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A b s t r a c t  

In earlier work with Gabor Lugosi, we introduced a method to select a smoothing 
factor for kernel density estimation such that, for all densities in all dimensions, the 
L1 error of the corresponding kernel estimate is not larger than 3 + e  times the error 
of the estimate with the optimal smoothing factor plus a constant times Ov~--~-n/n, 
where n is the sample size, and the constant only depends on the complexity of the 
kernel used in the estimate. The result is nonasymptotic,  that  is, the bound is valid 
for each n. The estimate uses ideas from the minimum distance estimation work of 
Yatracos. We present a practical implementation of this estimate, report  on some 
comparative results, and highlight some key properties of the new method. 

K e y  W o r d s :  Density estimation, kernel estimate, convergence, smoothing factor, 
minimum distance estimate, asymptotic optimality, simulation study. 

A M S  s u b j e c t  c l a s s i f i c a t i o n :  62G05. 

1 I n t r o d u c t i o n  

W e  a r e  g i v e n  an  i . i .d ,  s a m p l e  X 1 , . . . ,  X ~  d r a w n  f r o m  a n  u n k n o w n  d e n s i t y  

f on  ]R d, a n d  c o n s i d e r  t h e  A k a i k e - P a r z e n - R o s e n b l a t t  d e n s i t y  e s t i m a t e  

f h(x) = a ' h ( X -  
i= l  

where K :  IR d --+ lR is a fixed kernel with f K = l, Kh(x) = (1/hd)K(x/h) ,  
and h > 0 is the smoothing factor (Akaike, 1954; Parzen, 1962; Rosenblatt, 
1956). In this paper, we focus on density estimation without restrictions 
on the densities. The fundamental problem in kernel density estimation is 
that  of the joint choice of h and K in the absence of a priori information 
regarding f .  Watson and Leadbetter (1963) show that  the choice of h and 
K should not be split into two independent subproblems. Also, the choice 
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of K largely depends upon the smoothness of f .  However, the choice of K 
will only be of secondary interest in this paper. 

All global smoothing factors can be written in the general form H = 
H~(X1, . . .  ,Xn). A selection method is  thus nothing but a sequence of 
fufictions {H~, n >_ 1}. If we let jr  denote the class of all densities o n  IR d, 
and let f~H denote a kernel estimate with data-based bandwidth H, we 
look at 

limsup E f If,~H - flf[ s  sup inV.  - -  

and its non-asymptotic counterpart 

E f [fnH - -  f[ sup 
Se~- infh E f [fnh - fl 

The boundedness of these suprema shows that the bandwidth selector works 
well for all f ,  without exception. 

Recently, Devroye and Lugosi (1996) introduced a data-dependent smooth- 
ing factor H for which 

E f iAi_ t -  flf[ 
suplimsupy n - ~  in~hEf[-fn-h --- < 3 ,  

whenever the kernel K is nonnegative, Lipschitz, and of compact support. 
The estimate of that paper requires various parameter choices which in 
turn are used to define the procedure for finding H. A related estimate 
was proposed in Devroye and Lugosi (1997) that comes with explicit non- 
asymptotic performance guarantees. Both estimates will be revisited in 
this paper. 

We define various classes of bandwidth selectors as follows: 

A. UNIVERSALLY CONSISTENT BANDWIDTHS. Bandwidths for which for 
all f ,  

lim E / I  f r i l l - f  1 = 0  $ 

n - - ~ o o  J 

Bandwidths that are not universally consistent are called inconsistent. 

B. SUITABLE BANDWIDTHS. Bandwidths for which for all f ,  

E f - f l  lim sup 
n-~o~ infh E f [f~h -- f[ 

< c(f) < 
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for some finite constant C(f) .  Bandwidths outside this class are said 
to be unsuitable. 

C. UNIVERSALLY SUITABLE BANDWIDTHS. Suitable bandwidths for which 
the constant C(f )  is universally bounded for all f .  Smoothing factors 
not in this class are called "not universally suitable". 

D. ASYMPTOTICALLY OPTIMAL BANDWIDTHS. Suitable bandwidths for 
which for all f ,  C( f )  = 1. 

One can classify bandwidths into one of the four nested classes. We are 
interested in this paper in universally suitable bandwidths for all dimensions 
d. We will therefore only briefly review bandwidths that  are not in this 
class. More complete surveys may be found in Devroye and GySrfi (1985), 
Marron (1987, 1988, 1989a), Izenman (1991), Jones, Marron and Sheather 
(1992), Park and Turlach (1992), Titterington (1985), Turlach (1993), Cao, 
Cuevas and Gonzs (1994), Berlinet and Devroye (1994), and 
Wand and Jones (1995). 

A S Y M P T O T I C A L  O P T I M A L I T Y  AND AN OPEN P R O B L E M .  We will n o t  fo- 

CUS on asymptotically optimal bandwidths, simply because we do not know 
if this class is nonempty. This remains one of the most compelling open 
problems in the field. It should be noted however that  there are many pub- 
lished bandwidths that  are asymptotically optimal for given subclasses. For 
example, if f is restricted to a class of univariate densities in which only 
a translation and scale parameter is unknown, using h -- a , ~  for a func- 
tion a,~ (depending upon the family), where ~ is a data-based estimate of 
the scale factor, will do (see Deheuvels (1977a, 1977b) or Deheuvels and 
Hominal, 1980). The smoothing factor h can also be based upon a plug-in 
of estimates of unknown functionals into a given formula. This method 
has the given property if the supremum is taken over classes of univariate 
densities restricted by smoothness and small tails (Hall and Wand, 1988). 
The double kernel estimate (Devroye, 1989) satisfies the property men- 
tioned above when the supremum is restricted as in the work of Hai land  
Wand. Except for trivially restricted classes of densities, none of the L2 
cross-validated estimates in the literature (see Rudemo (1982), Bowman 
(1984) or Stone (1984) for the early papers on this) possesses the property 
mentioned above. 
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RELATED KERNEL ESTIMATES. It is necessary to limit the scope of the 
paper. We are deliberately not considering local bandwidth selectors or 
variable kernel methods, although some of these have proven track records. 
One should also keep in mind that  we may always transform the data, apply 
a fixed kernel est imate such ms the estimates discussed in this paper, and 
then retransform the kernel estimate (see chapter 9 of Devroye and GySrfi, 
1985). This has the effect of introducing variable bandwidths. 

