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Hoare’s selection algorithm for finding the kth-largest element in a set of » elements is
shown to use C comparisons where

(i) E(C")<A,n’ for some constant A, > 0 and all p3> 13
(i) P(C/nzu) < ()" as u— 0.

Exact values for the “4,” and “o(1)” terms are given.

1. INTRODUCTION

Hoare [7], Aho et al. [1, pp. 101-102] and Horowitz and Sahni [9] all consider
the following algorithm (with minor modifications) for finding the kth-smallest
element in a set S of n elements (1 <k < n):

procedure FIND (k, S)
if |.S| =1 then return the single element in S
else begin choose an element a randomly from S;
let S,, S, and S, be the sequences of elements in S less than,
equal to, and greater than a, respectively;
if |S,} > k, then return FIND (k, S))
elseif| S|} +|S,| > k then return a
else return FIND (k —|S,|—1S5,}, S;)

end.

A nonrecursive version of this algorithm is of course easy to find. The work done
here can be measured by the number of comparisons between elements (these occur
only in the step in which S is split into S,,S, and S;). It is known that this
algorithm requires £2(n*) comparisons in the worst case. The algorithm runs in
average time O(n) (Aho etal. [1]). In fact, Knuth [10] has shown that the average
number of comparisons is at most

2(n+DH,—(n+3—0DH,_; ., —({+2)H;,+n+3)
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where H,=2,.,(1//). Thus, for &k =n/2, we obtain the bound
2(1 + In(2))n + o(n) < 3.39n + o(n). For O(n) worst-case selection algorithms, see
Blum et al. [2] or Schonhage et al. [11].

In this paper we give probabilistic bounds for the upper tail of C, the number of
comparisons used by FIND. The bounds are reasonably tight, but more importantly,
the exponential nature of the bounds shows that deviations from linearity are
extremely unlikely. We do not want to challenge the fact that the algorithm of Floyd
and Rivest [5, 6] is faster on the average than FIND (it was shown there that the
expected number of comparisons is # + min(k, n — k) + O(n"?)). The analysis given
here for FIND is ad hoc, and therefore not directly extendible to the Floyd-Rivest
algorithm.

Result 1. There exists a random variable 7, independent of »n and k, such that
Cc<nT
where < denotes “is stochastically smaller than,” i.e.,
P(C>2u)< P(nT > u), all u.

The random variable T satisfies E(T”) < oo for all p > 1.

Result 2.
E(C) < 4n;
E(C") <A, n", all integer p > 1,
where
16 p!
P03 Iy
Result 3.
P(C/nzu)<(1+4u)e(3), u>1/In(%),
and
PC/n>u)< GV VI > 16/3,
where

A= (16/3) In(%).

2. ANALYSIS

We can and will assume that all elements in S are distinct. We claim that C is
stochastically smaller than the outcome of the following algorithm. S, k and » are as
defined in the Introduction.
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l«0,r—n+1, C«0. (C will be the outcome of the algorithm.)
whiler > 1+ 1do
begin generate N uniformly and at random in {/ + 1,..,r —1};
CCH+(r—1-2)
if N<k, then (I,r)< (N, r) else (I, r)« (I, N)
end.

Thus we can define C as the outcome of this algorithm, since we are only interested
in upper bounds for C. In our proof, we will construct a probability space in the
following manner. Let (U,, V,), (U,, ¥,).... be a sequence of independent uniform
[0, 1]* random vectors. We will use the notation (/;, r;) for the values of (J, 7) in the
ith iteration. In particular, (/,r)=(0,n+ 1). Our construction is such that the
distribution of (/;, r;) is completely determined by (U;, V), j < i.

Let (I,_,, r;_,) be given. Then (/;, r;) is determined as follows:

Uisisrio—1 _l(ri—l —k)U; )
if Vi<pioi=@i—k)/(ri_—li_,—1)
(lia ri) =
(an event that we shall call 4,);
G+ 1+ (k—1-L_)U,r,_) otherwise.
—

Thus, on 4,, r; is uniformly distributed on {k....,r;_, — 1}, and on its complement, /,
is uniformly distributed on {/,_, + 1,.., k — 1}. Thus, on 4,,
ri=li=2=r_,—L_=3-(r.,— KU,
)
Sriog— L —2—(, =R,

=r =L —=2—p  Ulrioy =i — 1),
and on A7, the complement of 4;,
ri—li—-2=r_,—l_—-3—-(k—=-1-1,_)U,

<rio =L —2—-k-1-1_)U,

=ri =L, =2-Q0—=p_)ULlri_ =L, = 1)
Combining this, and using I to denote the indicator function of an event, gives

ri—= =2y — L = 2)(A = Uy 14, + (1 - Pi) 1))
=(r_,—li_,—2)W, (definition of W)). (1)

Inequality (1) is the starting point for all further analysis. Clearly, by recursion,

ri—L-2<(m-D ][ wW,<n[] W, ()
=1 j=i
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and

c< (Hf w,). 3)

=1

W
=

We will use two Lemmas.
LEmMA 1. If U is a uniform [0,1] random variable, then E((1—U/2)") <
2/(p+1),all p>1.
Proof. E((1—U/2P)=[5(1—uf2y du=(2/(p+ 1)1 —2"%* ") <2/(p+ 1).
LEMMA 2. Let W,, W,,.. be a sequence of independent identically distributed

nonnegative random variables with pth moment E(W)=u <1, and let X=1+
220 W W;. For p> 1,

EX") < 1/(1—p'"y. 4)

For p=1, equality is achieved in (4).

