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On the Convergence of Statistical Search
LUC P. DEVROYE

Abstract-The convergence of statistical (random) search for the result obtained until now was the convergence in prob-
minimization of an arbitrary multimodal functional Q(w) is dealt with ability to its minimal value for an accumulated average
by using the theorems of convergence of random processes of Braverman t"

a [18].perlorm nce .and Rozonoer. It IS shown that random search can be regarded as a ...
gradient algorithm in the Q-domain. Using this gradient to define the The mathematical difficultIes are overcome here by pro-

lJIinimum of the functional, the convergence to this minimum is discussed jecting the whole problem in the Q( w) domain. It is shown
at length. The theorems proved in this paper apply as well to discrete that there exists a unimodal convex function in this domain
as to continuous optimization problems and as such, the developed tech- with respect to which the random search algorithm can be
nique is.com.petitive with stochastic automata with a varia~le struct~~e. regarded as a gradient algorithm. The convergence is
The optlmallty of the scheme follows from the convergence In probability ..
of the average performance to the minimum. The freedom in the organ- proved by USIng the theorems of convergence of random

ization of the search within the boundaries outlined by the conditions of processes in machine learning [9]. Old results [6], [7],

convergence is emphasized. Finally, it is pointed out how various mixed [18], [19] are strengthened and generalized at the same
random search and hierarchical search systems fall into the domain of time. The class Qf functionals to be allowed includes
application of the theorems. "anomalous functionals" (an anomalous functional is

such that the value of Q(w) does not convey any information
INTRODUCTION .'

das to the value of any other pOInt w. =F w). In or er to
T HE PROBLEM of optimizing a multimodal and un- allow such general performance indices, a new definition

known functional Q(w) with respect to a set of m of the minimum has to be introduced. The stationary points

parameters w is solved through direct search techniques. of the convex function derived in this paper uniquely

Usually, random search [6], [7], [11], [12], [16], [18], define the minimal value of the performance index.

[19], [27] or stochastic automata with a variable structure The random search algorithm of Matyas [19] and Gurin

[1], [4], [8], [17] are used when the functional (performance [6] is generalized in order to obtain a gradual reduction

index) is extremely complicated; e.g., Q(w) has many dis- of the overall average performance. It is emphasized that

continuities, has many local minima, is very nonlinearly within the bounds dictated by the conditions of conver-

shaped, is not differentiable, etc. If more information about gence, the organization of the search depends only upon

the functional is available (usually in terms of differen- the imagination of the designer. This freedom can be used

tiability, smoothness, etc.), combinations of the afore- to develop convergent non heuristic hierarchical search

mentioned methods with local hill-climbing methods can systems, mixed random and nonrandom search systems,

be considered [4], [5], [15], [16], [23], [24]. Most of these search systems with subsequent linear search in special

local hill-climbing methods (for a recent survey, see [26]) directions (as in deterministic optimization), etc.

are derived from the Kiefer-Wolfowitz stochastic approx-

imation algorithm [14], [25] and stochastic gradient PROBLEM FoRMuLAnoN

algorithms [2], [3], [13], [21]. Let WE W £ Em, m-dimensional Euclidean space. Q(w)
While the convergence of most of the hill-climbing is the expected value of a random variable c/w conditioned

algorithms has been investigated at length in the literature, on w. The pdf of c/w is x(C/w):

there are only a few papers that deal with the convergence

of random search, mainly because of the mathemati.cal Q(w) ~ E{C/w} =
f Cx(C/w) dC. (1)

intractability of the algorithm and the difficulty of dealing

with multi modal functionals [6], [7], [18], [19]. Most of C will be referred to as a measurement of the performance

the research in the field of random search has been con- index Q(w). Q(w) is sometimes called a noisy surface or

cemed with the organizational aspect of t~e .search .[13], stochastic performance index. If x(C/w) = 15(C -Q(w»,

[15], [16], [19], [23], [24], and hence heuristIc techniques Q(w) is said to be deterministic. In analogy with the termi-

are legion. In comparison, this paper is a unified presenta- nology used in automata theory, x(C/w) defines a random

tion dealing with different modes of convergence (conver- environment. The environment is a P-model environment

gence with probability one, in probability, of the mean) for if CE {O,I} and an S-model environment if C E [0,1]. In

different quantities (the sequence of estimates of the general, the environment is called a Q-model environment.

minimum, the average performance, etc.). The strongest The presented procedure is iterative with iteration counter

j. The "state" of the system (minimization procedure) is

..., .denoted by X j E X. X is the state space. Essential in the
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D~VROYE: CO~RGENCE O~ STATImCAL SEARCH. ..,
nIque consists of a suItable rule for updatmg W j and X j m INrnAlIZATlON :
such a way that convergence is guaranteed. .1!1: = {XJj~O DETERMINE THE INITIAL STATE Xo ~

is called the state sequence. X j' which might contain
parameters to be learned or adapted during the search, is a
random element defined on some (usually growing) prob-
ability space. Functions of the state that map X into R1 " "

SEARCH

are thus random variables on this probability space.The procedure is defined as follows. INT

1) Xo (and thus wo) is given or selected in X. The initial G TO
distribution of Wo in W is denoted by gB(W),