2 T h e  f i r s t  b a n d w i d t h  

Split the da ta  set into a test set of size m ~< n and a remainder. The first 
bandwidth of Devroye and Lugosi (1996) uses Yatracos' minimum distance 
projection of the empirical measure based upon these m points to the class 
of densities defined by the kernel estimates based on the remaining n - m 
points to find an optimal h (Yatracos, 1985). This is at tractive because it 
directly relates a density estimate to the s tandard empirical measure. 

Let m < n be a positive integer, let K be a nonnegative kernel with 
f K(x)dx = 1, and let ~'n be the class of densities 

n - - m  

fn:m,h(X)- 1 ~ Kh(X- Xi) 
n - - m  

i=1 

with h E [an, bn], where the nonnegative numbers an, bn will be specified 
later such that  the optimal smoothing factor eventually falls in [an, bn] for 
all densities. Next we cover the class ~'n by finitely many densities as 
follows: let (f n > 0 be a parameter  to be specified later, let hi : an, and 
hi = hi_l(1 + 5n) for all i -~ 2 , . . .  , N,  where N is the largest integer with 
an(1 + ~n) N - I  ~_ bn. The finite class of densities {fn-m,h, : i = 1, . . . ,  N) 
is denoted by ~n. Our est imate will be drawn from this finite class! 

Let #m be the empirical measure defined by the rest of the da ta  points: 
X n - m + l , . . .  ,X~, i.e., for any Borel set A C_ IR d, 

1 n 

= -  IA(X,), urn(A) m 
i=n--m+l 

where IA denotes the indicator function of A. As is well-known, the L1 
distance is equivalent to the twice the total variation distance. If we are to 
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use the empirical measure, we would thus be tempted to select h so as to 
minimize the total  variation 

T de----fSUPA fA f n - m ' h - - # m ( A )  l " 

As #m is an atomic measure, T = 1 for all h. Following a clever idea of 
Yatracos (1985), we take the supremum instead over a specially picked rich 
class of subsets .4, defined as the family of sets 

{x : .f~-m,h~(x) > fn-m,h~(x)},  i , j  <_ N. 

The est imate fn is defined to be that  fn-,~,h, E ~,~ for which 

sup fA fn-m,h, -- #m(A)  
AEA 

is minimal. If the minimum is not unique, we choose among the minimizing 
densities according to a prespecified rule, e.g., we choose the one with 
smallest index. Note that  in any case, our est imate optimizes over a given 
finite set, and is thus defined with computional efficiency in mind. 

~} CHOICE OF THE PARAMETERS. It helps at this stage to pin down choices 
for a~, bn and 5n. The choice is determined by the choice of the kernel K.  
We assume the following: a kernel is said to be elegant if it is nonnegative, 
if it is Lipschitz of constant C (i.e., I g ( x )  - K(y)I  <_ CIIx - Yll for all 
x ,y) ,  and if K = 0 outside [ -1 ,  1] d. Then define an = e -n,  bn = e n, 5n = 
c / x /~  for a fixed constant  c. This class contains the s tandard Deheuvels 
kernel tha t  is optimal in IR d and is of the form C'(1 - I Ix l ld)+,  where 
(u)+ = max(u,  0). For more general classes, we will show how to take the 
parameters  in remarks below. 

0 A COMPUTATIONAL REMARK. In most univariate cases, the sets A above 
are finite unions of intervals. The number of such intervals can be rigorously 
controlled if the kernel is polynomial on a compact  set (such as with the 
celebrated Epanechnikov-Bartlet t  kernel 3/4(1 - x 2 ) + ) .  The computat ions  
are much more involved for d > 1, unless K is the indicator function of a 
unit square. The class .,4 has N 2 members. A quick calculation shows that  

log(bn/an) n(2 + ~n) 
N - 1 _< log(1 + ~,,) -< 6n 

-- n + 2n3/2/c . 
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A lower bound on the number of integrals over sets A (if we were to naively 
minimize) would be of the order of n 3. However, clever shortcuts  are pos- 
sible. 

THE SET ,4. The set ,4 cannot be replaced by the set of all rectangles of 
IR d. This class is simply not rich enough, and Lemma 2 below would not 
be valid. 

T h e o r e m  2.1. (Devroye and Lugosi,  1996). Let K be an elegant kernel. 

Let  an, bn be such that na,~ --+ 0 and bn --+ oo. A s s u m e  that 5,~ = c / v ~  for  
some  cons tant  c and that l o g ( b J a n )  < cln a for  some  f ini te  c I, a > O. I f  

m m 
- - - + 0  and ~ oo as n - +  oo, 
n n4/5 log n 

then the es t imate  f,~ defined above satisfies 

E f IA - fl sup lira sup 
f ,,~o~ i n f h E f l A , h - - f l  <3"  

This result is valid for any multivariate density. It may be possible to 
improve the constant  in the bound. With a bit of work, one may also be 
able to replace f~ in the result by fnH,  where H is the smoothing factor 
used in fn- The difference here is that  f n H  u s e s  all n da ta  points, while fn 
is the kernel est imate based on H and X 1 , . . .  , Xn-,~. 

One may argue that  the selected smoothing factor is not scale-invariant. 
This is easily taken care of by letting Mn denote the median of the (~2 TM) 
distances ]]Xi - Xj]], 1 <_ i , j  <_ n - m,  and setting a,~ = Mne -n  and 
bn = M,~e ~. As M,~ is almost surely bounded away from 0 and infinity, one 
can verify that  the Theorem holds for this choice of interval. 

For convenience we assumed tha t  the kernel K is nonnegative. It is well 
known, however, tha t  some kernels taking negative values provide smaller 
L1 errors for smooth densities. The above theorem is easily extended" to 
such kernels at the expense of further  restrictions on the growth of m, 
depending on the order of the kernel. 

