (4.3) 

In this case we have 

sm r =  1 S /I \ S /t Sr 

As 

1 1 

r /Em(1 -  l / s ) ]  t - 7  

~4 

using the momen t s  of the b inomial  (m, 1 - 1/s) gives 

' 
Q 14 - - + o  
s --~ = m(s - 1) m 2 ( s  - 

a s  m ----). (30 

uniformly in s >~ 3, and Q/s m = 1 + O(1/m(s - 1)) as s ~ oo uniformly in 
m ~> 2. No te  that  this is more  than  we need for now, but  the addit ional  
terms are needed further on. Fo r  - ~ < t < 0, the existence of Gi(e '/u) is 
known for  all i. Consider  0 < t < 1. Since ]2Jkl ~< 1 and e tIN ~ 1 as N ~  oo 
the condi t ions I, 2, and 4 of  (4.2) are clearly satisfied. F o r  the condi t ion 3, 
consider for N large 

" m ( , L )  1 + (1 - e  '/N) r=E 
_- e~7~ -2r/k 1 

{:o, 
- t  ! 

N - * o o  

a s  s --~ c o  

as m - - , o e ,  s~>3 
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which, for t < 1 and m ( s - 1 )  large enough, is positive. Thus, condition 3 
is satisfied. In (4.3) the common denominator is, for u = e  t/N, 
1 - t + O ( 1 / m ( s - 1 ) )  as s ~  or 1 - t - t / m ( s - 1 ) + O ( 1 / m 2 ( s - 1 ) )  as 
m ~ ,  s>~3. The numerator of Gl(e t/u) is, by the expansion (4.3), 
l + O ( 1 / m ( s - 1 ) )  as s - - * ~  or 1 - t / m ( s - 1 ) + O ( 1 / m 2 ( s - 1 ) )  as m ~ .  
Then for t < 1, N large 

G~(e eN) = 

Recall that all the 
Lemma 4, 

a s  s - - ,  

m ( s - 1 )  ~-0 m 2 ( s _ l )  

1 -- t - m(s -- 1-~) t- 0 m2 ( 1 ) 

a s  m --+ oo  

O terms are uniform in the other parameter. From 

m m m s  m 1 + O  a s  m --~ oo  o r  s ---~ oo  

hence the numerator of Gm(et/N), i s ,  for N large, 1 + O(1/ms) as m ~ ~ or 
S --', 0 0 .  

Thus, for t < 1, N large 

Gm(e t/N) =. 

1 + O  m ( s -  
a s  s ~  

, ( 1 )  
l - t -  m ( s - 1 )  ~-0 ~ s  

a s  m ----~ o(3 

Clearly, as t > 0, Gl(e t/N) <~ G2(e t/N) ~ . . .  ~ Gm(et/N), with the inequalities 
reversed for t ~< O. [] 

Matthews ~1~) obtained general bounds for the moment generating 
function of the covering time T =  T~I,...,N~ in the following form: 
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For  any starting point 1 

F(N) F(1/f + (t)) F(N) F(1/f-(t))  ~<El(etr ) ~ (4.4) 
F ( N -  1 + i / f -U))  r ( N -  1 + 1/f+(t)) 

where f+(t)=maxz<~i<.umaxl<.y<u.jeiEj(etr'), f (t) defined similarly 
with min instead of max. 

For  the hypercube case, note that for t > 0 ,  f+(t)=Gm(e') and 
f (t)=Gl(et), and for t<~O, f - ( t )=Gm(e') ,  f+(t)=Gl(e') .  Since 
Gi(e t/N) ~ 1 / ( 1 -  t) as N--* oo the bounds of (4.4) are tight (in the sense 
that RHS/LHS --. 1) whenever Gm(e 'IN) - Gl(e t/N) = o(1/log N). By the 
expansion (4.3) this forces (Mm-M1)/N=o(1/ logN),  that is, 
ms/log N ~ 0% or s --, oo. Hence, for the model s --, 0% a direct use of the 
Matthews's bounds (4.4) would produce an asymptotic distribution for the 
covering time. For  fixed s = 2, Matthews ~  the lower bound to 
get a limit law. Similar arguments not produced here could be used for all 
fixed s > 2. 

Proposition 6. For  the covering time T on the hypercube, for every 
t < 1, and for any starting point, we have 

E ( e  'IT/N l~ as s ~ o o  

That  is to say, ( T -  N log N)/N converges in distribution, as s ~ o% to the 
extreme value distribution e -e-x 

Proof Consider for 0 < t < 1, the bound 

E(e 'T) >/ r(U)'_rO/G,(e'/'4!) 
F ( N -  1 + 1/Gl(e'/~)) 

where, from the proof  of Proposition 5, 

G l ( e t / N )  = 1 + O(1/ms) for s large, t < 1 
1 - -  t + O(1/ms) 

On the other hand, 

r(N) 
= N t + O(1/ms)eO(1/N ) 

F ( N - 1  + 1/Gl(e'/U)) 

----- Nr 1 + o(1)] 

so the lower bound becomes, as s --* oo 

NtF (1 - t + O(1/ms)~ ~ +~)(1~ / [ i  +o(1)] \ 

a s  S---~ o0 
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Since the bounds of (4.4) are tight for s-~ 0% and since for t~<0 the 
bounds are reversed, the conclusion follows. 