2) Wj is applied to the environment; ABj ~ 1 iid (in-
dependent identically distributed) measurements 'Jw j are
observed (measured), totalled, and averaged. The average

is denoted by 'i"
3) A trial point w1+ 1 is generated. With probability at

least equal to IXj E [O,IJ, W1+1 is purely randomly generated
according to a given fixed pdf gB(W) concentrated on W.
With the complementary probability, w1+ 1 is the outcome
of some computing procedure or process which is not
necessarily a random vector-generating process; for instance,
any direct search procedure and any degree of human
intervention in the s~arch process are allowed. It is s~p- '11:T
posed that w1+ 1 has, m the latter case, a pdf g*(wJXj) which '-
..DETERMINE THE NEW STATE XJ+l
IS completely determmed by the knowledge of Xi" The pdf (BY UPDATING ESTIMATES OF OTHER
of w'!' conditioned on X. equals: PARAMETERS TO BE LEARNED,

J+1 J BY STORING INCOMING INFORMATION,

( J ) ( ) (1 ) *( J ) 2) BY COMPUTING NEW VALUES FOR THE
gwXj =lXjgBw + -lXjg wXj. ( SEARCHPARAMETERS,ETC,)

The number of auxiliary measurements needed in this stage Fig. 1. Flow chart of generalized random search algorithm.

is denoted by AGi"
4) The trial point w1 + 1 is applied to the environment;

ATj ~ 1 iid measurements 'JW1+1 are observed, totalled, hypercube, gB(W) could be the uniform pdf in this hyper-
and averaged. The average is denoted by '1+1. cube. If W is unbounded but at the same time there are

5) The new state X j+ 1 is computed. This includes the strong indications that the minimum is close to wo, then
adaptation of the basepoint by the decision rule: gB(W) might be centered at WO and have a Gaussian form

w'!' if.* < .-F.. with a fixed positiv~ definite covariance matrix. Thus gB(~)
w j + 1 = { J + 1 'hJ. 'J J (3) reflects the a priori knowledge about the problem and IS

w. ot erwlse .d d b .
J cons! ere to e given.

where F.j ~ 0 is some positive threshold. Remark 4: Jt is assumed that W1+1 E W, for all Xj E X.
6) Operations 2)-5) constitute one basic cycle or "iter- Remark 5: The nature of g*(wJ X j) and X j is of no major

ation" of the search process. importance for establishing the convergence of the algo-
A flow chart of a generalized random search algorithm rithm. Hence, to increase the efficiency of the procedure,

is shown in Fig. 1. techniques from direct deterministic optimization theory
Remark 1: {ABJ, {AGj}, {AT}}' {e}}, {lXj} are treated in the (linear search in a special direction, creeping random

following as number sequences. Notice however that search, partan techniques, etc. [29J), hierarchical search
adaptive parameter sequences can be allowed if there are systems, all kinds of "almost"-gradient stochastic min-
lower and upper adaptation boundaries that are number imization algorithms [2J, [3J, [12J, [21J, [25J, [26J and
sequences satisfying the conditions of convergence to be combined global search and stochastic approximation
established in this paper. methods [4J, [5J, [15J, [24J, [30J can be incorporated in

Remark 2: In thejth cycle, the number of measurements the search scheme. Notice that due to the option that IX}
equals AB' + AT' + AGJ" The properties of convergence, might tend to zero, g(wJX) might tend to g*(wJX) on

J Jhowever, are with respect to.i, while the cost of optimization which no restrictions are imposed. The purely random way
is often proportional to the number of performance index of generating trial points will only be needed in the begin-
evaluations. ning to scan the complete search domain.

Remark 3: gB(W) is the basic random law of generation Remark 6: Gurin's scheme [6] is obtained for ATj =

of test points and defines W. IfgB(w) is concentrated on a ABj = ).j, )'Gj = 0, ej = e > O.
finite set of points in Em, then W is a finite set, and the Remark 7: Constraints are easily dealt with in random
minimization problem is reduced to a strategy selection search [29J and cause such minor trouble that they are not
problem. If a minimum is to be found in an n-dimensional explicitly discussed here. The most popular ways of dealing
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with constraints are the rejection method (reject all the trial (Xj = 0 as PG(Xj)' The average measured performance I/I(X)
points that fall outside the permitted region W) and the is then defined by
variable-weight Lagrange multiplier method [31], [32],

0/'( ABj' qj + ATj' p(Xj) + AGj' PG(X)
(NOTATIONS AND DEFINIllONS 'I' X) ~ A

+ A + ' , 12)

Bj Tj AGj
The problem will now be translated into the q-domain,

Notice that every pdf in W induces a corresponding pdf The degree of concentration D(Xj",) on (- oo,qmin + ,,] is
in the q-domain; PB(q) defined by (4) will be called the defined by

D(Xj",) ~ ABj' (J)(qj,qmin + ,,) + AT}' P(qmin + "jX) + AGj' PG(qmin + "jX) (13)
ABj + ATj + AGj

basic search pdf and p(qjX) induced by g(wjX) will be where PG(qmln + "IX) denotes the probability that if one
referred to as the search pdf: of the AGj auxiliary measurements is picked at random, the

value of the performance index at that point is not greater
PB(q) ~ I c5(q -Q(W»gB(W) dw (4) than qmln + ". D(Xj",) denotes the probability that if one

