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that by enlarging the memory and processing more data as they
come in, an acceleration of the rate of convergence can be
obtaine~.

The probabilistic search procedure presented here does not
have these disadvantages. After proving the optimality of our
procedure, both the convergence as it is defined for other random
search procedures [14]-[16] and the convergences of state
functions of interest in automata theory [I ]-[4] are discussed.
It is emphasized that the algorithm can easily cope with high
noise and large strategy number situations. There is a great deal
of freedom left to the designer within the boundaries dictated
by the conditions of convergence. This freedom can be used to
obtain fast-converging schemes.

It is indicated how the algorithm can be modified to operate
in nonstationary environments. This modified procedure will be
proved to be t-optimal with respect to a certain function of the
search parameters.

Later on, the organizational aspect of the search is briefly
treated, and a specific design of the scheme is experimentally
tested on the test problem of Shapiro and Narendra [6]. The rate
of convergence for this scheme is considerably higher than for
the SA VS, although further comparisons between the two tech-
niques seem necessary.

II. THE PROBABIUSTIC SEARCH PROCEDURE

The environment is characterized as follows. Consider
the finite set of strategies Z = {Z1,'" ,ZM} and the set of prob-
ability measures III with corresponding distribution function
FI«(}, where FI(x) = P{C ~ x I zl} is the probability of an

Probabilistic Search as a Strategy Selection Procedure environment's response C less than or equal to x, given that
strategy ZI was applied to the environment. Define

LUC P. DEVROYE

Abstract-An alternative solution to the problem of the selection of Q(z,} = E {C I ZI} = f x dFI(x) (1)

the best strategy ill a random environment is presented by using a prob- ...
abilistic search procedure. The asymptotic optimality of the technique is and assume, for sImplIcity, that

proved, an.d a brief com~rison w~th ~tochastic au.tomata with variable -00 < Qo* = Q(Z1) < Q(Z2) ~ Q(Z3) ~ ...~ Q(ZM)

structures IS made. A specific organIzatIon of the optimal search procedure

is developed based on continued learning of some statistics of the random = QM* < + 00, Q(Z2) -Q(zJ = D. (2)
environment, and it is shown to be fast-converging, powerful in high noise
random enviro!lments, and insensitive to search parameter selection. It is desired to find the strategy with minimal Q(z,} while, at the

same time, the average measured performance should converge
I. INTRODUCTION in a certain fashion to Q(Z1)' The proposed procedure is iterative

The problem of the selection of the best strategy in a random with iterationcounterj. The state of the system (search procedure)
environment has been extensively dealt with by using stochastic is denoted by X j and the state space by X. This state X j com-
automata with variable structures (SA VS) [I ]-[12]. The SA VS pletely determines the set of selection probabilities 7r(Xj) =

approach, efficient in P-model environments [2]; [5], [7], [8], {7rl(Xj)", .,7rM(Xj)}, where
[10], [12] has recently been used also for S-model [3], [9], [II] (X.) = + (1 -a)p (X) i = 1 ...M (3)

and general environments [6]. The inconvenience with SA VS 7r1 J ajPOI j 11 j, "

is that although the selection probabilities in the automata where Po = {POl,"',POM} is a set of fixed probabilities:
converge with probabili~y one to zero or one [8], [12], [13], M
they do not always converge to the desired value. Therefore, the I ~ POI> 0, for all i ~ POI = 1 (4)
concept oft-optimality had to be introduced [8], [12] which is 1=1

weaker than convergence in probability. Many experiments have and {aj}j~O is a sequence of numbers from [0,1], P1(Xj) is a
shown that the SAYS looses its attractiveness when the number vector from [O,I]M with components Pli(Xj), i = 1,.. .,M'ithat
of strategies M is very large and the noise on the output ("res- have a unit SUJl1 for all X j:
ponse") of th~ random environment is large. In SA VS, all the M
information concerning past measurements is stored in a set of ~ Pll(Xj) = 1. (5)
probabilities, and valuable data are wasted. One can expect 1=1