Finally, there is quite a bit of freedom in the choice of all the parameters.  
For example, 5n does not have to tend to zero at the rate 1/v/-n. A practical 
implementation is described in the next section. 
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The universality of Theorem 2.1 can only be achieved thanks to combi- 
natorial arguments.  Error analysis based on Taylor series expansions of f 
are simply out of the question, as such expansions may not exist. For the 
proof of Theorem 2.1, we refer to Devroye and Lugosi (1996a). However, 
we will s ta te  four lemmas, which each contribute key elements to the proof. 

L e m m a  2.1. (Devroye and Lugosi, 1996). For each density f and elegant 
kernel K,  C' = c2dv/-d + d, the estimate fn(E Gn) satisfies 

I f . - f l  < 3  inf I f . - m , h - f l +  + 4 s u p  - f �9 
- he[an,bn] ~ AeA 

The middle term accounts for a Lipschitz effect between nearby kernel 
estimates. The last term resembles a total variation distance between an 
empirical measure and a density. If .A were the class of all Borel sets, this 
term would take the value 4. Fortunately, ,4 is finite, so that  we may bound 
the expected value of the last term by 

8v/log c" + (2a + 1) logn + 1 

provided log(bJa, )  <_ c'n a for positive constants c ' ,a .  Thus, the right 
hand side in Lemma 1 is easily bounded. Now the range outside [a,,  b,] 
is uninteresting because of the following result (a version in which h is a 
random variable is given by Broniatowski, Devroye and Deheuvels, 1989). 

L e m m a  2.2. (Devroye, 1983). Assume K >_ O. If E f [ f , h -  fl  -'+ 0 
for some density f and some sequence h, then h -+ 0 and nh d --+ cx). 
Conversely, if h -+ 0 and nh d -4 oc, then E f ]fnh - f] --+ 0 for all densities 

f .  

Finally, the ratio result in Theorem 2.1 follows from the following two 
lemmas. 

L e m m a  2.3. (Devroye and Penrod, 1984). Assume K >_ O. Then 

g 

inf lim inf n 2/5 inf E / Ifnh -- f l  > 0.86. 
] n-+cr h J 

We note tha t  Lemma 2.3 was only proved in the cited paper for d = 1. 
However, if f and fnh a r e  a density and a kernel density est imate on IR d, 
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and if g and gnh denote the marginal densities for f and f~h (with respect 
to any fixed component) ,  then, 

E / 'gnh -- g' <_ E / 'f,~h -- f '  

(Devroye and GySrfi, 1985). Interestingly, gnh itself is a valid univariate 
kernel est imate with as kernel the marginal density of the original kernel. 
Therefore, a universal lower bound for d = 1 of the type shown in Lemma 
5 then applies equally for all dimensions d. 

L e m m a  2.4. (Devroye and Lugosi, 1996). Let K be a bounded kernel. 
Define 

= J If h - II @ 

If  m > 0 is a positive integer such that 2m <_ n, then 

in fhEJn-m,h  <_ 1 + 2m + 8, [-m 
1 _< infhEJn,h n~--m V n " 

Theorem 2.1 deals with f~ = fn-m,H, not f n H .  In other words, the 
est imate does not use the full sample. In fact, in Theorem 2.1, we may 
replace f~ by f~H without harm. 

3 A n  i m p l e m e n t a t i o n  o f  t h e  f i r s t  b a n d w i d t h  

For one-dimensional densities, we propose a practical implementation. With- 
out loss of generality, we consider the Epanechnikov-Bartlet t  kernel K(x)  = 
( 3 / 4 ) ( 1 -  x2)+. Our method (with bandwidth called hdl) has the following 
parameter  settings: 

m A. m -- [n~ Note that  ~ -+ oc as required. For n = 100, m = 50. 

B. t - 1.5: t > 1 is a threshold to be discussed further  on. As t ap- 
proaches 1, the algorithm slows down but will give increasingly accu- 
rate results. 

C. k = 10: k is the number of intervals considered in a global search for 
the optimum. 
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The algorithm may be described in a few steps: 

. 

. 

. 

Split the da ta  into two sets, A' and Y, where A' = (X1 , . . .  , Xn-r , )  
and y = (X ,~ -m+l , . . . ,Xn ) .  

Compu te  h and H: h is the minimum distance between consecutive 

points in X, H = X(f3(~-m)/41) - X([(,~-m)/4J), and X(j) is the j - th  
smallest of the values in A'. Observe tha t  h < H,  and tha t  for n - m 
large enough, the optimal bandwidth is almost surely in the range 
[h, H]. Define ~* = hv/-h-H. Define T = U/h.  

While T > t do: 

3.1. Define ~ = T 1/k. Let 7/ be the set of k + 1 candidate bandwidths h~ i 
for 0 < i < k. Observe that the first and last bandwidths are h and H 
respectively. 

3.2. For all ~ r ( '  �9 7/ compute A(~,~') = {fn-m,~ > f,~-m,~'}- The 
collection of these sets is called .4. Observe that IAI = k(k - 1). 

1 3.3. For all ~ �9 7/ compute J(~) = maxaEA Ira fn-m,~ -- "~ E x E y  I*ea l" 
3.4. Let ~* be that value in 7/for which J(~) is minimal. 

3.5. Set (h,H) = (~*/(f,~*~). Set T = $2. 

4. Return ~*. 

The choice of the parameters is motivated by computat ional  considera- 
tions. Assume a nice unimodal density with peak value M and with spread 

a, where spread is measured as the difference between third and first quar- 
tiles. Then h is of the order of 1 / ( M n  2) and H is initially close to a, so 
tha t  at the outset,  T ,~ a M n  2. After i iterations, we have T ~ (aMn2) 2i/k. 
We stop as soon as this drops below the threshold t. This occurs roughly 
when 

k log(t) 
i ~ - •  

2 log(aMn 2) " 

The influence of a M  is moderated by a logarithm. For the uniform density, 
a M  = 1/2. If we fill in the other parameter choices and set n = 100, we 
obtain 

5 log 1.7 

log 5000 ' 

tha t  is, i ,~ 0.31. In fact, it is likely that  only one while loop is executed, 
which in turn requires computation proportional to k'2n because IAI = 
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k(k + 1)/2 and because each integral takes time bounded by n if the da ta  
are storedproperly. Discounting the dependence upon the distribution, the 
time grows roughly as 

k 2 n m a x ( i ,  l o g ~ )  �9 

Taking k very small does help, but reduces the quality of the solution, as 
the optimization is done over a rougher grid. 