W of the AB} + AT} + AGj measurements made at the jth
f cycle is picked at random, the corresponding expected

p(qjX) ~ c5(q -Q(w»g(wjX) dw, (5) value of the performance index at the point of measurement
W is less than or equal to qmin + ",

The corresponding cdf's (cumulative distribution functions) Of theoretical interest will be the integral
are PB(q) and P(qIX) for which: f qj]

q] PB(u) du (14)
PB(q) = I-oo PB(u)du = Iw (J)(Q(W),q)gB(W) dw -00

* to be studied later. Finally, introduce the bar operator a
= Prob {Q(Wj+J ~ qj(X} = 1} (6) with the following meaning: a = max {a,qmln}' Then,

f q] f before investigating the properties of convergence of the
P(qjX) = p(ujX) du = (J)(Q(w),q)g(wjX) dw cited state functions

q .will be definedW ' mID .
-00

= Prob {Q(W;+I) ~ qjX}} (7) A NEW DEFINITION OF THE MINIMUM

where (J)(a,b) ~ 1 for a ~ b, (J)(a,b) ~ 0 for a > b, An .Consider the positive goal function !(q) and assume that
important inequality independent of Xj is (8), which stems hmq oo q' PB(q) = 0:

from combining (2) with (6)-(7): I q] IX] l(q) ~ (q -u). PB(U) du dx

P(qjX» ~ (Xj' PB(q) p(qIX» ~ (X) 'PB(q). (8) -00 -00

T.h~s P(qIX) is the distribution function of Q(w;+ 1) con- = I f] I x] P (u) du dx. (15)

dltioned on Xj- -00 -00 B

State functions of some importance in classical opti-, ..., .
mization theory include the value of the performance index Thls goal function lS convex (the second derivative lS
at the basepoint (9) and the indicator of the event {Q(w) ~ ~B(q) ~ 0), nonnegative and continuous, Its gradient is
qmln + ,,}, where" > 0 is some constant and qmin is the given by
minimum of Q(w) which will be defined later in a rigorous f q] f q]
way: l'(q) = PB(u) du = (q -u). PB(U) du

-00 -co

q} ~ Q(w» (9) [ I q] PB(U) ](J)(qj,qmln + ,,) ~ ind {Q(w) ~ qmln + ,,}. (10) = PJq) , q --co U 'P;(q) du .(16)

In automata theory and in several applications it is not only Th d ' t . I 't ' t .f .th P ( ) 0, .e gra len lS a ways pOSI lve excep 1 el er B q =
Important that qJ' tends to qmln as] -4 00 but also that the

th II Q( ) I h n has pdf.or e mean over a w ~ q equa s q w e w
.average measured performance tends to this value, There- ()

fore, define the mean of the search pdf as gBTWh ' "
I I ( " ) f Q( ) .th respecttoe minima va ue mlDlmum 0 w Wl

I gB(W) is qmln: qmln = inf {q e R I !'(q) > a}. Trivially,
p(X) ~ q' p(qjX» dq = E{Q(w;+JjXj} (11) qmin satisfies:

and the mean over all the expected values of the auxiliary fqmlR] P (u) du = 0, (17)
measurements made in the W;+1 generating process if -00 B
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To each" > 0, there exists a number b(,,) > 0 such that (22)-:>« 21)fqm'D + II] ",,/

-00 PB(u) du ? b(,,) > o. (18) Cv r

The minimum is such that the set {w E W: Q(w) < qmin} Bv- ~ Av Ev
has a zero measure with respect to UB(W). This follows /
directly from definition (17) and property (4). It can also Dv
be shown that the given definition is in accordance with Fig, 2. Relations between properties of convergence of different state
most of the definitions encountered in the literature for functions for y = 1,2.

continuous or piecewise continuous functions.
Notice that it is not necessarily true that PB(qmin) = O. I d -..

One can easily imagine a staircase function Q(w) with a need, ifi(X» ~ qmax; q} ~ qmax and Integral (14) IS never
f . h .' th greater than (q - q . )set 0 pOInts aVIng a nonzero measure WI respect to Max mIn.

UB(W) and for which Q(w) = qmin. Clearly, PB(qmin) > O. 5) (21) Ef) (22) Ef) Ay -+ Ey, y = 1,2,3:

It is not hard to see that .1: AB} .q} + (AT) + AG» .qmax -
qmin ~ ",(X» ~ -+ qp

qmin = inf {q E R I PB(q) > O} (19) AT} + AG} + AB}

and therefore, to each" > 0, there exists a number 8(,,) > 0 for j -+ 00

such that by using definition (12), (21), and (22). The rest of the
PB(qmin + ,,) ? 8(,,) > O. (20) proof is trivial.