Thus, both Po andp1(Xj) are probability distributions on Z, and
Manuscript received July 1. 1975; revised October 27, 1975. This work as a consequence, 7r(Xj) also has all the properties of a prob-
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important when it comes to accelerating the rate of convergence The optimization scheme is said to be optimal if

and making the scheme insensitive to search parameter selection, .
The state XJ contains all the information concerning the history I~~ EDJ = 1 (13)

of the search up to the jth iteration that will be needed later on J

in the search process. We require, however, that XJ contain WJ or, equivalently, since DJ E [0,1], if

~base~oint or best estimate of the oPti~al strategy up to thejth DJ ~ 1 in probability asj ~ 00. (14)

IteratIon) as a component, where, obviously, wJ E Z,

The following procedure is a variant of the well-known III. THEOREM OF CONVERGENCE

random search algorithm [14]-[16]. Environments are usually classified by the range of their

1) X is given to start the search process. At the jth iteration responses. If' E {0,1}, then the environment is called a P-model

w~ know X and thus W .' environment. It is S-model if' E [0,1]. We would like to classify

2 ) W is a pp li:d), > 1 times to the environment an d ' the environments as follows, An environment is of the L2r type
J BJ -, ABJ .

i.i.d. (independent identically distributed) measurements (where 1 ~ r ~ 00), If

are observed and averaged to yield an estimate 'J of Q(WJ)' (I ) 1/2r 3) wj+1 E zis generated randomly according to the distribution sup I' -Q(z,)12r dfj({) = M2r < 00, r < 00

(X) Z I-I,..',M
7t J on .

4) wj+ 1 is applied ),TJ ~ 1 times to the environment, and ),TJ sup ess sup I' -Q(z,) I = MCX) < 00, r = 00
i,i,d, requirements' are observed and averaged to yield an 1= I, ..',M

estimate,j+lofQ(wj+u. (15)

5) XJ is updated through some rule TJ+I: h th " th t t F( 1'\
Ob . I ' fwere e ess sup IS WI respec 0 I ~J' VIOUS y, I an

XJ+I = TJ+I(XJ,Wj+I,'J,'j+I"") environment is of the L2r type then it is of the L2s type for all

, 1 ~ s ~ r. P- and S-model environments are special cases of
and we require only that wJ be updated as follows: LCX) type environments. If all the' -Q(z,) are Gaussian, the

- { wj+I' if ,j+1 < r.J -eJ environment is of the L2r type. for all ~ ~ r < 00 but is not of

WJ+I -wi' otherwise, (6) the LCX) type, Because Gaussian envIronments play such an

important role, we call them G-type environments and define

where {eJ}J~O is a nonnegative number sequence,

First note that Xo may be chosen arbitrarily since the convergence I=I~~~.,M II' -Q(zJI2 dfj({) = MG.

\ of the scheme does not rely on initial conditions. The next section

will be devoted to the study of the asymptotical behavior of some The main result is the following.

functions of X J (which are, of course, random variables). Of Theorem 1.. Let (I) and (2) hold, {aJ }J~O be a number sequence

particular interest are from [0,1], {ej}j;,O be a number sequence from [0,00], {),Bj}J~O

~ and {),Tj}j;,O be integer sequences from {1,2,"'}, and let the
QJ = Q(wJ) (7) state sequence f = {Xj}j;'O be generated through procedure

Vj ~ Ind {QJ ~ Q(ZI)} 1)-5) with 7t(Xj) determined by (3)-(5). Further, let

-I d { - } - { I, Wj = Zl :xJ
-n Wj -ZI -0 otherwise ( 8 ) r. aJ = 00 (16)

, j=1

M
RJ ~ r. 7t,(XJ)Q(z,) (9) and

1='
limej=O. (17)

