Probabilistic Search as a Strategy Selection Procedure
LUC P. DEVROYE

Abstract-——An alternative solution to the problem of the selection of
the best strategy in a random environment is presented by using a prob-
abilistic search procedure. The asymptotic optimality of the technique is
proved, and a brief comparison with stochastic automata with variable
structures is made. A specific organization of the optimal search procedure
is developed based on continued learning of some statistics of the random
environment, and it is shown to be fast-converging, powerful in high noise
random environments, and insensitive to search parameter selection.

I. INTRODUCTION

The problem of the selection of the best strategy in a random
environment has been extensively dealt with by using stochastic
automata with variable structures (SAVS) [1}-[12]. The SAVS
approach, efficient in P-model environments [2); [5], [7], [8],
[10], [12] has recently been used also for S-model [3], [9], [11]
and general environments [6]. The inconvenience with SAVS
is that although the selection probabilities in the automata
converge with probability one to zero or one [8], [12], [13],
they do not always converge to the desired value. Therefore, the
concept of ¢-optimality had to be introduced [8], [12] which is
weaker than convergence in probability. Many experiments have
shown that the SAVS looses its attractiveness when the number
of strategies M is very large and the noise on the output (“‘res-
ponse™) of the random environment is large. In SAVS, all the
information concerning past measurements is stored in a set of
probabilities, and valuable data are wasted. One can expect
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that by enlarging the memory and processing more data as they
come in, an acceleration of the rate of convergence can be
obtained.

The probabilistic search procedure presented here does not
have these disadvantages. After proving the optimality of our
procedure, both the convergence as it is defined for other random
search procedures [14}-[16] and the convergences of state
functions of interest in automata theory [1]-[4] are discussed.
It is emphasized that the algorithm can easily cope with high
noise and large strategy number situations. There is a great deal
of freedom left to the designer within the boundaries dictated
by the conditions of convergence. This freedom can be used to
obtain fast-converging schemes.

1t is indicated how the algorithm can be modified to operate
in nonstationary environments. This modified procedure will be
proved to be ¢-optimal with respect to a certain function of the
search parameters.

Later on, the organizational aspect of the search is briefly
treated, and a specific design of the scheme is experimentally
tested on the test problem of Shapiro and Narendra [6]. The rate
of convergence for this scheme is considerably higher than for
the SAVS, although further comparisons between the two tech-
niques seem necessary.

II. THE PROBABILISTIC SEARCH PROCEDURE

The environment is characterized as follows. Consider
the finite set of strategies Z = {z,,- - -,z)y} and the set of prob-
ability measures u; with corresponding distribution function
F(), where Fi(x) = P{{ < x|z} is the probability of an
environment’s response { less than or equal to x, given that
strategy z, was applied to the environment. Define

Q) = EC |z} = f x dF(x) W
and assume, for simplicity, that
—® < @o* = 0(z)) < Qz2) < Q(z3) = -+ = Qzpy)

Q(z;) - Q(z) = D. (9

It is desired to find the strategy with minimal Q(z,) while, at the
same time, the average measured performance should converge
in a certain fashion to Q(z,). The proposed procedure is iterative
with iteration counter j. The state of the system (search procedure)
is denoted by X and the state space by X. This state X; com-
pletely determines the set of selection probabilities n(X)) =
{ny(X}), - -, mu(X))}, where

= QM‘ < +0,

"t(X.i) = &;Po; + a- aj)Pu(Xj), i=1---M (3)

where py = {Po1,-* *»Pom} is @ set of fixed probabilities:

M
2 Por =1
i=1

and {«;};,0 i a sequence of numbers from [0,1], p,(X)) is a
vector from [0,1] with components p, (X)), i = 1,-- ',M,/that
have a unit sum for all X;: :

12 py; >0, for all {

4)

M

lzl Pu(XJ) = L (5)
Thus, both p, and p;(X)) are probability distributions on Z, and
as a consequence, n(X;) also has all the properties of a prob-
ability distribution on Z. Notice here that the nature of p,(X;)
is arbitrary and does not play any role in establishing the con-
vergence of the procedure. It will later be shown that p,(X)) is
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important when it comes to accelerating the rate of convergence
and making the scheme insensitive to search parameter selection.