6) (22) Ej;) By -+ Cy, y = 1,2,3: The proof is as under 5)
CONVERGENCE OF THE STATE FUNCTIONS if it is noted that

Assign the following letters to denote the convergence A ..ro(q ' q . + n ) + 0 . (A + A .)" 1 > D(X ) > "B} UJ\'1}"1minl 'II -.v \"'T} -."'Gj)
of the corresponding state function: -p" -, + ' ,AB} AT} + AG}

A convergence of q} to qmin ( ) l". -+ ro ..+ lor -+ 00.B convergence of ro(qj,qmin +,,) to 1, for every" > 0 q),qmln " , ]

C convergence of D(Xj"') to 1, for every" > 0 7) Ay +-+ By, y = 1,2. Indeed, take y = 1 for instance.
D convergence of J~oo PB(u) du to 0 Then from Ay:
E convergence of ifi(X» to qmin. I ' P b { - < }1m ro max qj -qmin + "

A second index added to it concerns the mode of }-+oo j~}
convergence: = lim Prob {min ro(qj,qmin + ,,) = 1} = 1

}-+oo i;?}
1 convergence with probability one , , , ...
2 convergence in probability which IS exactly the d~~mtIon of Bl, SInce thIs holds for
3 convergence in the mean. every" > 0 by supposItion.

8) Ay +-+ Dy, y = 1,2. Indeed, note that
Finally, introduce the conditions: f qi] f "4i] I Q(w) I ~ qmax < 00, for all WE W (21) -00 PB(u) du = -00 PB(u) du

lim AG} + AT} = O. (22) is a continuous function of qj -qmin only vanishing for
}-+oo AB} + AG} + AT} q} -qmin = o. The same applies for q} -qmin and thus,

applying lemma 2 of [22], the convergence either withThen the folloWIng relatIons exIst between the properties b b' l ' . b b' l ' f f b th df f th . d . bl pro a 1 Ity one or In pro a 1 Ity 0 one 0 0 ran om
0 convergence 0 e gIven ran om varIa es. .., .

1) Yl Y2 (Y A B C D E) .. h varIables to zero ImplIes the con\'ergence In the same
-+ , ="" SInce convergence wit ,

b b.l.t . I .' b b.lit mode of the other random varIable to zero.
pro a 11 y one Imp Ies convergence In pro a 1 y. ..

2) Y3 Y2 (Y A B C D E) .' th The relations between the propertIes of convergence of-+ , ="" SInce convergence In e . fti Ii .l" 12 h ', Ii . b b.l.t the di erent state unctIons lor y = " are s own In
mean Imp es convergence In pro a 11 y. F. 2

3) Y2 -+ Y3, (Y = B,C): 1 ? D(Xp") ? O. Then Ig. " h '" th h fE{D(X}",)} ? (1 -,,'). Prob {D(Xp")' ? 1 -,,'} with USIng t ese propertIes It IS seen at t e convergence 0

,,' > o. Since D(X}",) -+ 1 in probability, E{D(X}",)} -+ 1 - f qi]
also. Convergence in the mean follows since one is the upper q}, PB(u) du
limit of D(X }",). The proof for ro(q},qmin + ,,) is similar. -00

4) (21) Ej;) Y2 -+ Y3, Y = A,D,E: The proof is similar if or ro(qj,qmin + ,,), for all " > 0, is crucial. Therefore, we
it is noted that all the random variables converge to their will focus our attention on the convergence of the latter
lower limit and are deterministically bounded from above. state functions.
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THEOREMS OF CONVERGENCE OF STATISTICAL SEARCH Mter introducing the step function:

0 The decision process (3) ca~ mathematically ~ formulated 1:,.( I, if U ~ qj
In terms of the random vanable f.(Wj,wJ+J given Xi: tfJ(qj'U) = 0, ifu> qj (28)

( 1, ifwj+l = WJ+l (27) can be rewritten as

f.(w. w* ) 1:,. (and thus qj+ 1 = Q(wJ+ J = u) -
J' j+l = 0, ifwj+l = Wj E{qj+l -qminjXj}

(and thus qj+l = q}). (23) - I +oo --
0 ~ (qj -qmin) -tfJ(qpu) 0 p(ujXj) 0 (q) -u) du

NotIce that -00

E{f.(w},wJ+J} = frob {Wj+l = WJ+ljW},WJ+l'X}} + I+OO (ij) -u) 0 E{tfJ(qj'U) -f.*(qj,u)}

does depend upon ABj,AT} and 8j" Thus, given X}: -00

f 0 p(ujX p duo (29)

I W. with robabilit 1 -E w. w* 0J P Y w {~( J' )} The thIrd term on the nght sIde In (29) can be consIdered

W j+ I = .g(w* jX P dw* as positive noise and disappears only if ~*(qj'u) = tfJ(q},u),

w*withprobabilityE{~(wpw*)} for all q} and u, which is only the 'case for deterministic
0 g(w*jXpo (24) performance indices Q(w) if8} = 00 Furthermore,

The pdfj(wjXp ofwj+l conditioned on Xjis given by I +oo.l. ( ) 0 ( jX) o ( -- )d'I' qj'U P u ) qj -u u

E{~(wj'w)} 0 g(wjXp + (1 -f E{~(wj'w*)} -00

I qmln]
W = (ij) -ii)°p(uIXpdu

0 g(w*jXj) dW*) .c5(w -wpo -00 qJ]

+ f (ijj -u)op(ujXj)du
Define now the random variable f.*(q},u) e {O,l} such that (qmln,

inf E{f.(w,w*)}, = (ij) -qmID). P(qminjXp
{we W: Q(w) = Q(Wj) =qJl -

{w*eW:Q(w*)=Q(Wj+I*)=u} f qj]