S j ~ ),BjQj + ),TJRJ (10) j-+CX)

),Bj + ),T J Then, i) if the environment is of the L2r type (1 ~ r < 00),

~ ),BJVJ + ).TJ7tI(XJ> CX) CX)
Dj =' (11) ~ ), l/r < 00 ~). I/r < 00 (18)

),BJ + ),Tj "" BJ "" TJ
J=B, j= I

Qj, the value of the performance index at the basepoint wJ' and => V ~ 1 with probability one as j ~ 00, an5i
V j, the indicator function of the event {wi = Zl}' are of interest J /

in classical optimization where the way of obtaining estimates lim ~ = 0 Jim ~ = 0 (19)

of the minimum is less important. State functions (9)-(11) J-+CX) aJ),B! J-+CX) aj),T!

correspond to random variables studied in automata theory,
Rj is the expected value of Q(Wj.+ I), SJ is the mean of the average => VJ ~ 1 in probabilityasj ~ 00. ii) If the environment is of the

measured performance, and D J is the relative frequency of LCX) type or G type,

~election of the best strategy ZI in ABj + ),Tj "trials." ).),
In analogy with the definition of expediency in automata lim -.!!L. = 00 lim -I1-, = 00 (20)

theory [1], [2], [5], [10], we say that the search procedure is J-+CX) log J J-+CX) log J

expedient if => VJ ~ 1 with probability one asj ~ 00, and

M
11m" ESJ ~ r. POIQ(z,) (12) I .),BJ - I .),Tj -

(21)J-+CX) 1= I 1m --00 1m --00

-J-+CX) j 1 J-+CX) 1

where lim stands for lim sup, In the absence of any a priori log;; log;;
information concerning the environment, it is reasonable to let j J

POI = (11M), i = 1,.. ',M, => Vj ~ 1 in probability asj ~ 00.
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Proof: The proof of Theorem I is based upon the theorems If the environment is of the LOX) type, we have by Hoeffding's
for the convergence of random processes proved by Braverman inequality [19]:
and Rozonoer [17]. The theorems we will use can be formulated ( ) -2. -Zu .(D/Z)1/(ZM 00)1 .t >as follows. If X j is a sequence of random vectors on some prob- 9 u -e ,U In eger, U -1. (30)

ability space, if U(Xj) is a requence of nonnegative random Let)lj ~ g(ABj) + g(ATj) and combine (22}-(27) to obtain
variables, and if {aj}j~O and {bj}j~O are number sequences from
[0,00) then if EU(Xo) exists and E{(1 -Vj+J I Xl} S (I -Vj)(1 -ajPoI(1 + )lj» + )lj

E{U(Xj+JIXj} S U(Xj)(1 -OJ) + bjo for allj ~ 0 (22) S (1 -Vj)(1 -ajpoJ + )lJ (31)

and if so that, by POI> 0, we need to ask that

OX) b OX)

~ aJ = 00 and lim -.:! = 0, }: aJ = 00,
j=1 j-+OX) aj J=I

then U (X J) -+ 0 in probability as j -+ 00, If Furthermore, if )I J/a J -+ 0, then V J -+ I in probability as j -+ 00.

If
OX) OX)

}: aj = 00 and}: bJ < 00, ~
J=l j=l "" )lJ < 00,

J=l

then U(XJ) -+ 0 with probability one as j -+ 00, Suppose that8 = O. We have then V J -+ I with probability one as j -+ 00. With the proper
J' substitution 'of)l J (see (28)-(30», conditions (18}-(21) are derived,

M .If
E{Vj+1 I Xi} ~ VJ }: P{Wj+1 = WJ = ZI I WJ+1 = ZI.