The state X ; contains all the information concerning the history
of the search up to the jth iteration that will be needed later on
in the search process. We require, however, that X; contain w;
(basepoint or best estimate of the optimal strategy up to the jth
iteration) as a component, where, obviously, w, € Z,

The following procedure is a variant of the well-known
random search algorithm [14]-[16].

1) X, is given to start the search process. At the jth iteration,
we know X and thus w;.

2) w; is applied Ag; = 1 times to the environment, and A5,
ii.d. (independent identically distributed) measurements
are observed and averaged to yield an estimate {; of Q(w,).

3) w},, € zis generated randomly accordmg to the distribution
n(X;) on Z.

4) wj,y is applied Ar; = 1 times to the environment, and Ay,
i.i.d. requirements { are observed and averaged to yicld an
estimate {J, ; of Q(w}, ).

5) X, is updated through some rule T, :

Xj+1 = TJ+1(X_;,W;+ 1,CJ,C;+1,' )
and we require only that w; be updated as follows:

io gk
if{j < — ¢
otherwise,

*
Wit1s

Wi = {wj
s

(6)
where {g;};. ¢ is a nonnegative number sequence.

First note that X, may be chosen arbitrarily since the convergence

\ of the scheme does not rely on initial conditions. The next section
will be devoted to the study of the asymptotical behavior of some
functions of X, (which are, of course, random variables). Of
particular interest are

Q; A O(wy) )
V; A Ind {Q; < Q(z;)}
1, w, = z
= Ind {w; = z,} {0, otjherwilse (8)
M
R, & !Zc n,(X)0(z) 6]
s, & 2@ + ARy (10)
D, & AV + Arym(X) (11)

Q,, the value of the performance index at the basepoint w;, and
V,, the indicator function of the event {w; = z,}, are of interest
in classical optimization where the way of obtaining estimates
of the minimum is less important. State functions (9)-(11)
correspond to random variables studied in automata theory.
R, is the expected value of Q(w;’, 1), S, is the mean of the average
measured performance, and D, is the relative frequency of
selection of the best strategy z; in Ag; + Ar; “trials.”

In analogy with the definition of expediency in automata
theory [1], [2], [5], [10], we say that the search procedure is
expedient if

llm ES_,

J=0

M

Z PoiQ(z) (12)
where lim stands for lim sup. In the absence of any a priori
information concerning the environment, it is reasonable to let
Poi = (I/M)s i= 11""M-
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The optimization scheme is said to be optimal if

lim ED; = 1 (13)
J—0
or, equivalently, since D, € [0,1], if
D; - 1in probability as j -» 0. (14)

ITI. THEOREM OF CONVERGENCE

Environments are usually classified by the range of their
responses. If { € {0,1}, then the environment is called a P-model
environment. It is S-model if { € [0,1]. We would like to classify
the environments as follows. An environment is of the L,, type
(where 1 < r < ), if

(J' I - (z,)l"dF.(C)) ¥

s?pless sup |[{ — Q(z)]

M, < 0, r< o
l-x

Mgy < 0, r=

@15)

where the ess sup is with respect to F,({). Obviously, if an
environment is of the L,, type then it is of the L,, type for ali
1 < 5 < r. P- and S-model environments are special cases of
L, type environments. If all the { — Q(z,) are Gaussian, the
environment is of the L,, type for all 1 < r < oo but is not of
the L, type. Because Gaussian environments play such an
important role, we call them G-type environments and define

e, [16 - 0o ar@ = Mo

The main result is the following.

Theorem 1: Let (1) and (2) hold, {«;},, o be a number sequence
from [0,1], {;};>¢ be a number sequence from [0,00], {A5;};20
and {Ar;};»0 be integer sequences from {1,2,---}, and let the
state sequence X~ = {X;};,, be generated through procedure
1)-5) with n(X,) determined by (3)-(5). Further, let

0
Y = (16)
ji=1
and
lim ¢; = 0. a1an
joo
Then, i) if the environment is of the L,, type (1 < r < o0),
o a0
Y <o Y i< oo (18)
J<B, i=1
= ¥V, - 1 with probability one as j — oo, a}d
lim —— =0 lim =0 - (19)
Jow ajj.xj' . Jsoo atjlr_,'

= VV, — 1 in probability as j -+ o0. ii) If the environment is of the
L, type or G type,

lBJ A J

lim = o lim 1L = oo (20)
J+o log j j»o log j
= ¥, - 1 with probability one as j -» o, and
lim .ﬁfT =0 lim 2T - o @1
FET log 11 Js log 2
] a4y