E
{~*( .U) } = ifq} ~ u + (q) -U)op(uIXpdu

qJ' sup E{~(w,w*)}, (qmln,

{weW:Q(w)=Q(Wj)=qj} f qj] {w*eW:Q(w*)=Q(Wj+I*}=U} 0 =
(q-- q . ) oP (q . IX ) + P(uIX. ) du ( 30)If qj < Uo (25) } miD mID j j

(qmln,

Clearly, hi h 0 0 I. (8) ' I thw c ,USing Inequa Ity IS not ess an

E{f.*(q},u)} ~ frob {Wj+l = WJ+ljW},WJ+l,q} ~ U,Xj} [ f qj]

]E
{J:* (q .U )} < frob { w. = w~ I w. w* q .< u X. } aj 0 (ijj -qmin) 0 PB(qmin) + PB(u) du (31)

..J' -J+l J+l J' }+1' J 'J 0 -00

Thus since

with probability smaller than Iqmln] PB(u) du = 00

1 -f E{f.*(qpu)} .p(ujXp du, -00

Of Furthermore,
I u ~ qj

ij} with probability greater than for q} ~ u: ijj -u ~ q} -u and E {tfJ(qj'U) -f.*(qj'U)} ~ 0

--1 -f E{f.*(q},u)} .p(ujXp du, forqj < u: ijj -u ~ q} -u and E{tfJ(qj,u) -~*(q},u)} ~ 00

qj+l -ifu> q} Together, if the second term in (29) is replaced by (31) and

with probability greater than if in the third term (ij) -u) is replaced by (q) -u), the

E{f.*(qj,u)} op(ujXp, following stronger inequality is obtained:

if u ~ q} { } -0
( ) ( )-0

h b b o l ' all h E U(Xj+JjX} ~ U(Xj) a} V X} + Z X}

u wIt proalItysm ertan
.E{~*(q},u)} op(ujXp, U(Xp = ijj -qmin

if u > q 0 (26) - I qp
} V(Xp = (q) -qmin) 0 PB(qmiJ + PB(u) du

Thus -00

f +oo I +oo {ij}+1 -qminjXj} ~ (ijj -qmin) --00 E{f.*(qj,u)} Z(Xp = -00 (qj -u) 0 E{tfJ(qj'u) -~*(q},u)}

.(ij) -u) 0 p(ulX p duo (27) 0 p(ujX j) duo (32)
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The functions U, V, and Z are all nonnegative, and hence, Remark 1.1: The conditions are satisfied by taking
the inequality (32) is of the type studied by Braverman and ABj = AT j = 1, B j = 0 for deterministic environments. ~
Rozonoer [9]. Note that both U(X j) and V (X J are con- Since Q(w J = qj is exactly known from previous measure-
tinuous functions ofqj -qmin and only vanish for q) = qmin' ments, it should not be measured any more at time j, and
Thus, if U -+ 0, V -+ 0 and vice versa. Then, if E{ U(Xo)} eventually ABj = 0 is allowable, in which case the algorithm
and E{V(Xo)} exist, of Matyas is obtained [19].

0 ~ -~ Z(X ) (33) Remark 1.2: For all the random environments ABj and
(X) ~ I;.. (Xj -00 , £... ;JU?x j < 00 AT) should diverge for j -+ 00 (see also [6], [18]), and

th h Id the rate of increase depends upon the rate of decrease of
ere 0 s: d th di .. d th f thB} an upon e con tions impose upon e nature 0 e

( ) with probability one 0 () with probability one 0 environment (H7), (HIO). What makes Theorem 1 interest-
U X j ~ V X j ., ing is the option of making B} equal 0, which is completely

as j -+ 00. (34) new for this type of random search algorithm.
.Remark 1.3: The divergence of (X) (H3) insures that the

Theorem 1, prov~~ 10 the Appendix, reduces to a mere whole search domain will be "searched." However, (H3)

check of th~ condition on Z(XJ. does not prevent <X j from decreasing to 0 as j -+ 00, which
Define Jlk. makes this scheme more flexible than the schemes of

Jlk ~ sup {E{" -Q(w)lk/w}} Gurin [6], Cockrell [16], etc.
we W An alternative way of dealing with the convergence of

{f k } {qj} is through the indicator function (10) w(qj,qmin + ,,),
=w~Uf I' -Q(w)1 .n('/w) d', k > o. (35) for all " > O. In a way similar to the derivation of (27) it

.can be shown:
Theorem 1: Let there be satisfied (HI)-(H5)

E{lqol} < 00 (HI) E{I -W(qj+1,qmin + ,,)/Xj}

Iqminl < 00 (H2) ~ 1 -w(qj,qmln + ,,) -fE{~*(qj'U)}' (W(U,qmin +,,)

IX)

<Xj e [0,1] }:: <Xj = 00 (H3) -w(qj,qmin + ,,». p(u/XJ du
j=1 Iqmtn + ,,]

.> 0 ~ < 00
(H4) = (1 -w(qj,qmin + ,,) -

BJ -£... Bj -IX)
}=1

A > 1 A > 1 A"" 0 (H5) .E{~*(q},u)/qj > qmin + ,,} .(1 -ro(qj,qmin + ,,)
B} -T} -G} ~

and let the environment be either deterministic: .p(u/X J du + fIX) E{~*(qj,u)/qj ~ qmin + ,,}
Jl2 = 0 (H6) (qmln+"

