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Hoare’s selection algorithm for finding the &h-largest element in a set of n elements is 
shown to use C comparisons where 

(i) E(P) < A,n” for some constant A, > 0 and all p > 1; 

(ii) P(C/n ) u) < (i)“(‘+“(‘)’ asu-m. 

Exact values for the “A p” and “o( 1)” terms are given. 

1. INTRODUCTION 

Hoare [7], Aho et al. [ 1, pp. lOl-1021 and Horowitz and Sahni [9] all consider 
the following algorithm (with minor modifications) for finding the kth-smallest 
element in a set S of 12 elements (1 < k < n): 

procedure FIND (k, S) 
if 1 S I= 1 then relurn the single element in S 

else begin choose an element a randomly from S; 
let S, , S, and S, be the sequences of elements in S less than, 

equal to, and greater than a, respectively; 
if ] S, ) > k, then return FIND (k, S,) 
else ifI S I ] + I S, I > k then return a 

else return FIND (k - IS, I - 1 S, 1, S,) 
end. 

A nonrecursive version of this algorithm is of course easy to find. The work done 
here can be measured by the number of comparisons between elements (these occur 
only in the step in which S is split into S,, S, and S,). It is known that this 
algorithm requires f2(n’) comparisons in the worst case. The algorithm runs in 
average time O(n) (Aho et al. [ 11). In fact, Knuth [lo] has shown that the average 
number of comparisons is at most 

2((n+1)H,-(n+3-i)H,_i+,-(i+2)Hi+n+3) 
1 

0022-0000/84 $3.00 
Copyright 0 1984 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 



2 LUC DEVROYE 

where H, = Ci<j<“(l/?)* Thus, for k =‘n/2, we obtain the bound 
2(1 + ln(2))n + o(n) < 3.39n + o(n). For O(n) worst-case selection algorithms, see 
Blum et al. [2] or Schonhage et al. [ 111. 

In this paper we give probabilistic bounds for the upper tail of C, the number of 
comparisons used by FIND. The bounds are reasonably tight, but more importantly, 
the exponential nature of the bounds shows that deviations from linearity are 
extremely unlikely. We do not want to challenge the fact that the algorithm of Floyd 
and Rivest [5,6] is faster on the average than FIND (it was shown there that the 
expected number of comparisons is n + min(k, n - k) + O(n”*)). The analysis given 
here for FIND is ad hoc, and therefore not directly extendible to the Floyd-Rivest 
algorithm. 

Resdt 1. There exists a random variable T, independent of n and k, such that 

C<nT 

where < denotes “is stochastically smaller than,” i.e., 

P(C > u) < P(nT > u), all u. 

The random variable T satisfies E(TP) < co for all p > 1. 

Result 2. 

E(C) < 4n; 

E(CP) < A, np, all integer p > 1, 

where 

Ap=16 P! 
3 ln”-‘(3)’ 

Result 3. 

and 

P(C/n 2 u) < (1 + Au) e(i)‘, u > l/W>, 

where 
A = (16/3) In*($). 

2. ANALYSIS 

We can and will assume that all elements in S are distinct. We claim that C is 
stochastically smaller than the outcome of the following algorithm. S, k and n are as 
defined in the Introduction. 
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Z +- 0, r c n + 1, C t 0. (C will be the outcome of the algorithm.) 
while r > Z + 1 do 

begin generate N uniformly and at random in {I t I,..., r - 1 }; 
CcC+(r-Z-2); 
iflv < k, then (I, r) 6 (N, r) else (I, I) 4-- (I, N) 

end. 

Thus we can define C as the outcome of this algorithm, since we are only interested 
in upper bounds for C. In our proof, we will construct a probability space in the 
following manner. Let (Vi, V,), (U,, V2),... be a sequence of independent uniform 
[0, 11’ random vectors. We will use the notation (Zi, ri) for the values of (1, r) in the 
ith iteration. In particular, (I,, r,,) = (0, n + 1). Our construction is such that the 
distribution of (Zi, ri) is completely determined by (Uj, Vi), j < i. 

Let (Zi_r , I-_,) be given. Then (Zi, ri) is determined as follows: 

(lj__lp rj-l - 1 -I(rj-l -k)Uj,) 

(li 9 ri> = 
if ~j<Pj-~=(rj_~-k)/(rj_,-Zi-~-1) 

(an event that we shall call A,); 

(1*-l + 1 + (k - 1 - Ii-1) U*., ri-1) otherwise. 

Thus, on Ai, ri is uniformly distributed on {k,..., ri_, - 1 }, and on its complement, Zi 
is uniformly distributed on { Zi_ 1 + l,..., k - 1 }. Thus, on A i, 

ri-Zi-2=r,_l-Zi_,-3-(ri_I-k)Ui 
I I 

<ri_l-Zi_,-2-(ri_,-k)Ui 

= ri_~-Zi_~-2-Pi_~Ui(ri_,-Zj_,-1), 

and on Af, the complement of Ai, 

Combining this, and using I to denote the indicator function of an event, gives 

~j-1j-2~(~j-~-~j-~-2)(1-uj(Pj-~~~i+(1-Pj-~)~~f)) 

=(ri_,-Zj_l-2)Wi (definition of Wi). (1) 

Inequality (1) is the starting point for all further analysis. Clearly, by recursion, 

ri-Zi-2&(n- 1) fi Wj<tl fi Wj 
j=l j=l 

(2) 
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We will use two Lemmas. 