= V; - 1 in probability as j - o0,
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Proof: The proof of Theorem 1 is based upon the theorems
for the convergence of random processes proved by Braverman
and Rozonoer [17]. The theorems we will use can be formulated
as follows. If X is a sequence of random vectors on some prob-
ability space, if U(X) is a requence of nonnegative random
variables, and if {a;};.0 and {b,},. o are number sequences from
[0,00) then if EU(X,) exists and

E{U(XJ+I)IXJ} S U(Xj)(l - aj) + bj,
and if

forallj =0 (22)

lim b 0,

o0
Y ay= and
Jj=1 Jmo ay

then U(X;) - 0 in probability as j -» co. If

[ a0
J;l a; =0 and j§=:1 by < o,

then U(X;) - 0 with probability one as j - oo. Suppose that
g = 0. We have,

M
EWVi | X332 V; 'Zl P{w;py = wy = z, | Wil = 2

w; = z; (X))

+ (1 - ¥) min
i=2,.- M

zlwy = zh/‘
WJ‘+1 = z}m(Xp) (23)

However, for all X, n(X;) = a;po, and

*
« P{wyyy = Wiy =

*
P{iwjy = w; = 21 | Wiy = 2, W, = 21}

=z P {K;u - 0(z)| < g Wiy = Zl}
D
P {lc, - 0G| < 2| w = zl} (24)
Pi{wsyy = W;+1 =z;|w; = z, W;+1 =z}
> P {Ic, - 0@l s 2w = z.}
. D| .
-P {ICJH - Q)] = 7 Wiy = 21} (25)

by virtue of (2), (6), and ¢; = 0.
Next, there exists a positive function g(-) such that, for all J,

P {lc, - 0@l = 2w = z.} <o) (26
and
P {lc,‘ﬂ ~ o) = ’2—’ Why = zl} < gUz) @D

where, if the environment is of the L,, type (1 < r < o), by
Markov’s inequality [18] and Garsia’s inequality for the expected
value of the 2rth moment of the sum of i.i.d. random variables

[21]:

o) = 2@, My

r! er.u"
2

Also, for G-type environments, using Chernoff’s bound [20] for
Gaussian random variables:

w=>=1 (28)

, u integer,

g(u) = 2e7"PID2Ma - yinteger, u = 1. (29)
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If the environment is of the L, type, we have by Hoeffding’s
inequality [19]:

gw) = 2- e~ ¥ -(D/Z)’/(ZMm)l, u>1.

u integer, (30)

Let y; & g(Ag) + g(Ar;) and combine (22)~(27) to obtain
E{(1 = Vi) | X} < (0 = V(A = aypo,(1 + 9) + 7y
<A - VA — a;poy) + ¥ 31
so that, by py; > 0, we need to ask that

3]

Y o = .
Jj=1
Furthermore, if y;/a; - 0, then ¥; - 1 in probability as j - co.
If
a0
Y 7 < o,
i=1
then ¥; - 1 with probability one as j - . With the proper
substitution-of y; (see (28)~(30)), conditions (18)(21) are derived.
If
limg =0
FEX ]
then g; < D/2, for all j large enough. Clearly, (31) still holds for
all such J if in the definition of y,, D is replaced by D/2. This
completes the proof.

Remark 1: 1f a; = a > 0 for all j, conditions (19) and (21)
are very weak. In particular, for all L,-type environments, (19)
implies that Az; and Ay, should diverge at any rate, however low.
The condition that an environment is of the L, type is, in practice,
always fulfilled because most types of noise on responses from
real systems have bounded variance.

For L,- or G-type environments, if the rate of increase of 45
and Ar, is faster than logarithmic, ¥; converges to 1 with prob-
ability one (by (20)), even if «; - O asj —» o0.

Remark 2: It is easy to see that convergence in probability to
0,* and convergence of the mean to Q,* are equivalent for Q,,
R;, and S, all of which take values in [Q@o*,@x*]. Convergence
in probability and of the mean to 1 are equivalent for the random
variables ¥; and D;, both of which take values in [0,1]. Also,
¥, - 1 in probability (with probability one) = Q, - Qo* in
probability (with probability one) since Q; < Qo*:V; +
QM‘ -1 - Vj)-

Finally, ¥; - 1 in probability (with probability one) and

lim-—L”——=0

(32)
jvo dgy + Ary

together imply that D; - 1 and S; - Qo* in probability (with
probability one) since

Djz.___l.BL_.Vj
)'BJ+1TJ
and
ABJ )'BJ
S, < OtV —2 4+ o1 - —2— V).