.w(qj,qmin + ,,), p(u/XJ du (37)
or Q-model random with (H7) and (H8) or (H9) holding:

and from (8), reducing the integration interval in the second
Jlk < 00, k ~ 2,k even (H7) term gives

IX) 1 IX) 1
}~ < 00 ~ < 00 (H8) E{1 -w(q}+1,qmin + ,,)/X}

.£... _k-1. Akl2 £... 8",-1. Akl2J= I 8] B} }= 1} Tj ~ (1 -w(qj,qmin + ,,»
IX) IX)

}:: A-1/2 < 00 }:: A-1/2 < 00 (H9) ( I qmln+,,12]j=1 Bj j=1 Tj .1 -<Xj. -IX) E{~*(q},u)/q} > qmin + ,,}

or S-model random or P-model random:

'e [0,1] (S-model) 'e {0,1} (P-model) (HIO) .PB(U) dU) + fIX) E{~*(qj,u)/qj ~ qmin + ,,}
(qmln+"

IX)

}:: (B). ABJ-1 .e-ABJ"J2/8 < 00 .p(u/X J duo (38)
j=1
IX) Introducing
}:: (B)' ATJ-I .e-ATJ"J2/8 < 00 (Hi1) ,*

j=1 Zlj ~ mf E{~ (qj,O)/q) > qmln + ,,}
d b h b ' 8e(-IX).qmln+,,12]

then the state sequence :!J: generate y tea ove gIven
procedure is such that Z2} ~ sup E{~*(q},O)/q} ~ qmin + ,,} (39)

8e(qmln+",IX)
with probability one we have

qj ..qmin asj -+ 00. (36)
E{(I -w(q.+I,qmin + ,,»/X}} ~ (1 -w(qj,qmin + ,,»The proof of convergence based upon the theorems of J

Braverman and Rozonoer is given in the Appendix. .(1 -<X). ZI} .PB(qmin + ,,/2» + Z2}. (40)
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cedures [4], [5], [16], [28], hierarchical search, etc., are ABj ~ 1. This suggests that there must exist a statistical
covered by the theorems of convergence. There is so much search scheme in which, instead of 'j' there is another ~
freedom in organizing the search that it is hard to speak estimate of Q(Wj) which is based upon the mean of some
of an "algorithm" but rather of a "framework" for statis- or all of the previous measurements made at the basepoint
tical search procedures. while ABj might be zero. Such a scheme with an "aging"

The scheme does not make use of such properties as basepoint is under investigation now.
"continuity" of Q(w) and is of an "overall" nature. Hence, 6) The core of the scheme is the averaging process to
its rate of convergence can be expected to be inferior when obtain estimates of Q(w). For some environments however
compared with local hill-climbing algorithms if Q(w) is such mean estimates are out of the question (for instance,
smooth and unimodal. Due to the addition of the "mode because the variance of the noise is infinite) or inefficient
selector" (Fig. 1) to the random generator, any other when compared with other statistics. If the noise satisfies
procedure can be incorporated in the program, which is some regularity conditions, quantile estimators (median,
important for large computerized optimization routines. etc.) can be used instead. In heavy noise situations, the use
Any amount of on-line adaptation or learning can be of thresholds to keep' within certain bounded limits is to
allowed, and any method from deterministic or stochastic be studied. For general purpose computer programs, even
optimization theory can be inserted, all through the trial "robust" estimation should be given attention.
point generating process (such as the Kiefer-Wolfowitz 7) The experimental comparison of this group of tech-
gradient, stochastic gradient, creeping random search, the niques is an enormous task and until now, the author only
Hooke and Jeeves' method, partan, and even human inter- performed serious experiments on anomalous environments
vention). An additional feature is that due to the random (W unspecified), finite set Q-model environments, and
scanning of W, it is very easy to extract much information deterministic environments.
concerning Q(w) or 7t«(/w). 8) The stochastic analog of creeping random search [7],

The following points should receive more attention. [11], [19], [29] for the local hill-climbing of continuous
1) The decision stage in the algorithm is based upon a Q(w) has been studied by Poznyak [12], but the conditions

comparison of two independent sequences. A lot of measure- imposed on the noise are not realistic. It seems possible to
ments can be saved by allowing for sequential decision derive inequalities in the W domain using our approach
(stopping) rules. Although the authors obtained good from which the convergence can be proved-under the
experimental results with such rules (see also [16]) it is most general conditions-using the theorems of Braverman
difficult to derive practical inequalities of the kind used in and Rozonoer [9], [22].
the theorems of convergence.