4 T h e  s e c o n d  b a n d w i d t h  

The second bandwidth of Devroye and Lugosi (1997) does not use a finite 
interval [an, b,~] for the optimization, and thus eliminates the need to pick 
these parameters.  The second difference is that  the class .A is infinite. This 
eliminates the need for a third parameter,  5,,, but renders the optimization 
a bit more problematic. Introduce the class /~k of kernels of the form 

k 

= 
i=1  

where IA denotes the indicator function of a set A, k < oc, ~1, �9 �9 �9 , ~k E 
]R, and A I , . . . ,  Ak are Borel sets in IR d with the following property: the 
intersection of an infinite ray {x : x -- txo, t _> 0}, anchored at the origin, 
with any Ai is an interval. Examples of such A~s include all convex sets 
and all star-shaped sets (a set A is star-shaped if x E A implies Ax E A 
for all )~ E [0, 1]). The Ai's need not be disjoint. However, if the Ai's are 
disjoint rectangles, the sum looks a bit like a Riemann approximation of a 
function. Thus, kernels of the type given here are called Riemann kernels 
of parameter  k. Denote the class of all such functions by T~k. The most 
important  examples include the uniform densities on ellipsoids, balls, and 
hypercubes. 

We first select k and K ~ E/~k such that  

f lK - K'l _< 1 - -  . 

7~ 

Note that  this is always poasible if K is Riemann integrable. The size k as 
a function of n will be discussed further on. A kernel est imate with kernel 
K ~ is piecewise constant  and thus easy to work with in simulations. 
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The second and last choice is that  of a parameter  m <_ n/2 tha t  will be 
used to split the da ta  set into a small test set of size m and a large main 
sample of size n - m. Define the kernel est imates 

n - - m  

, _ _I ~ KIh(X- X~) 
( x )  n m 

i=l 

for all h > 0. Let #m be the empirical measure defined by the rest of the 
da ta  points: Xn-m+l , . . . ,  X,~, tha t  is, for any Borel set A C_ IR d, 

#re(A) = --i ~ IA(Xi). 
m .  

~ = n - m + l  

Let H be that  smoothing factor for which the quanti ty  

- I 
sup #re(A) 
AEA 

is minimal over h E (0, c~), where A is a special collection of sets to be 
defined below. If the minimum is not unique, we choose among the mini- 
mizing densities according to a prespecified rule, for example, we choose the 
smallest one. Observe that  since f /  is piecewise constant  and K ' E T~k, n - m , h  
a minimum always exists. 

As #m(A) is close to fA f for all A, one may expect that  fA f~ is n - m , h  

close to fA f as well if A is not too large. If ,4 is the class of all Borel sets, 
the criterion to be minimized is equal to 1 for all h and becomes useless. 
If .4 is too small, the closeness of fA f~ to f A f  does not imply the n - m , h  
closeness of f /  to f .  Thus, a compromise must be struck. Based on n - m , h  
ideas from Yatracos (1985), for  each u, v > 0, we define the set A~,~ by 

A~,~ = x E IRd : y~ K~(x- X~) >_ y~ K',,(x- Xi) 
i =1  i=1  

= {x: f_m,u(x) >_ 

We call the class of sets 

A = { A u , v : u > O , v > O }  

a Yatracos class. This class becomes very rich, yet remains reasonably 
simple (even though it has an infinite number of members) .  
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Finally, our est imate is 

A d~2 A-m,H �9 

Note that  we have replaced K '  by K again. The kernel K '  is no longer 
needed. We may also use fn = f,~,H and refer to Devroye and Lugosi 
(1996) for afialysis of this situation. 

Let K be Riemann integrable kernel, and let n be a positive integer. 
The kernel complexity of precision 1/n of K is defined by 

a = = m i n { k :  there exists a K'  E Tik such that f lK - K'I <_ I } , 

that  is, a~ is the smallest integer k such that  there exists a Riemann kernel 
with parameter  k whose L1 distance from K is at most 1/n. Clearly, if K 
is Riemann integrable, then a~ < oo for all n. 

T h e o r e m  4.1. (Devroye and Lugosi, 1997). Let K be a bounded (but 
not necessarily nonnegative) kernel, and m < n/2. If  a~ is the kernel 
complexity of K of precision 1/n, then there exists a Riemann kernel K t 
of parameter an such that if K'  is used in the estimate described in the 
previous section, then for all densities f ,  

g t L < - f l  _~ 3 1 + - - + 8  i~fS If~t~-/I 
n - m  

i 4 
log (4e8(m 2 + 1)(1 + 2n~m2(n - m)) 2) 

+ 4 + - - .  

2m n 

C o r o l l a r y  4.1. If we take m = [n/2J,  then 

I i /log(~,%) E I L  - f l  <_ 43i~fE IAh - f l  + c v ~ , 

where c is a universal constant, independent of f and K.  

Corollary 4.2. I f ,n  = o(n), , ,d(n4/~logn) - ~  ~ ,  and ~ = O(n ~) for 
some finite (~, then 

E S l f ~  - f l  _< (3+ o(1)) i fES f t + ~  �9 
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As l i m i n f n ~ n 2 / S i n f h E f l f ~ h  - fl  > 0 for any f ,  K _> 0 and d (see 
Devroye and GySrfi, 1985), we have 

E f  If,, - fl  s u p l i m s u p  < 3 . 
f n - ~  i n f h E f l f ~ h - - f l -  

This universal asymptot ic  bound is shared with the first bandwidth .  How- 
ever, Theorem 4.1 differs because it is entirely non-asymptot ic .  Every fac- 
tor on the right-hand-side of the inequality is explicit and easy to control. 
Note tha t  tradit ional  Taylor series expansions to compute  or bound errors 
in function approximat ions  are no longer useful. The arguments  are en- 
tirely combinatorial .  Below, we briefly indicate the key building blocks in 
the proof. 