1=1 lim 8j = 0
WJ = ZI }1tI(Xj) j-+OX)

+ (1 -Vi) min then BJ < D/2, for allj large enough. Clearly, (31) still holds for
I=Z,~. 'oM / all such j if in the definition of )ljo D is replaced by D/2. This

.P{WJ+1 = Wj+1 = ZI I wJ = ZI, completes the proof,
.Remark 1: If aj ~ a > 0 for all j, conditions (19) and (21)

WJ+I = Zl}1t1(XJ) (23) are very weak. In particular, for all Lz-type environments, (19)

However, for all X, 1t1(X) ~ alP and implies that ABj and ATj should diverge at any rate, however low.
J J :1 The condition that an environment is of the Lz type is, in practice,

P{WJ+1 = WJ = Zl I Wj+1 = ZI' WJ = ZI} always fulfilled because most types of noise on responses from

{ .D I . } real systems have bounded variance.
~ P Ir..J+I -Q(zJI S 2" Wj+1 = ZI ForL,:,,-orG-typeenviro?me~ts,iftherateofincr~seofABj

and ATj 1S faster than logarlthm1c, Vj converges to I w1th prob-

,P { 'r..j -Q(zl)1 S ~ I wJ = ZI} (24) abilityone(by(20»,evenifaJ-+Oasj-+ 00.
2 Remark 2: It is easy to see that convergence in probability to

P W = w' = Z W = Z w' = Z Qo. and convergence of the mean to Qo. are equivalent for QJ'

{J+1 j+1 II J I' J+I I} Rjo and 8jo all of which take values in [Qo*,QM*1.Convergence

> P { Ir.. -Q( )1 S ~
l = } in probability and of the mean to I are equivalent for the random

-j ZI 2 Wj ZI variables VJ and Djo both of which take values in [0,1]. Also,
VJ -+ I in probability (with probability one) => QJ -+ Qo. in

.P {1r..;+1 -Q(zJI s ~ I W~+l = Zl } (25) probability (with probability one) since Qj S Qo.. VJ +
2 QM. .(I -Vi).

by virtue of (2), (6), and BJ = o. Finally, Vj -+ I in probability (with probability one) and

Next, there exists a positive function g( .) such that, for all i, A
lim TJ = 0 (32)

{Ir.. I D I } ' ) ( 6) J-+OX) ABj + ATjP J -Q(zJ ~ -Wj = ZI S g("BJ 2
2 together imply that DJ -+ I and 8J -+ Qo. in probability (with

and probability one) since

P {1r.;+1 -Q(zJI ~ ~ IW~+l = ZI} S g(ATJ) (27) D ABj V2 J ~. J
ABJ + ATj

where, if the environment is of the Lz, type (I S r S 00), by and
Markov's inequality [18] and Garsia's inequality for the expected
value of the 2rth moment of the sum of i.i.d. random variables 8 < Q * V ABJ + Q . (1 ABJ V )J -o' J. M. -' J .

[21]: ABJ+ATJ ABJ+ATj

g(u) = ~. Mz,z" U integer, U ~ I. (28) Remark 3: The reader may wonder why one does not let BJ = 0

r! (~)Z' , u' for all j. Experience with random search algorithms has led
2 .several authors [14], [15] to believe that a nonzero BJ keeps the

Al f G .' Ch ff ' b d [20] f algorithm from changing the basepoint too frequently and too
so, or -type environments, using erno s oun orG . d . bl carelessly. Only when ABj and ATJ are large enough so that r.j
ausslan ran om varia es : *' .and (.J+I are good estimates of Q(Wj) and Q(WJ+J can we let 8J

g(u) = 2e-u(D/Z)1/ZMo, u integer, u ~ I. (29) be small without having to fear a wrong decision in (6).
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IV. EpSILON-OPTIMALITY which can be made smaller than '1 by choosing AB and AT large
In nonstationary environments, the same procedure with enough and ATf(AB + AT) small enough.

constant parameters «} = «, e} = e; AB} = AB and AT} = AT is of V. ORGANIZATION OF THE SEARCH
definite interest. Without pretending that this constant parameter ., .
procedure will be powerful in nonstationary environments, we It IS stili an open problem whether optimal num~r sequen~