Proof. Whenever we have a random variable X that can be written as ), X;,
then for all 1 € (0, 1),

X;

;1(1 ,1)——“1 )

so that by Jensen’s inequality,
Sy Xi ? -p N Ji1-P)
X< S A1 -2 ——) =(1—2)'-2 Y A-nxe,
<D (grrly) =0-0 Y
If we replace X; by 1 for i=0 and by W, W, .- W, for i # 0, and if we note that
E(X?) =4, then

E(Xp)< i (ﬂ/ﬂ.pvl)i(l __/1)1#) — (1 —l)l—p/(l _[u/llp—l)’ U <A'p—l'

The last expression is minimal for A = 4'/?. Resubstitution gives the bound
(1 _ﬂl/p)l—p/(l _Iulf(pfl)/p) — (1 _ﬂl/p)Ap_

Proof of Result 1. 1t is clear that p; I, + (1= p;_,) 1> 3Z;, where Z; is
Bernoulli with parameter § (note that 4,= [V, < p,_,]). Thus, if Z,,Z,,... are
independent Bernoulli (3) random variables,

i

e8]
c<n(1+3 [] W;“) —nT  (definition of T) 5)
i=1j=1
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where W} =1—3Z;U,. Thus, all W}’s are independent and identically distributed.
Also, ET)=1+ Y2, TTi., E(W}¥)=Y24(3)' =8 < o so that the right-hand side
of (5) is indeed almost surely finite. By Lemma 1,

1 U\’ 1 2 1 p+3
¥y — — (1 -1 1 —)———.
s = (e (1= ) ) e (i) =15

Thus, by Lemma 2, for p > 1,

1= (125)") <o

Remark 1. The stochastic majorization used in this proof is sloppy. It gives the
crude estimate E(C) < 8n. With the more refined majorization

Piody+ (M =p )L >3Z+ (1-2Z) V)

where V; is uniform [0, 1] and independent of Z;, and with W}=1-3(Z,+
(1—=2Z,)V;)U; in (5), we obtain the slightly sharper result

E(C) 13)"_ 16
=

p <Z—0(E

Proof of Result 2. We take (3) as our starting point, and let §; be the o-algebra
generated by (U, V)),..., (U;, V}). &, is the o-algebra consisting of the empty set and
its complement. By well-known properties of conditional expectations (see, e.g., Chow
and Teicher [4]),

EW & _)=1-3(pi\+(1—p_))<1—5=1
and

E(.j]W, E(ﬂE(Wwy, 1)) ()l i>1

H

Since obviously 0 < W, < 1, we have for p > 1, p integer,

e (10§ i)z A7

Lo i) €10,1,2 m=1i<jp
< oy E( 1w
Upserap) €10,1,2,...09 i<max{is....jp)
3 max(y,..., Jp)
< %)
Upaeenn Jp)€10,1,2,...39

<p i G+ 1y (%—)j= 2, i j"“%—(%)j=—136—pE(X"“) (6)
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where X is geometrically distributed: P(X = j)={(3), j>0. We note that X is
distributed as the integer part of X*/In($), where X* is exponentially distributed (i.e.,
has density e~ on [0, o0)). Thus (6) is bounded from above by

S PEE e () =S - Dy () =5 s (3.

The well-known result E(C) < 4n follows easily:
E(C 5 & 3\
<1+ S [TEm) <y (3) -
=1 =1 j=0

Proof of Result3. We start from Result 2. Let ¢ be a real number in (0, In(3)),
and let T be C/n. By Result 2,

~1

Ty _ l 6 % i __lﬂ __t___
E(e")= Z E(T T; ) = 1+ (1 ln(%)) .M

Thus, by the Bernstein—Chernoff bounding method (see Chernoff [3] or Hoeffding
181),

P(T>u)<E(ET)e™ ™

1

(l+1—36£(1—t/1n(3))_ )e~'u, 0<t<ln(%>. @)

Result 3 now follows by choosing ¢ carefully. For the first inequality, we take a
positive number ¢, and assume that u > ¢/In(%), ¢t = In(%) — ¢/u. The last expression is

not greater than
(1 + aujc) e°(3)"

where a = 16 In*(3)/3. Considered as a function of c, the latter expression is minimal
when ¢? + auc — au =0, i.e., when ¢ = (au/2)(\/1 + 4/au — 1)~ 1 as au— oo. Thus
the value ¢ =1 is best for large u. This leads to the upper bound

(1 +au)e3)*,  valid for u > 1/In(%).

For the second inequality of result 3, we apply the inequality 1 + u  e* to (8), and
obtain the inequality

P(T>u) < exp(—tu + (16¢/3)(1 — ¢t/In(3))""), 0<t<In@d), 9)

which has the form exp(—tu + at/(1 — bt)). Such an expression is minimal when
t = (1 —v/aju)(1/b). Replacement of this value of ¢ in (9) shows that

P(T > u) < exp(—(v/u —\/a)*/b)

where a=16/3 and b= 1/In(}). The last inequality is valid for all u>a. This
concludes the proof of Result 3.
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