L e m m a  4.1.  (Devroye and Lugosi, 1997). bbr each n, m, and for all f ,  

/ [ f i ~ -  f] _< 3i~f f ] f~- , , , ,h -  f[ + 4  AEAsup /A f -- #re(A) + 4  f ] K -  K~]. 

The  first term on the r ight-hand side of the inequality of Lemlna 4.1 
may be bounded by the following result: 

L e m m a  4.2.  (Devroye and Lugosi, 1996). Let K be a bounded kernel. If  
m > 0 is a positive integer such that 2m <_ n, then 

2 m ?V~ ~ i n f h E f l f , ~ - m , h - - f l  < 1 + - - + 8  . 
1 _< infh E f If~,h - f l  - n -  m 

Therefore, 

infh E / - fl < / ( i n f E  [f,~,h-- f[ 1 + - - + 8  
h n - -  77~ 

A suitable upper  bound for suPA~. 4 IrA f - - ~ m ( A ) l  ,nay be obtained 
via the inequality of Vapnik and Chervonenkis  (1971) (see also Devroye, 
1982) for uniform deviations of the empirical measure #m over the Yatracos 
class of sets .A. For e > 0 and ~/,(n,m,k,e) = 4eS(m 2 + 1)(1 + 2 k m 2 ( n -  
nt))2e -2mr , we have in fact 

P{sup fAf >e X 1 , . . . , X n - m }  <_~/~(n,m,k,e), 
AEA 

when K t is a Riemann kernel with parameter  k. 
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5 K e r n e l  c o m p l e x i t y  

In this section we obtain bounds for ~,~, the kernel complexity of precision 
1In appearing in the theorem, for several examples of kernels. Note that  
the theorem has the form 

E S i f , ~ - f i < - 3 ( l + - - + 8 W / - ~ - ) i ~ f n _ m  

Such kernels are polynomially 
All kernels that  we have found in papers are in 

whenever n,~ = O (n ~) for some a < oc. 
Riemann approximable. 
this class. 

UNIFORM KERNELS. If K(x)  = IA(X) for a star-shaped set A, then 
obviously am = 1 for all n > 1. 

ISOSCELES TRIANGULAR DENSITY. If K(x)  = ( 1 -  Ixl)+, then elementary 
calculation shows that  for all n, ~,, _< n + 1. 

SYMMETRIC UNIMODAL KERNELS. As a first main example, consider 
symmetr ic  unimoda[ densities (i.e., K >_ 0 and f K = 1) on the real line. 
Let/7 be the last positive value for which f~o K _< 1/(4n).  Parti t ion [0,/7] 

and [-/3, 0] into N = [4nK(0)/~] equal intervals. On each interval, let K r 
be constant  with value equal to the average of K over that  interval. Let 
7 = tS+f~ ~ K/K(t3),  and set K'(x)  = K(tS) on [/3,/~ +7]  and [ - / 7 - 7 , - / 7 ] .  

Note tha t  f If  r = 1, f l K -  Krl <_ l /n ,  and that  K r is Riemann with 
parameter  k = 2N + 2 <_ 8nK(0)~  + 10. Thus, a,, <_ 8nK(0)/~ + 10. 

E x a m p l e  5.1. BOUNDED COMPACT SUPPORT DENSITIES. If K is symmet-  
ric, nonnegative, unimodal (such as the Epanechnikov-Bartlett  kernel) and 

K(x)  <_ al[_b,b](X), then an _< 8nab + 10. 

E x a m p l e  5.2. THE NORMAL DENSITY. When K(x)  = ( V ~  -1 e -=212, 

we h a v e K ( 0 ) - -  ( v ~  -1 Since f o r / ~ >  1 

S C~ 1 _=2 1 1 2 I _/~212 _ ~ c - ~  12 < 
, 
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we may take/~ = V/2 log(4n/x/~Tr). Thus, for all n > 1, 

8 n ~  
~n<_ ~ + 1 0 .  

E x a m p l e  5.3. THE CAUCHY DENSITY. Take K(x) = 1/(lr(1 + x2)). Note 
that  K(0) .=  1/Tr, and that  ~ = 7r/(4n) will do. Therefore, 

32n 2 
~n_< 2+10.  

E x a m p l e  5.4. DENSITIES WITH POLYNOMIAL TAILS. Note that  if K is a 
symmetr ic  unimodal density, and [K(x)l < c/(1 + [xp +1) for some c < 
oc, 7 > 0, then an = O (hi+l/w). In fact, for most cases of interest, 
ten = O (n ~) for some finite constant  t~ > 0. This remains so even for d 
dimensions. 

~> KERNELS OF BOUNDED VARIATION. If K is symmetr ic  and a difference 
of two monotone functions, that  is, K = K 1  - K2, K1 $ 0, K2 $ 0 on [0, oo), 
then each K1, K2 may be approximated as above. Thus, in particular, if 
K is of bounded variation, and IK(x)l < c/(1 + Ixl ~+a) for some c < oc, 
7 > 0, then we may approximate with aN = O (n1+1/'~). Nearly every 
one-dimensional kernel falls in this class. 

<> PRODUCT KERNELS. If K = K~ • - ' -  • Kd is a product of d univariate 

kernels, and if we approximate Ki with K~ with parameter  ~(i),~e for all 

i (where ~(i) is the kernel complexity of Ki of precision nd) and form 
? l , d  ' 

K' = K~ x . . .  • K~, then K '  is a weighted sum of indicators of product sets, 

and it is Riemann with parameter  not exceeding IIi~=l ~(i) Furthermore,  rid" 

f [K-KII  < f lI(1x...XKd_I•215 

+ .. .  + f IK1 • K ; . . .  • - K~ • K;-- .  • 

< 
- -  - -  n �9 

Thus, it suffices to replace ~n throughout  by ~i~=l N (i) and only worry nd' 
about  univariate kernel approximations. 
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<~ KERNELS THAT ARE FUNCTIONS OF ]iX H. A s s u m e  t h a t  K(x) = M(IIxlI), 
where M is a bounded nonnegative monotone decreasing function on [0, oc). 
Then we may approximate M by a stepwise constant  function M ~, and use 
the Riemann kernel K'(x)  = M'(l lxl l ) in the est imate as an approximation 
of K.  Clearly, 

i IK(x)- K'(x) ldx = L ~176 - M'(u) ldu'  

where C d is d times the volume of the unit ball in IR d. We may define M p as 
follows. Let DI be the largest positive number for which f~o cdud_~M(u)d u <_ 