'II just show that the so-obtained algorithm is e-optimal in can be found for the search parameters or not (as m stochastic
:~tionary environments. a.pproximation algorithms). Besides this, the~e is th~ organiza-

We wll say that the ~rch procedure is e-optimal if for all tlonal aspect of the search parameter selection, which usually
'1 > 0, ~e can choose the search parameters (here: «, e: AB' AT) involves h~ur.i~tics ba~d upon the experie~ce of t~e des~gner.
.h a ay that Some a prIorI Information can always help m selecting suItable
In suc w sequences {AB}}' {AT}}, {«}} and {e}}. Notice also that it is

fun ED} ?; 1 -'1, e-optimality for D} (33) possible to adapt the search parameters within boundaries that
or are number sequences satisfying the conditions of Theorem 1.

I. EV 1 . 1. f V (34) Furthermore, there is the still undiscussed distribution PI (X})
1m }?; -'1 e-optlma Ity or } .,' be ) . 1-' (3}-{5) which IS very Important cause 1C(X} IS very near y

where li!!! stands for lim inf}-+oo. It has been proven by Sawaragi equal to PI(X}) for large j if «} -+ 0 as j -+ 00. The following
and Baba [12] that the LR-I (linear reward-inaction) SA VS is distribution is proposed: a record is kept of all the observations
e-optimal (for a definition, see [8], [12]) for 1C I (X}). However, made in the past with each strategy. For ZI, let VI,} denote the
in order to account for the AB and AT measurements made at each number of measurements observed up to iteration j after ZI was
iteration, we needed this broader definition. applied to the environment. Let Ill.} be the mean over these v,,}

Theorem 2: If (1) and (2) hold, «E [0,1], e ?; 0, AT?; 1, measurements and let 'fl.} be the quadratic mean of these measure-
AB ?; 1, and if the state sequence f is generated through pro- ments, Iljo 'f} and v} are M-dimensional vectors grouping Ill,},
cedure I}-5) with 1C(X}) determined by (3}-{5) and if the environ- 'fl,}, and VI,} for i = 1,.. .,M. The state X} now contains quite
ment is at least of the L2 type, then the presented search procedure a lot of information about the random environment and the
is e-optimal both for D} and V}. history of the search because X} = {w joll}, 'f jo V jo. ..}. Luckily, we

Proof: Using (31) and (28) with r = 1 and M2Z = MG and know that Il}, 'fj' and VJ can be recursively updated as new
letting e = 0: measurements come in so that the observed environment

responses need not be stored.
4MG LeE{(I -V}+l) I X}} s (1 -V})(I -IXPOI) + ~ t
(Df2).(~ + ~ ) , SZ(zJ = E{,zl ZI} = f'z dFJG

AB AT so that

Let f4M I' -Q(zJI2 dFI(G = S2(ZJ -QZ(zJ.
C A G

= <D/2)2 .,
Since

Taking expectations at both sides gives ~~ «} = 00,( 1 1 ) }=l E {I -V I} S (1 -«. PoJ ' E {I -V} + C -+ -..,
}+ } AB AT VI,} -+ 00 with probability one, for all i = 1,'. .,M. Con-

Recursive computation yields sequently, Ill,} will approximate Q(zJ and 'fl,} will approximate
SZ(zJ if the environment is at least of the Lz type (so that

E{I -V)+l} s E{I -Vo}(1 -IXPOIY S2(ZJ < 00, for all i = I,.. .,M).
Suppose that Q(zJ and S2(ZJ were known and that one would

. (1 -«POI + C (~ + ~ )) take VI,} ii.d. measurements with Zj and denote the average by
AB AT 'i. Using Chebyshev's inequality:

+ ~ (~ + ~ ) (1 -(I -IX. POIY+I). P{'} S Qo.} S sz(zJ -Q2(zJ. (35)
«POI AB AT vI.} .(Q(zJ -Qo.)z