Remark 3: The reader may wonder why one does notlet¢; = 0
for all j. Experience with random search algorithms has led

" several authors [14], [15] to believe that a nonzero ¢; keeps the

algorithm from changing the basepoint too frequently and too
carelessly. Only when 15, and Ay; are large enough so that {;
and {J,, are good estimates of Q(w,) and Q(w},,) can we let ¢,
be small without having to fear a wrong decision in (6).
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IV. EPSILON-OPTIMALITY

In nonstationary environments, the same procedure with
constant parameters a; = o, &; = & Ag; = igand Ar; = Arisof
definite interest. Without pretending that this constant parameter
procedure will be powerful in nonstationary environments, we
will just show that the so-obtained algorithm is e-optimal in
stationary environments.

We will say that the search procedure is ¢-optimal if, for all
n > 0, we can choose the search parameters (here: a, ¢, Ag, Ap)
in such a way that

limED; 21— 1, e-optimality for D, (33)

or

lim EV; = g-optimality for ¥ 34)

where lim stands for lim inf;_, .. It has been proven by Sawaragi
and Baba [12] that the Lg_; (linear reward-inaction) SAVS is
e-optimal (for a definition, see [8], [12]) for =,(X;). However,
in order to account for the Ag and A measurements made at each
iteration, we needed this broader definition.

Theorem 2: If (1) and (2) hold, a € [0,1], e = 0, Ay = |,
ig = 1, and if the state sequence X is generated through pro-
cedure 1)-5) with n(X,) determined by (3)-(5) and if the environ-
ment is at least of the L, type, then the presented search procedure
is e-optimal both for D; and V.

Proof: Using (31) and (28) with r = 1 and M,?> = M and
letting ¢ = O:

1_’,’

E{( = Vo) | X)) < (1 = V) — apoy) + ~A5.

(D/2)?
.(i + 1),

4Mg
(D/Y*

Taking expectations at both sides gives

ca

' 11
E{l =V} < (0 —a-poy) EQ1 =V} + Cl—+ —}.
"B )'T
Recursive computation yields

E{l = V;1} < E{1 - Vo3 — *po1)’

1 1
- {1 - + Cl— + —
( aPo1 (ln 11))

+ ¢ (l + l) (a-a- a-pm)“l).
aPoy \‘“B T

Because E{l — V,} = 0and (1 — apg,)’ —» Oasj -+ o,

m E{Q1 = Vj41) s_C_(l +L).
J=o &Po1 \1p Ar

The right side can be made smaller thah n by taking Az and Ay
large enough. From definition (11) and m,(X, ) = 0:

Ap

E{1 - D;} < L SR
¢ 7 As + A Ag+ Ar

EQ - V)

so that

lim E{1 — D;} <

J=>

ir_,_C .(_1_+L)
Ag + Ar  @-po1 \p a-r
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which can be made smaller than n by choosing A5 and Ay large
enough and i;/(dp + A7) small enough.

V. ORGANIZATION OF THE SEARCH

It is still an open problem whether optimal number sequences
can be found for the search parameters or not (as in stochastic
approximation algorithms). Besides this, there is the organiza-
tional aspect of the search parameter selection, which usually
involves heuristics based upon the experience of the designer.
Some a priori information can always help in selecting suitable
sequences {4g;}, {ir;}, {a;} and {g;}. Notice also that it is
possible to adapt the search parameters within boundaries that
are number sequences satisfying the conditions of Theorem 1.

Furthermore, there is the still undiscussed distribution p;(X))
(3)«5) which is very important because n(X)) is very nearly
equal to p,(X,) for large j if @; - 0 as j - oo. The following
distribution is proposed: a record is kept of all the observations
made in the past with each strategy. For z;, let v; ; denote the
number of measurements observed up to iteration j after z; was
applied to the environment. Let 4, ; be the mean over these v, ;
measurements and let 7, ; be the quadratic mean of these measure-
ments. 4, t; and v; are M-dimensional vectors grouping 4,
7., and v, ; for i = 1,--+,M. The state X, now contains quite
a lot of information about the random environment and the
history of the search because X; = {wu;7,v,," - }. Luckily, we
know that uj, 7;, and v, can be recursively updated as new
measurements come in so that the observed environment
responses need not be stored.