1/(2n).  Parti t ion [0, D1] into N = [2ncdM(O)/J d] equal intervals. On 
each interval, let M p equal to the average of M over tha t  interval. Let 
7 = t~+f~o cdud_lM(u)du/M(t3),  and set M'(u)  = M(/3) on u E [/7,/7+7], 

and let M~(u) = Ofor u > % Clearly f K  ~=  1, and tha t  K ~is Riemann 
with parameter  k = N + 1 < 2ncdK(O)~ d -I- 2. Moreover, 

S 'K(x)-l%''(x)idx -- L cdud-liM(u)-Mt(u)idu 

/; + Cdud-llM(u ) - M'(u) ldu 

fo < 2-~ + cdC~d-I IM(u) - M ' (u ) ldu  

1 M(0)/3 < 1 
<- 2n "4- Cd~ d-1 N n 

Thus, 
~ <_ 2ncdM(O)t3 d + 2 . 

T H E  MULTIVARIATE STANDARD NORMAL KERNEL. We may apply the 
bound of the previous paragraph to the multivariate normal density. First 
note tha t  it suffices to take/7 = 2 ~ - i ~ n .  From this, we deduce that  the 
kernel complexity is 

~ = O(n log d/2 n) . 

6 I m p r o v e m e n t s  and new m e t h o d s  

The est imate probably improves if we average h over several or all subsets 
of subsamples of size 7n drawn from X a , . . . ,  Xn. So, rotat ing the held out 
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sample may stabilize the bandwidth .  

The  opt imizat ion is t ime-consuming and requires fur ther  investigation. 
This compels us to see if perhaps simple iterative methods  exist t ha t  give 
acceptable results in reasonable time. Define A = [fn-m,h > fn-m,h'], 
B = [f~-m,h < f~-m,h']" Note tha t  

1 
~A(fn-m,h-- fn-m,h')= ~ / 'fn-m,h-- fn-m,h' 

Define quality indices 

Q(h) = max ( /Afn-m,h - #m(A) 

THE RECURSIVE ALGORITHM. 

C o m p u t e  [a, b], a range for h picked as for the first bandwidth .  Set 

Repeat  forever: 

. 
h' = ~ he'~N if h E [a,b] 

t al-Vb v i f h • [ a , b ]  

where a > 0, g is normal  (0, 1), and U is uniform [0, 1]. A fixed value 
a = 1.6 was used in the experiments  tha t  follow. 

2. Set 
h if Q(h) ~_ Q(h') 

h = h t otherwise. 

W h a t  is the asymptot ic  behavior of h and of f I f n h -  f l as we continue doing 
this? Prel iminary experiments  reported below suggest tha t  the method  is 
relatively robust .  
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THE ITERATED BANDWIDTH. Let hdl,it be the bandwidth obtained for ra 
n ~ (m = 50 when n = 100) after 4 v ~  iterations (40 when n = 100). 

THE ROTATED BANDWIDTH. If the above method is applied with the held 
out sample rotated, then the geometric average of the bandwidths will be 
denoted by hdl,rot. 

7 T h e  d o u b l e  k e r n e l  e s t i m a t e  

In this section, we familiarize the user with the double kernel estimate 
(Devroye, 1989b) and return temporarily to dimension d = 1. Standard 
asymptotic  theory in L2 (Bartlett ,  1963; Epanechnikov, 1969) and L1 (De- 
vroye and GySrfi, 1985) shows that  for smooth densities, the asymptotically 
optimal nonnegative kernel is given by 

K(x)  = ~(1 - x2)+ . 

This kernel is inadmissible in the expected L2 norm. By that  we mean that  
there exists another  kernel L and corresponding density est imate gnh such 
that ,  with the same h in both estimates, 

E / ( g n h  - f )  2 _< E / ( f n h  - f )  2 

for all n, all h and all densities. This follows from the expressions given in 
Watson and Leadbetter  (see Cline, 1988): it suffices to choose L such that  
its Fourier transform is max(0, ~b(t)), where g) is the characteristic function 
for K: 

~b(t) = 3(sin t - t cos t) 
t 3 

However, L takes negative values, and hence, the comparison ofgnh with fnh 
is not considered "fair" by some. This interesting anomaly can also be put 
another  way: if we use K and pick h such that  l imsup n 2 / S E f  If,~h -- f l  < 
oc, then there exists another  kernel L and another sequence h ~ such that  
the kernel est imate gnh, with (L, h ~) is asymptotically infinitely superior: 

E / Ignh' -- fl : o(7~-2/5) �9 

For this existence result, see section 7.5 of Devroye (1987). It suffices to 
take a symmetr ic  kernel L integrating to one, having compact  support,  
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possessing a zero second moment.  We cannot in general tell how to choose 
h ~. This is frustrating, because nobody likes to work with the knowledge 
tha t  there is something bet ter  out there. However, it is also a blessing, as we 
will use this property to our advantage to design an automatic  smoothing 
factor selector. 

In the double kernel method,  one takes two different kernels K and L 
whose characteristic functions do not coincide on any open neighborhood 
of the origin. The kernel est imate with smoothing factor h and kernel K 
is denoted by fnh, while for kernel L, we will write gnh. The smoothing 
factor that  will be employed in practice is H, where 

= arg rain f [fnh - gnh[ �9 
H 

h>O J 

There are two fundamental  properties that  make this est imate useful. First 
of all, for any density f ,  the est imate is consistent: 

E f [fnH -- f[ -+ O. 

This feature distinguishes it from many other bandwidth selectors, which 
fail to yield consistent estimates in all cases unless the bandwidth is un- 
naturally restricted to a deterministic interval. Note that  the minimization 
above is performed over the entire positive hairline. 