Example 2: Binomial Coefficient Graphs 
The set V of vertices consists of the (~) subsets of size m of a set S of 

size n. Two vertices are joined if their intersection has cardinality m -  1. 
Without loss of generality one can assume, by symmetry, that m <<. n/2. 
Formally, we have vertex set V={S1cS,  [S~[=m} and edge set E =  
{($1, $2), d(S~, $2)=  1} where d(S~, Sz)=m-tS~ c~S2I is the minimal 
path distance between two nodes. The parameters of these graphs are, for 
O<<.i<~d=m, 

ai=i(n-2i), b i = ( m - i ) ( n - m - i ) ,  ci=i 2 

k i=(m~(n-m~,  m(2i)--- ( 7 ) -  ( i n  1) 
\ i l k  i / 

and Vr(i) are given by the Eberlein polynomials 

Vr(i)-= ~ ( - 1 ) i ( r l ( m - r ~ ( n - m - r )  
j=o k j / \  i -- j  / \  i-- j  

In particular, vr(1 ) = 2r = (m - r)(n - m -- r + 1 ) -- m, for 0 ~< r ~< m. Similar 
results to the previous example can be obtained by the same procedure, in 
particular 

Lemma 5. For the Binomial coefficient graph, we have 

M m < ~ N - l + ( m _ l ) ( n _ m _ l )  l + n _ m _  2 

[ ' 1 ~> ( N -  1) l + ( m _ l ) ( n _ m _ l )  

provided that m t> 2, n ~> 2m + 3. 

Proof Here it is simpler to proceed by using the formula 

ki_l~bi_ i = 1  l j = i  

Thus, 

m 2 N- -1  ks 
Mm<~ i=El ( m - l ~ ( n - m - l ~  + i=m ~ ( m - l ~ (  l n - m - 1 ,  j= -1 

\ i - l  } \  i - 1  t \ i - - l } \  i--1 

_-_ I + I I  
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The first term in I is N -  1, the second term is ( N -  1)/(m - 1)(n - m - 1). 
For the others note that t,~-1~ >. i-1J~" ("21) provided that i<<.m-2. Therefore, 
for n > m + 2 ,  

( 4 )  N - 1  1+  
( m - - 1 ) ( n - m - l )  n - m - 2  

I ~ < N - l q  

Finally, for n ~> 2m + 3, 

I I / ( N -  1) < 
1 1 

+ 
n - m -  1) 

m--1 

6 ( 1 )  
< < ' ( n - m - - 1 ) ( n - m - - 2 ) ( n - - m - - 3 )  l + m _ l  [] 

Proposition 7. For every t <  1, uniformly in 
lim sup(re~n) = c < 1/2, 

1 
Gi(et/N) ~ 1 -- t 

Proo f  (outline). Consider 

Q =  1-,~r/k = r - r - 1  r ( n + l - r )  r = l  r = l  =(:) .-m m,.-m, 
n - m + l  n 

Using 

we see that 

i, as N ~ o o  with 

+.~=I m - - r  ( m - r ) ( m - - r + l ) ( n - - m + r + l ) ( n - m + r )  

___& I + I I + I I I  

Ill ~< 
j=l  n - - m + l  ( n - m + j ) ( m - j )  2 

Considering the sum for 1 ~<j~< [-.x/m] and [w/m] < j < . m -  1, 
respectively, and replacing finite sums by infinite geometric sums, we get 

m -  n - 2 m + l + m a  1 - 2 c  J L i - - c  +~ 
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Hence,  by  us ing  the es t imates  Mm = ( N -  l ) [ 1  + O ( 1 / ( m ( n - m ) ) ) ]  a n d  
Q = N [ l + O ( 1 / ( n - m ) ) ] ,  the p r o o f  fol lows in  the same  way  as tha t  of  

P r o p o s i t i o n  5. []  

As in  the p rev ious  example ,  the  fo l lowing  c a n  be shown.  

Propos i t ion  8. F o r  m~>2,  m = o ( n / l o g n ) ,  the n o r m a l i z e d  cover ing  
t ime ( T - N  log N ) / N  converges  in  d i s t r i b u t i o n  to the ex t reme va lue  

d i s t r i b u t i o n  e -~-x. 
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