Let
202 = EQ |z} = f ¢ dF©
so that
f € = Q) dFAD) = 5*@) — 0¥z,
Since
£y m o
P2

v,y = © with probability one, for alt i =1,---,M. Con-
sequently, g, ; will approximate Q(z;) and 7, ; will approximate
s%(z,) if the environment is at least of the L, type (so that
s3(z) < oo, foralli = 1,---,M).

Suppose that Q(z;) and s%(z;) were known and that one would
take v, , i.i.d. measurements with z, and denote the average by
{,. Using Chebyshev’s inequality:

s%(z)) — Q*(z)
Vig* Q(z) — Qo"‘)2 '

The right side of (35) is not known but can be estimated using the
data available in X;. The estimate is denoted by 8, ;:

P{{; < Qo*} = (35)

2
Tig ~ Ky
. 2 b
Vi,i® w,; - ":m deg)

B, A

if uyy > min gy

0, otherwise. (36)

B, jis largerif a) v, ; is smaller (z, is not very frequently used up
to the jth iteration), b) y, ; is smaller relative to the g; ; i T #E L
(z, is a promising strategy with high probability that the corres-
ponding Q(z,) is small), ¢) 7,; — &, 2 is larger (which would
indicate that s?(z,) is large and that more sampling with z; is
needed to obtain a low variance on the estimate x,, ; of Q(z)).
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This shows that §, ; is, in fact, proportional to the need of selecting
strategy z,. Define p,(X) by

Y 3" L
Xy (v __r - .o
Pu(X) (}' + l/ﬁ,_,)/[vgx (}' + l/ﬁl'.l)]’ et
37

where y > 0 is to be choscu by the designer. It was mentioned
that 4, ; - O(z)) and 1, ; - 5%(z)) at least in probability so that
Bi.; = o and B ; - 0for i = 2 in probability. Therefore,

1, i=1
0, i=2

in probability as j -+ 0. The exact result is thé following theorem.
Theorem 3: Let (1) and (2) hold, {a,};, o be a number sequence
from [0,1] and {A;,};. ¢ be an integer sequence from [1,00), and
let #(X;) be determined by (3)~(5) and p,(X, ) be determined by
(35)(37). Let the environment be at least of the L, type, let

M

PuX)) —~ {

,Z, - Apy = o0, (38)
and let there exist a B < o0 such that
i Oy 111;2
k=1 39)

sup 5 S B. < 0.
J E
( ak‘ln)
k=1

Let the state sequence )" be determined either by procedure
1)-5) (in which case we need to ask that {Ag;}j20 is an integer
sequence from [1,e0) and {g;};.0 is a nonnegative number
sequence) or by step 4) alone (in which case one needs not store
w;, and the algorithm consists of updating p,(X;) through
(35)-(37)). Then

I
-

1, in probability as j -+ oo, i

X)) —»
Pu(X) 0, in probability as j - oo, i

v
N

The proof is given in the Appendix.

Corollary: If, in addition to the requirements of the theorem,
lim; ., @; = 0, then 7;(X;) = 1 in probability as j + c and
R; - Q4" in probability as j - co.

Remark 1: There are no restrictions on Ag; and ¢ if procedure
4) is followed. One can thus as well let Ar; be constant, for in-
stance 1, for all j, in which case the procedure looks very much
like an automaton where one observation is made per iteration.

Remark 2: Condition (39) is, for instance, fulfilled if B < o
is such that '

sup Ay

k<) < B

o - Ak
k=1

sup
J

and does not allow the sequence {Ar;} to be too oscillatory with
high ““peaks,” thus increasing the variances of the v, ; too rapidly
relative to the increase in Ev; ;.

VI. EXPERIMENTS

The presented algorithm with given choice of p,(X,) (35)«(37)
is used in the test problem of Shapiro and Narendra [6] where
M =10 and {Q(z)),--:,0(z10)} = {—5.6,—5.5,-53,—5.3,
—-51,-5.1,-5.1,-5.0,—4.9,—49}). Thus D = 0.1, and if
po = {0.1,---,0.1}, '

M
‘;l Poi Q(Z‘) = —5.18.