Because E{I -yo} ?; 0 and (1 -«POlY -+ 0 asj -+ 00, The right side of (35) is not known but can be estimated using the

-C
(1 1 ) data available in X}. The estimate is denoted by PI,}:

lim E{I -V}+l} s --+ -.Z
}-+oo «POI AB AT P A { 'fl,} -JlI,} if II > min Jl '

I,} = ( . )z ' ,.I,) I ,}
v. -mm ' I'The right side can be made smaller than '1 by taking AB and AT I,} Ill,} I' Ill,}

large enough. From definition (11) and 1CI(X}) ?; 0: 00, otherwise. (36)

E {I -D } ~ + -.!:.!- E {I -V} PI,} is larger if a) v,.} is smaller (Zl is not very frequently used up
) S A. + AT AB + AT } to the jth iteration), b) Ill,} is smaller relative to the JlI ,}' i' ~ i.

th t (Zl is a promising strategy with high probability that the corres-
so a poDding Q(zJ is small), c) 'fl,} -IlJ is larger (which would

I~
E{I D } AT + C (1 + 1 ) indicate that SZ(zJ is large and that more sampling with Zl is

1m -} < -' --
}-+~ -AB + AT IX. POI AB AT needed to obtain a low variance on the estimate Ill',} of Q(zJ).
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~ T This shows that P,,} is, in fact, proportional to the need of selecting strategy Z,. Definepl(Xfl by 1 E.UmateolED

J( Y
)/[ M( Y )] . Pll(Xfl = r;, I = 1,., .,M

y + 1/P,,} 1'=1 Y + 1/P",} 0 ,//
,/ SAYS OF SHAPIRO(37) /ANDNARENDRA [6J / --

/ --/ -where y > 0 is to be chosell by the designer. It was mentioned ," ,//
that III } -+ Q(Z,) and 1", } -+ S2(Z,) at least in probability so that II 1// SAYS OF VISWANATHAN' , ., ..I 1 AND NARENDRA [9J
PI,} -+ 00 and P,.} -+ 0 for I ~ 2 In probability. Therefore, ,I "I

I I{1 . 1 ' I, I = I II
PII(Xfl -+ 0, i ~ 2 ,/ I"

I / ,in probability as j -+ 00. The exact result is the following theorem. ,/ III
Theorem 3: Let (1) and (2) hold, {1X}}}~obeanumbersequence -" ,

0 6 , ,from [0,1] and {A.T}}}~O be an integer sequence from [1,00), and' / "
let 1C(X}) be determined by (3)-(5) and Pl(Xfl be determined by / :

I I(35)-(37). Let the environment be at least of the L2 type, let / I
, I'" I ,

I Ir; a}. A.T} = 00, (38) ,/ ,,'
} -I , 1

-I .'" NlJIBER ~ P£ASUREI£NTSand let there exist a B < 00 such that -'1000 '2000 14000 '8000 6000

J, .A. 2 Fig, I. Estimate of ED J versus number of measurements for test problem
L at Tt or Shapiro and Narendra [6].

sup t=l :5B.< 00. (39)
}

("J:-~.\"2)2 IL at. A.Tt I ...

t= 1 The environment is of the L", type Since Fi(C) IS the uniform
'. distribution function in [Q(z,) -2, Q(z,) + 2],Let the state sequence f be determIned either b~ pr°.cedure One measure of the difficulty of a problem is the ratio M.