2) The scheme is too general and should be efficiently ApPENDIX

adapted for use in specific environments (deterministic or In the proofs, some inequalities for sums of independent
stochastic; anomalous or smooth; finite set W or Euclidean random variables will be needed. Consider that 'j is the
spaces; unimodal or mu1timoda1; P, S or Q-model; etc.). average over AJ iid random variables with pdf 7t(0 and
Particularly, the scheme is competitive with SA VS for use mean .ul' It is desired to derive a lower bound for
in finite set environments. This comparison deserves more Frob {!'J -.ull ~ e}, e > 0, Three environments are
attention, both theoretically and experimentally. considered,

3) The search parameters are number sequences which is 1) Q-model environment.. If all the moments .uk up to k ~ 2
as big a disadvantage as it is for stochastic approximation, (k even) exist, then the Markov inequality reads:
for instance, because the scheme deals with "global"
search. Intuitively, it is felt that "optimal" number se- Frob {I'J -.ull ~ e} ~ 1 -~~.:J!:.!!:- (AI)
quences, if they exist, will strongly depend upon the form Ajk/2 .ek
of PB(q) for anomalous Q(w). Because almost all the basic h' 1 d d' k Al 'f
pdf's appearing in real problems are continuous in q (even w ,ere Lk IS a constant on y e:pen mg upon. so, 1 .u2
if Q(w) is not continuous in W!), it is possible to make exIsts:

some hypotheses about PB(q) and to derive these theoret- Ll '.ul* .Jj";:;
ically important "optimal" number sequences. Frob {I'j -.ull ~ e} ~ 1 -;'.' e ~ 1 -T-:-; (A2)

4) A completely new way of proving the convergence of J j )

random search is presented here. By extending the state where
space and finding other Lyapunov-type functions of the
state, more sophisticated adaptation algorithms can be .ul* ~ E{I' -.ull} = J I( -.ull '7t(O d(
treated, Algorithms with many "basepoints" seem inter-
esti~g.in :iew o~ their application in multimod~l f~nct~on in view of.ul * ~ .J~ and Ll = 1.
optlmlzatlon with several parallel local hill-chmbmg 2) P-model environment «( E {O,I}) and 3) S-model
processes, environment «( E [0,1]): Hoeffding's inequality for sums of

5) The determmlstlc random optimIzatIon scheme of iid bounded random variables reads:
Matyas [19] is not deduceable as a special case of the
presented scheme due to the presence of the condition Frob {I'J -.ull > e} ~ 2e-2).j£1 (A3)
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If ( E [A,B], IAI < 00, IBI < 00, (A4) holds: Secondly, for P and S-model environments, using

Prob {I(j -.tlll > 8} ~ 2e-2.l.J(e/(B-A»1 (A4) (A3)-(A4):

Z. = sup (e -q ) .2(e-ABJ' (eJ+9-qj}lj2Proof of Theorem] J 9 )

-ATJ'(eJ+9-qj}lj2
) ( A10 )Z(X) defined in (32) is maximal forp(uJX) = l5(u -e), + e .

where e is specially selected to maximize Z(X). Thus Consider the first term in (AIO) with a = .J~, b = a8}

Z. = sup Z(X.) and x = e -q} > O. Since xe-(ax+b)l has a maximal value
J XJEX J for ax + b = -IJ2ax ofxe-lj4alxl and since the positive

= sup (q) -e). E{cf>(qpe) -~*(q},e)}. (A5) root Xo of (axf + b(ax) -I = 0 is Xo = (bJa).
9 (.jl + 2Jb2 -1) ~ (lfab), we have by the monotonicity

Consider three cases: of e-lj4alxl that the first term is always smaller than
1) e > q} (ab)-le","b2/4. Maximizing the second term separately gives

2) q} ~ e > q} -8} -P Z} = 4(AB}8)-Ie-ABJe;/8 + 4(AT}8)-le-ATJe;/8. (All)
3) q} -8. '- P ~ e

J Case 2: q} ~ e > q} -8} -p; cf>(qj,e) = I. No sharper

where p is a freely chosen positive quantity (which may bound can be found for E{~*(qj,e)} than E{~*(q},e)} ~ O.
depend uponj). For all the environments, we have

I Case 1: e > qj: cf>(q},e) = O. Z -( e) -2 (A12)
la) Deterministicenvironment:.tl2 = 0, and thus } -s~p q} --8}

~*(q},e) = cf>(q},e) = Z(X) = O. because q} -e < 8} + p in the given interval and p = 8}.
.Case 3: e ~ q} -8} -p, P = 8j as in Case 2. Further-

lb) Random environment: There holds more, by definition, cf>(q},e) = I:

E{~*(q},e)} ~ Prob {() < q} -~_.i~-=~} E{~*(q},e)} ~ Prob {I(} -qJi ~ 9J.--=~_i~}

+ Prob {()* > e + ~_i+=.!!.l} .Prob {,()* -el ~ ~--=~_.i~}. (AI3)

~ Prob { I'} -qJi ~ 8} + e -q} } 3a) Deterministic environment: Clearly, Z(X}) = O.
2 3b) Q-model random environment: Replacing the prob-

{, * 8j + e -q . } abilities in (AI3) by the bounds given in (AI) and (A2),
+ Prob I'} -el ~ -J .~ "IJ (A6) there holds:

..E{~*( e)} > (1 -LkJlk )where ,} and '}* are averages over AB} and AT} lId random q}, - (q. -e + 8")k
variables with pdf n('Jw) and n('Jw;+I) and respective "J ~. -J .ATjk/2

means Q(w) = q} and Q(w;+J = e. By definition of

E{~*(q},e)} and the inequalities (AI)-(A4), (A6) can be ( L sharpened: first, for Q-model environments with .tlk existing .1 - ( e k.tlk)k ) . (k ~ 2), (AI) and (A2) hold. Thus q} -v + 8; .I.
B .k/22 J