Estimate of BD’

PROBABILISTIC SEARCH

,/ SAVS OF SHAPIRO
,7 AND NARENDRA (6] - -
, -

-
-,
-

7
i SAVS OF VISWANATHAN
,/ AND NARENDRA 9]

NUMBER OF MEASUREMENTS
l2(!)0 I‘JOOO ! 8000 l16000

Fig. 1. Estimate of ED, versus number of measurements for test problem
of Shapiro and Narendra [6).

The environment is of the L, type since Fi{({) is the uniform
distribution function in [Q(z)) — 2, Q(z) + 2].

One measure of the difficulty of a problem is the ratio M -
(Mg/D?) and environments with ratios below five can be con-
sidered as relatively ‘“‘easy” environments. In Narendra’s test
problem, however, M - (Mg/D?) roughly equals 1300. The fol-
lowing number sequences were used:

Agy = max {5;(4 - J)'-%}
An = max {5;(4, ,j)o.g}

with 4y = 4, ¢ = 0.08 < D (which is, in fact, sufficient to make
Theorem 1 work. If D is unknown, however, it is necessary to
require that lim;_ ,, & = 0), a; = (0.2//)(a < [0,1]), andp, (X))
is defined by (35)«(37) with y = 1. To start the search, n, = 100
measurements are made with each strategy z; € Z (thus let
Vio = ng, i = 1,--- ;M and wy, = z;, where i* is defined by
His,0 = Ming g, o).

The curves of Fig. 1 give 50-run averages of D; as a function
of L,, the number of measurements up to iteration j, i.e.,

120 (Ags + Ar) + M - g,

25 runs of which were with a = 0.8 and 25 runs with a = 1.0.
The dotted lines are the results obtained by Shapiro and Narendra
[6] and Viswanathan and Narendra [9] for the same test problem
with SAVS schemes that are adapted for use in general environ-
ments. For the SAVS, where 45; = 0, Ar; = 1, and the algorithm
reduces to updating n(X,) after each observation, D; clearly
equals 7z,(X;).

Considering that the abscis scale is logarithmic, a comfort-
able improvement in the rate of convergence is obtained as is
seen from Fig. 1.

To demonstrate the relative insensitivity with respect to the
selection of gain factors such as 1,, the same experiment is
repeated, and D, is averaged over 50 runs, 25 with a = 0.8 and
25 with a = 1.0. These averages are depicted as a function of
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Estimate of BD’
1.0 —1
L, =20000
0.9 |
L, =8000
0.8
=2000
0.7 — L
0.6 —
. - by
. 0
057 T I i I
0.5 1.0 2.0 4.0 3.0

Fig. 2. Estimate of ED, versus search parameter A, for test problem of

Shapiro and Narendra [6].

4o for L; = 2000, L; = 8000, and L; = 20 000. 4, varies from
0.5 to 8.0. The curves of Fig. 2 level off as the number of observa-
tions (L;) increases. This seems to indicate that it is not so im-
portant if a few iterations are made with high sampling rates
Ag; and Ar; or if many iterations are made with low sampling
rates. We indicated already that 7,(X;) -+ 1 in probability and
that R; = Q,* in probability as j -» co. For large j, w},, has
high probability to be equal to z;, and since most of the time
either w; = z; or w_,‘H = z; or both, it becomes less relevant
whether the decision (6) is based upon large or small 1, ir,.
It is thus the special choice of p;(X;) which is the predominant
factor for insuring a high rate of convergence and low sensitivity
with respect to the search parameter selection. Notice finally
that as for most probabilistic global search procedures [15]-[16],
there is no sensitivity regarding initial conditions.

Although all these properties make the proposed method very
attractive, further research is still desired to make the scheme
completely self-organizing. This involves the development of
higher-level learning or adaptation of Az, Ar;, a;, and ¢; without
losing the nice convergence properties obtained in this paper.

VII. CoNCLUSION

It is shown that the problem of the selection of the best
strategy in L,-type random environments can also be solved
through probabilistic search procedures. The asymptotic
optimality of the method, proved in Theorem 1, is often of more
theoretical than practical value, however. This practical barrier
has been overcome by the proposed almost completely self-
organizing probabilistic search scheme featuring insensitivity
regarding initial conditions and search parameter selection.