1}-5) (in which case we need to ask ~hat {A.B}}}~O I~ an Integer (MGID2) and environments with ratios below five can be con-
sequence from [1,00) and {I:}}}~o IS a nonnegative number sidered as relatively "easy" environments. In Narendra's test
sequence) or by ste~ 4) alone ~in which case.one needs not store problem, however, M. (MGID2) roughly equals 1300. The fol-
wi' and the algonthm consists of updating PI(Xfl through lowing number sequences were used:
(35)-(37». Then

{I . b b'l 't . 00 . 1 A.B} = max {5;(A.0 .nt,3}, In pro a I I Y as J -+ , I =
Pll(Xfl-+ 0, in probability asj -+ 00, i ~ 2. A.T} = max {5;(A.0. j)0.9}

The proof is given in the Appendix. with A.o = 4, I:} = 0.08 < D (which is, in fact, sufficient to make
Corollary: If, in addition to the Tequirements of the theorem, Theorem 1 work. If D is unknown, however, it is necessary to

lim}-+", a) = 0, then 7tl(Xfl-+ 1 in probability as j -+ 00 and require that lim}-+", I:} = 0), IX} = (0.2Ij)"(aE [O,I]),andpl (Xfl
R) -+ Qo* in probability asj -+ 00. is defined by (35)-(37) with y = 1. To start the search, no = 100

Remark 1: There are no restrictions on A.B} and I:} if procedure measurements are made with each strategy z, E Z (thus let
4) is followed. One can thus as well let A.T} be constant, for in- V'.O = no, i = 1,.. .,M and Wo = Z,* where i* is defined by
stance 1, for all j, in which case the procedure looks very much 111* 0 = min, III 0).
like an automaton where one observation is made per iteration. The curves or Fig. 1 give 50-run averages of D} as a function

Remark 2: Condition (39) is, for instance, fulfilled if B < 00 of L}, the number of measurements up to iteration j, i.e.,
is such that

sup A.Tk. t (A.BI + A.TI) + M. 110'
sup tS}:5 B 1=0} } .

r; at. A.Tt 25 runs of which were with a = 0.8 and 25 runs with a = 1.0.
t= 1 The dotted lines are the results obtained by Shapiro and Narendra

and does not allow .the se~uence {A.T~} to be too oscillatory ~ith [6] and Viswanathan and Narendra [9] for the same test pro~lem
high "peaks," thus Increasmg the vanances of the v,,} too rapidly with SA VS schemes that are adapted for use in general enVlfon-
relative to the increase in Ev,.}, ments. For the SA VS, where A.B} = 0, A.T} = 1, and the algorithm

E reduces to updating 7t(Xfl after each observation, D} clearly.VI. XPERIMENTS

equals 7t1(Xfl.The presented algorithm with given choice of PI (X}) (35)-(37) Considering that the abscis scale is logarithmic, a comfort-
is used in the test problem of Shapiro and Narendra [6] where able improvement in the rate of convergence is obtained as is
M= 10 and {Q(Zl),...,Q(ZIO)} = {-5.6,-5.5,-5.3,-5.~, seen from Fig. I.
-5.1,-5.1,-5.1,-5.0,-4.9,-4.9}. Thus D = 0.1, and If To demonstrate the relative insensitivity with respect to the

Po = {0.1,... ,0.1}, selection of gain factors such as A.o, the same experiment is

M repeated, and D} is averaged over 50 runs, 25 with a = 0.8 and
r; POI. Q(z,) = -5.18. 25 with a = 1.0. These averages are depicted as a function of

1=1
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ApPENDIX
Eotlmoto of ED,

1.0 Proof of Theorem 3

L .2~ Clearly, it suffices to show that PII(XJ) -+ 0 in probability asJ j -+ 00 for all i ~ 2. By (37):

0.9 - "" : ,~/// , ~-~ " + 11.81 J ( I )L ~8000 PII(XJ) :5 .:5 .8I,J ,,+ -.(40)
J " + 11.8I,J .8I,J

We show that .81.J -+ 00 in probability and .81.J -+ 0 in prob-
0.8 ability asj -+ 00,

First,let P miD ~ min {POI,'. ',POM} > 0, and let '1 > 0 be given.
We shall first show that for allj large enough,

0.7 P{.8w = oo} ~ 1 -'1.

First, choose L E (0,00) so large that (L -If ~ [2M(2 + B)]/'1
and define

0.6 '" '
N j = L. 1.. a". AT'"

"=1

1 Notice that (38) implies that limJ_'" Nj = 00. Define further the
0.5 -I I I I I event

0.5 1.0 2.0 fI,O 8.0 A - { '
N } (41)J -mm VI.J ~ J'

Fig, 2, Estimate of ED) versus search parameter Ao for test problem of I = I. ' , ',M
Shapiro and Narendra [61, Thus P{.8I.J = oo} ~ P{Aj}.