LEMMA 1. If U is a uniform [0, 1 ] random variable, then E((l - U/2)p) ( 
2/(p + l), all p > 1. 

Proof: E((l - U/2)‘) = l; (1 - ~42)~ du = (2/(p + l))(l - 2-‘~+“) < 2/(p + 1). 

LEMMA 2. Let W,, W, ,... be a sequence of independent identically distributed 
nonnegative random variables with pth moment E( WY) =,u < 1, and let X= 1 + 
z,zI m:=, Wi. For p> 1, 

E(XP) < l/( 1 - /I’~)~. (4) 

For p = 1, equality is achieved in (4). 

Proof. Whenever we have a random variable X that can be written as CEO Xi, 
then for all A E (0, l), 

x= f p(l-1) xi 
i=O A’(1 -n> 

so that by Jensen’s inequality, 

xp< 2 2(1-A) (Ai(lx;A) jp=(l-~)~-p~~oi”l-“xf. 
i=O 

If we replace Xi by 1 for i = 0 and by W, W, . aa Wi for i # 0, and if we note that 
E(Xf) = ,u’, then 

E(Xp)< F (p/~p-‘)i(l -,i)‘-P = (1 -A)‘-“l(l -/i/d’-‘), p < tip-‘. 
i=O 

The last expression is minimal for 1 =,u ‘lp. Resubstitution gives the bound 

(I _pl’/P)‘-P/(l _/p’P-‘UP)= (1 _/p-P* 

Proof of Result 1. It is clear that pi_-IIAi + (1 - pi_1) IA; > $zi, where Zi is 

Bernoulli with parameter j (note that Ai = [Vi < pi_,]). Thus, if Z,, Z,,... are 
independent Bernoulli (f) random variables, 

C-0 (~+,fYJ..)=nT (definition of 2) (5) 
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where WJ? = 1 - fZjUi. Thus, all WT’s are independent and identically distributed. 
Also, E(T) = 1 + Cz, I-I:=, E(WT) = ~~O(~)i = 8 < CO so that the right-hand side 
of (5) is indeed almost surely finite. By Lemma 1, 

Thus, by Lemma 2, for p > 1, 

E(TP)<I /( (; sj”pjp<aX l- - 

Remark 1. The stochastic majorization used in this proof is sloppy. It gives the 
crude estimate E(C) < 8n. With the more refined majorization 

pj__11,4i+ (l -Pi_i)lAf> +(z, + (l -zi) Vi) 

where Vi is uniform [0, 1 ] and independent of Zi, and with WT = 1 - +(Zj + 
(1 - Z,)Vj) Uj in (5), we obtain the slightly sharper result 

T< [g0 (+j’=+. 

Proof of Result 2. We take (3) as our starting point, and let Si be the u-algebra 
generated by (U, , V,) ,..., (Vi, Vi). B. is the u-algebra consisting of the empty set and 
its complement. By well-known properties of conditional expectations (see, e.g., Chow 
and Teicher [4]), 

and 

Since obviously 0 & Wi < 1, we have for p > 1, p integer, 
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where X is geometrically distributed: P(X= j) = a($y’, j > 0. We note that X is 
distributed as the integer part of X*/in($), where X* is exponentially distributed (i.e., 
has density e-’ on [0, 00)). Thus (6) is bounded from above by 

q- pqx *P-‘)/lnP-’ 
i 1 
f = Jj- p(p - l)!/lnP-’ (f) = +-p!,lnp-l (+) , 

The well-known result E(C) < 4n follows easily: 

F4 I + 2 fiE(IV& 5 ($)j=,. 
j=1 i=* j=O 

Proof of Result 3. We start from Result 2. Let t be a real number in (0, In($)), 
and let T be C/n. By Result 2, 

&+?= 5 -f&W’) < 1 +F ‘f lni!~o = 1 +F (1 ----&) +. (7) 
r-l 3 i=O ‘i 

Thus, by the Bernstein-Chernoff 
PI>, - 

bounding method (see Chernoff [3] or Hoeffding 

P(T> u) (E(e”) eetU 

Result 3 now follows by choosing t carefully. For the first inequality, we take a 
positive number c, and assume that u > c/in($), t = In(t) - c/u. The last expression is 
not greater than 

(1 + au/c) e’(i)” 

where a = 16 ln2(+)/3. Considered as a function of c, the latter expression is minimal 
when c2 + auc - au = 0, i.e., when c = (au/2)(dw - 1) - 1 as au + co. Thus 
the value c = 1 is best for large U. This leads to the upper bound 

(1 t au>e(~)‘, valid for u > l/in(!). 

For the second inequality of result 3, we apply the inequality 1 + u & eU to (8), and 
obtain the inequality 

P(T > u) Q exp(-tu t (16t/3)( 1 - t/In(!))-‘), 0 < t < in(i), (9) 

which has the form exp(-tu + at/(1 - bt)). Such an expression is minimal when 
t = (1 -@)(1/b). Reblacement of this value of t in (9) shows that 

P(T> u) G exp(-(fi - &)2/b) 

where a = 16/3 and b = l/in(!). The last inequality is valid for all u > a. This 
concludes the proof of Result 3. 
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