The second property goes to the heart  of the mat ter .  Assume that  K 
is a symmetr ic  positive kernel with f xK = 0 and tha t  L is a symmetr ic  
kernel with f xL = f x2L = f x3L = 0, f x4L ~ O. Such kernels are 
called fourth-order kernels. Examples include Mtiller's kernel (105/64)(1 - - 
5x2 + 7 x 4  - 3 , _< 1 (Stiller, 1984), the Gasser-Mtil ler-Sammitzsch 
kernel (75/16)(1 - x 2) - (105/32)(1 - x 4) , Ixl <_ 1 (Gasser, Sti l ler  and 
Mammitzsch,  1985; see also Scott, 1992 and Devroye, 1989b), and the 
simple kernel ( 9 -  15x2)/8 , Ixl _< 1 (Berlinet and Devroye, 1994). There 
are simple ways of constructing fourth-order kernels from s tandard second- 
order kernels K: Stuetzle and Mittal (1979) suggest twicing: 2K - K �9 K. 
Schucany and Sommers (1977) propose the kernel (31( + xK')/2 (see alsb 
Jones, 1990). If r represents the normal density with variance a, then one 
could also use 2r - r (Su-Wong, Prasad and Singh, 1982) or (1/2)(3 - 
x2)r (Wand and Schucany, 1990; Deheuvels, 1977a,b). 

Assume that  both K and L are symmetric,  bounded, and have compact  
support.  Also, both K and L must be L1 Lipschitz ( that  is, f [K1 - Kh[ is 
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{f.h} 

O f f 

F i g u r e  1: We show two families of density est imates in the set of all 
densities. The  double kernel bandwidth  minimizes the L1 distance between 

fnh and gnh. 

bounded by C (h  - 1) for some constant  C and all h > 1, and similarly for 
L). In tha t  case, E f [gnh -- f[ = o(E f [fnh -- f[) when f is smooth  enough: 
more precisely, when f is absolutely continuous with derivative f~, which 
in turn  is absolutely continuous,  and when 

f .  f ( x  + y ) <  oo /sup dx 

VIyI<~ 
(a tail condition on f ) ,  then the following property holds true: 

E f [fnH -- f[ 1 + e  
lim sup -- 1 -- e 

n-+oo infh E f [f~h -- f[ < 
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where 

(Devroye, 1989b). The upper bound can be pushed as close to one as 

desired by stretching L out. One may obtain a limit of one if L is fixed and 
we replace gnh by gnh', where h~/h --4 oc in a prescribed manner. 

The sheer simplicity of the estimate, and its versat i l i ty-- there  are in- 
finitely many pairs K and L one may choose f rom--should  make this an 
at t ract ive alternative. The greatest  drawback is that  the method is numer- 
ically slow, as we need to minimize a multimodal function, whose values 
are computed as integrals. We also note that  it is unknown if the double 
kernel est imate is suitable, let alone universally suitable. As shown above, 
it is suitable uniformly over large subclasses of densities. 

CONNECTION WITH THE BOOTSTRAP METHOD. When L = 2 K -  K * K,  
it is easy to see that  H is identical to the H obtained if we had taken 
L = K ,  K.  This has an intriguing interpretation, as gnh : fnh * K h  in the 
lat ter  case: H minimizes 

/ Ifn+~ - fn~ * Khl �9 

The density fi~h * Kh is that  of a sample drawn from fnh (as one would draw 
in a smoothed boots t rap) ,  in which each observation receives an additional 
per turbat ion in the form of h W ,  where W has density K. In other words, 
we are minimizing the distance between the density of X N  + h W  and that  
of X N  + h W  + h W  ~, where N is a random integer between 1 and n, and W, 
W ~ are i.i.d, per turbat ions with density K.  This sort of criterion is closely 
linked to the criteria proposed in the boots t rap  literature. 

(~ A STABILITY CRITERION. Continuing in the same vein, we note that  
formally, if #n is the s tandard empirical measure, f n h  = #n * K h .  We are 
thus looking for the operator  * K h  that  yields the most stable solution: one 
application of the operation yields fi~h = #n * Kh, while two applications 
yields gnh = #n * Kh * K h ,  which is by definition very close to fnh. 



244 L. Devroye 

8 S u r v e y  of  o t h e r  u n i v a r i a t e  b a n d w i d t h s  

8.1 L1 plug-in methods 

Consider the class .7" of all densities f with compact support, such that 
f is absolutely continuous, f '  is absolutely continuous and there exists a 
version of f "  that is bounded and continuous on the real line. Define 

-: 71-', ,-- i.'-<.>'. 
and A(K) = ~415fl115. We also introduce the function V(u) dz--f EIN - ul, 
where N is a normal (0, 1) random variable. If f E P and 

then 

lira h = O ,  lim nh=oc ,  
n- .4 -oo  n - - t o o  

EJnh - O~ / i - -~b  ( nV~ fllf"l "~ o(h'2) + o(l/v:n-h) \ <- 

(Devroye and GySrfi, 1985). As noted by Hall and Wand (1988), this 
implies the following. For f E ~-, 

where 

n 2/5 inf EJnh -+ 2-1/SA(K)Q(f) , 
h 

Q(f) de=fin ~ ~ . 

A generalization of this result that is valid even if f ~ jc, e.g., when f 
is the isosceles triangular density or the Laplace density, is given in De- 
vroye and Wand (1993). For f E ~', we note among other things that the 
asymptotically optimal formula for h is given by h = (c2/n) 1/5, where 

c = argmin,>0 e k, ~ ] " 

Needless to say, this is a cumbersome formula to work with. An adaptive 
method by Hall and Wand (1988) based on good pointwise estimates of 
f "  and vff  was shown to yield asymptotic optimality for a subclass of Jr. 
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Devroye and Gy5rfi (1985) elected to pick h so as to minimize a simple but 
more manageable upper bound for the expected L1 error: for f E 9 r ,  if 

then 

B(/)= ( f  ( f  ,/",) 1" , 

inf r dee Q(f) u>0 --= "/---- 1.028493... _~ ~ <_ 5(87r) -2/5 --= 1.3768102 . . . .  