Z} = sup (e -q) .
( Lke' .tlk

) k. (Aii}k/2 + AiJf2). Disregarding the product term and substituting the last

9 8. + -q"-J .-"J expression in (AS) yields
2

(A7) Z = sup (q) -e)Lk.tlk . ( I. -kj2 + I. -k/2 ) ( A 14

)} 9 ( -e + 8. )k T) B}Since .tl2 exIsts, (A 7) als~olds for k = I, In whIch case .tll q} ~ v , "}

has to be replaced by .j .tl2' Expression (A 7) is maximal for 2

which is maximal on the boundary of the interval, i.e., for
q} + ~, for k = 2,4,6,8,. ..qj -0 = 28} since p = 8}. Thus

)k -10 = L ( 2k+l)00, for k = 1. (A8) Z = -!!!:!:. -.
(A-~/2 + A-~/2) (AI5 )} 1;k;-1 3k TJ BJ

Clearly, substituting 6 in (A 7) by its value computed in (A8), J

one obtains 3c) S,P-model environments: Using (A3), by a similar
procedure as under 3b):

Z Lk ..tlk ( ' -k/2 , -kj2 ) (A9)} = (k)k ( 8. )k-l' AB) + AT} .Zj = sup (q) -e)2(e-(qJ-9+ej}2.ABJ/2
-.-L- 9
2 k -1 + e-(qJ-9+ej}2.ATJ/2) (AI6)
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and (A16) is never greater than (A17): 2) Q-model random environments: Combining (AI) an~'

Z - 4 -1 . ( ' -1. -£j).Bj2/8 (A2) with (A20) gives a bound for Z2 j :
j -Bj ABj e

+ ATj-1 .e-£j).Tj2/8). (A17) Z2j = ~. (Ajjjk/2 + A:;:jk/2). (A22)

Together, safe upper limits Zj are obtained by summing (Bj/2)

the expressions in each interval. For S,P-model environ- Combining (AI) and (A2) with (A19) gives a bound for Zlj:

ments, (AI !).is.identi~al to (All) and can be dropped. Thus, ( L. ) ( )for determInIstic enVIronments: Z Ij = 1 --!-.!!! .(A:;:P + A;P). W B., ~
(,,/8)k j 4

Zj = 2e.
J 1- ( ") (A -1 (,,/8f )for Q-model random environments: ~ ~W e j' 4 .W T j , (3Lk .J.lk)2/k

Zj = Bk (h + ~) + 2ej .W ( ABj-l, ~~
/ k) (A23)j BJ J Tj , (3Lk .J.lk)

Bk = Lk. J.lk' max
{ (k -l)k-l. (~) -k; 2k+13-k } and this lower bound tends in the limit to 1/3, since Bj -+ 0,

2 ABj -+ 00, and ATj -+ 00. Using (A22) and (A23), there is

, (AI8) no problem in deducing the conditions of convergence

and for S,P-model random environments: stated in Theorem) from (41) or (42).
--1 -1 -£j).Bj2/8 3) S,P-model random environments: Combining (A3) and

Zj -8ej .(ABj .e (A4) with (A20) gives a bound for Z2j:

+ A -1. e-'j).Tj2/8 ) + 2BTj j" Z2j = 2(e-'j2.).Bj/2 + e-'j2.).Tj/2). (A24)

Equation (A18) together with (33) leads to the conditions formulated in Theorem 1. Combmmg (A3) and (A4) wIth (AI9) gIves a bound for Zlj:

Proof of Theorem 2 Zlj?; (I -2e-.,2.).Bj/16 -2e-.,2').Tj/16).w (Bj'~)

Notice that
{ ~ lw (ej, ~) .W(AT j-l ,(,,2/16 In 6»

E ~*(qj,(J)lqj > qmln + ", (J ~ qmin + ~} 4

2 .w(ABj-l,(,,2/16 In 6» (A25)

?; frob {I'j -qjl ~ ~32..=3} and this lower bound tends in the limit to 1/3, since ej -+ 0,
2 ABj -+ 00, and ATj -+ 00. Using (A24) and (A25), there is

. { * -(,,/2) -Bj } again no prob~em in deducing the conditions of con-
frob I'j (J! ~ 2 vergence stated m Theorem 2 from (41) or (42).

As is shown in the text, the convergence, for all " > 0,

~ frob { I'j -qJi ~ ~ } ~f W(qj,qmin ~ ,,) to I is linked with the convergence of

8 qj to qmin. ThIs completes the proof.

.frob {"j* -(JI ~ ~} .W (ej' ~) (AI9) Proof of (48)
8 4 Equation (47) and E{f(Xj)} -+/0 imply that

E{~*(qj,(J)lqj ~ qmln + ", (J > qmin + I1} j
E{JAj} = Lj-l .~ AI. E{/(XJ} -+ fo

~ frob { I'j -qjl > ~ } + frob
{ I'j* -(J\ > ~ } ;=1

2 2 where

(A20) Lj = t AI
since (J -+ qmin + " is the worst case for all the environ- i= 1

ments (see (Al)-(A3». Expressions (AI9) and (A20) are by Toeplitz's lemma (see [10, p. 238]).

useful in combination with (39), where Zlj and Z2j are
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