P{IlI.j = mm IlI.J I Aj}
AO for LJ = 2000, LJ = 8000, and LJ = 20000, AO varies from I

0.5 to 8,0. The curves of Fig. 2 level off as the number of observa- where, if /ll,n is the average of n i.i,d, random variables with
tions (Lfl increases, This seems to indicate that it is not so im- cumulative distribution function (cdf) Fj(C) and mean Q(zJ,
portant if a few iterations are made with high sampling rates M
ABj and A~J o,r if many iterations are made -:vith low s,a,mpling P{IlI,J > min IlI.J I AJ} :5 L P { IIlI,J -Q(zJI > ~ I AJ }rates. We mdlcated already that 1t I (X fl -+ 1 m probability and I I = I 2
that RJ -+ Qo. in probability asj -+ 00. For largej, w7+1 has M

{ D }high probability to be equal to Zl' and since most of the time :5 L P sup l/ll.n -Q(zJI > -
2.. b h ' be I I t 1= I n~N)either Wj = Zl or WJ+ I = Zl or ot, It comes ess re evan

whether the decision (6) is based upon large or small ABP ATj' '1
It is thus the special choice of PI(Xfl which is the predominant < :2 (42)
factor for insuring a high rate of convergence and low sensitivity
with respect to the search parameter selection. Notice finally for all j large enough by the strong law of large numbers [18]
that as for most probabilistic global search procedures [15]-[16], and the fact that N) -+ 00 asj -+ 00, Let V~j denote the fraction
there is no sensitivity regarding initial conditions. of the v' .observations made with Zi when Zi was generated in

t.)
Although all these properties make the proposed method very step 3) and with probability POi .~" in (3),

attractive, further re~.rch is s~ill, desired to make the scheme M M Ev. 2
completely self-orgarnzmg, This mvolves the developm~nt of P{AJC} :5 L P{vtJ < Nj} :5 L I,J .2'
higher-level learning or adaptation ofABP ATP ap and Bj without 1=1 1=1 (NJ -Ev"J)
losing the nice convergence properties obtained in this paper. Noting that

J ( J )2 VII. CoNCLUSION
Ev.2 < ~ N' 2 + 2 ~ a .AI,J -"" ~k"T" "" k Tk

It is shown that the problem of the selection of the best k= I k= I

strategy in L2-type random environments can also be solved and
through probabilistic search procedures. The asymptotic .1 (.. A
optimalityof the method, proved in Theorem I, is often of more N J -EVt.J ~ (L -) k~1 ak' Tk'

theoretical than practical value, however. This practical barrier '"
has been overcome by the proposed almost completely self- ( 1.. a,,' ATk2

)organizing probabilistic search scheme featuring ins~nsitivity P{A C} :5 M. 2 + k= I
regarding initial conditions and search parameter selectIon. J (L -1)2 ( '" .A )2 ,

be b b 'I ' , z.. ak Tk
The first experimental comparIsons tween pro a I IStlC k= I

search and SA VS seem to indicate that, at least in stationary and
high-noise environments, probabilistic search has a superior rate < M(2 + B)
of convergence, In nonstationary environments, the proposed -(L -1)2
fixed-parameter version of the algorithm, proved to be B-optimal
in Theorem 2, should be compared with some of the SA VS that < ~
are powerful in such environments. 2
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