The first experimental comparisons between probabilistic
search and SAVS seem to indicate that, at least in stationary and
high-noise environments, probabilistic search has a superior rate
of convergence. In nonstationary environments, the proposed
fixed-parameter version of the algorithm, proved to be ¢-optimal
in Theorem 2, should be compared with some of the SAVS that
are powerful in such environments.
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APPENDIX
Proof of Theorem 3
Clearly, it suffices to show that p, (X, ) = 0 in probability as
+1
pu(X)) < y—/ﬂ” =<

J 00 101 all’ = 2' By (3:)'
». ( .j)
bs t I/ﬂl’ ﬂl

We show that B, ; - o in probability and 8, ; - 0 in prob-
ability as j - o0,

First, let P,;, A min {pg;, -+, por} > 0,andlet > 0 be given.
We shall first show that for all  large enough,

P, =) 211

First, choose L € (0,00) so large that (L ~ 1)> > 2MQ2 + B)}/
and define

(40)

Nj = L- é 'ak'}'Tk'
k=1

Notice that (38) implies that lim,_, ,, N; = 0. Define further the
event

AI = { min Vl,j = Nj}.
oM

i=1,.-.,

P{A,}.

(41)

v

Thus P{f,; = o}

P{ﬂx,j = m:“ Hyy l Aj}

where, if f, , is the average of » i.i.d. random variables with
cumulative distribution function (cdf) F({) and mean Q(z),

A,}
M

< P {sup Ww — Q)| > 2:
nzN; 2

=1

Piu, ; > m‘in gl Ap) <

M
Z P {lﬂu - Q(z)] > g

i

]
-

-

n
<2 42)
2 (
for all j large enough by the strong law of large numbers [18]
and the fact that N; -+ o0 asj - oo. Let v}; denote the fraction
of the v; ; observations made with z; when z; was generated in

step 3) and with probability py; - & in (3).

c M « M EV,‘JZ
P4y = u; Plviy < Niy = ‘;1 m
Noting that

J
Ev}? < kz

=1

J 2
a,‘lnz + 2 (kzl [« P j’Tk)

and
J .
Ny— BEvt; 2 (L= 1)) o-in,
k=1
a - A
P{AJC}S LMlz. + k=1 5
@-0n (i ak')-rk)
K=1
< M2 + B)
w-mn?
<
2



CORRESPONDENCE

by choice of L. Therefore,

P{fi; =0} =20 = P{AH - - Plp,; > m,in gl A

2
n
2l —-—=} >1—

for all j large enough.

Next, we show that, givenn > Oarbitrary,and 6 > Oarbitrary,
P{B;; < 8} > 1 — n, for all j large enough. Without loss of
generality, let i = 2. Let N, be defined as before and let 4, be
given by (41) and

Ch))

M D
B; A {n |l‘1,j - Q(z)] < '—> .
i=1 2
Then
P{B;; < 8} = P{A;}P{B;| A};}

D
-P {|Tz.1 —- k2, < (E‘)Z'Nj’alAJBl}

P{A;} = 1 — (/2) as shown before and using the same strong
law of large numbers argument, P{B;| 4;} = 1 — (n/4), for all
J large enough. Next,

D 2
P :Tz.l -t 2 (E) - N;d | AJBJ}

2 D\? é
< Pllty;, — s == N--
{I 2,J 5°(22)| (2) j 2

AJBJ}

+ P {sz(zz) > (22)2 . N,-izs A,B,} (44)

where s%(z;) A § {? - dF((). The last term of (44) is O for large J
since N; - oo and s%(z;) < o for L,-type environments. Let

G A {lfz.l - s¥zy)| = (g)z Ny g}

and note that for all j large enough:

P(C,| 4, B, = PGB 14} PG| 4,)
P{B,} P{B,A;}

P{(C, | A;}

= >
1-" (L -1
2 4
and if £, , is the average of n i.i.d. random variables distributed
as Y ? where Y has distribution F,({) and Y ? has mean s%(z,),

2 D\? é
P{C_' l AJ} < sup I‘fz,,, — § (22)| = (—) . Nj . —} .
n>Ny 2 2

Obviously, since s2(z,) < o, the strong law of large numbers
applies to the sequence {%, ,},»,, and since N; » o asj + oo,
P{C; | A;} < (/A — (n/2)X1 — (n/4)) for all j large enough.
Thus, for all j large enough,

-1 -Nh-1 -
Pz o= (1= (-2 (-2 > 1 -n

This completes the proof of Theorem 3.
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