The choice of h for which we have 

n2/SEj,~h ~ 2-1/SA(K) • 1.3768102... B(f) 

is given in Devroye and Gy5rfi (1985, p. 107): for the Epanechnikov kernel, 
with ~ = x / ~  and/3 = 1/5, this yields 

h= \ - ~ f  ~f-~ n -1/ ~ . (8.1) 

This h is often, but not always, close to the true optimal h. A bandwidth 
obtained by estimating f V~ and f If"] and plugging the estimates back 
into (8.1) is called an L1 plug-in method. 

8.2 L1 r e f e r ence  density method 

If (8.1) (or a similar asymptotic formula for h) is applied based upon a 
parametric assumption of f ,  we obtain the reference density method. For 
example, if we (usually, incorrectly) assume that f is the normal (#, a 2) 
density, the bandwidth in (8.1) can be written as 

-~) 1/5 

h = a  \ 8n ] = 1 . 6 6 4 4 . . . a n  -1/5. (8.2) 

Hall and Wand (1988, Table 4.1) report that the optimal h for this family 
of densities varies asymptotically as 

h = 2 . 2 7 9 . . . a n  -l/S . 



246 L. Devroye 

The parameter  a is easily estimated by ordinary statistical methods.  For 
the normal reference density, Deheuvels (1977a,b) suggests using 

~2 1 n 
-- n ~  E ( X i -  ~-)2 (8.3) 

i----1 

as an est imate of a 2. A robust method advocated by many uses the in- 
terquarti le est imate 

----  X[an /4 ]  - X[n /4 ]  X[3n/41 - X[n/4] ( 8 . 4 )  
Finv(3/4) -- Finv(1/4) ---- 1 .35. . .  ' 

where F is the s tandard normal distribution function. One really needs 
a scale est imate that  is less sensitive to outliers than averages and more 
accurate than quantile-based quick-and-dirty estimates. Janssen, Marron, 
Veraverbeke and Sarle (1992) tackle this problem head-on, and make several 
interesting suggestions, some of which were implemented by Jones, Marron 
and Sheather (1992) in an L2 setting. 

More versatility could be created by considering a large reference family 
such as Pearson's or Johnson's that  covers all possible combinations of 
skewness and kurtosis (see Devroye, 1986, for descriptions). We are not 
aware of any a t t empt  along these lines in the literature, except for a passage 
in Scott (1992, p. 56-57) where lognormal and t families were considered 
ms reference densities. 

The reference density method with a normal reference density leads to 
the following bandwidths in our simulations. 

�9 href,L1 = 2 .279an  -1/5, where ~ is defined in (8.4). 

�9 hDH,L1 = 2 .279an  -1/5, where ~ is defined in (8.3). DH is a mnemonic 
for Deheuvels and Hominal. 

�9 href,ll = 1 .6644an -1/5, where ~ is defined by (8.4). 

8.3 L2 plug-in methods 

The plug-in method for obtaining an L2-optimal smoothing factor was in- 
troduced by Woodroofe (1970), who obtained an asymptotically optimal 
expression for the optimal h ms a function of f and n, and, in a second 
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step, estimated the unknown functional of f (in this case, f f,,2) from the 
data in a nonparametric manner using a pilot bandwidth. For a similar 
idea, see Nadaraya (1974) and Deheuvels and Hominal (1980). To mini- 
mize E f ( L  - f)2 when f is sufficiently smooth and K is a nonnegative 
kernel, the asymptotically optimal h has the following form: 

{ A(K)~'/5 
h= ~ 7 ] ~ :  , (s.5) 

F -  
where A ( K )  = (~/~)~, ~ = ~ / :  K~ and ~ = : x '~K(x )  dx. The kernel K 

asymptotically minimizing E f ( f n  - f)2 among nonnegative kernels is the 
Epanechnikov kernel (3 /4 ) (1 -  x2)+ (Bartlett, 1963; Epanechnikov, 1969). 
With this kernel, the formula reduces to 

15 (8.6) h :  ( T t f - ~ )  1/5 

(see for example Watson and Leadbetter (1963), Rosenblatt (1971), or De- 
heuvels (1977a,b)). 

Ways of estimating the unknown factor f f,2 in the formula above 
abound: see Park and Matron (1990), Park (1989), Hall and Marron (1990), 
Sheather and Jones (1991), Hall and Marron (1987a,b), and Hall, Sheather, 
Jones and Matron (1991). We include in our experiments the method of 
Sheather and Jones (1991), which performed very well in the studies of Cao 
et al. (1994), Park and Turlach (1992), and Jones, Marron and Sheather 
(1992). In the last paper, one also finds comparisons with related band- 
width selectors suggested by Engel, Herrmann and Gasser (1992). Sheather 
and Jones suggest estimating f f ,2 by 

. z . ' "  : 
i,j i,j 

where h ~ is yet another bandwidth, and L is a smooth kernel, for which we 
will take standard normal, as in Cao et al. (1994). Theoretical considera- 
tions suggest that the optimal h ~ here is given by the formula 

{ 2L"(o) ~,/7 
~"-~-~-- 2 \nff fx L] 
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Cao et al. (1994) suggest estimating f fro2 by the reference density method 
based upon the normal density. Mimicking them, we estimate f f,,2 by 

15 
16v/-~ ~7 , 

where ~ is the robust interquartile estimate of the standard deviation. Re- 
placement shows then that  

(" 32 ,~1/7 

The resulting bandwidth is called 

hpi,L2 = min hms,L2, ~pp 

where 
hms,L2 ---- 3(3/7n)1/sa ---- 2.532362...  ~n -1/5 

is a safe "maximal" bandwidth (Terrell, 1990; Scott and Terrell, 1985), 
and ~ is as in (8.3). It is easy to show that  for all densities, hpi,L2 ----> 0 
and nhpi,L2 --> oc in probability whenever L "  is uniformly bounded. This 
implies that  hpi,L2 is universally consistent. 

Other L2 plug-in methods were developed by Chiu (1991), Scott and 
Factor (1981), Scott, Tapia and Thompson (1977), Park and Marron (1990), 
Park (1989) and Sheather and Jones (1991). 

The formulae at the basis of most plug-in methods are valid under 
certain conditions on the density that  are difficult to verify in practice. For 
example, the standard formulae for L1 and L2 plug-in smoothing factors 
are not valid for uniform or exponential densities. If the formulae were 
valid, one should still remember that  they are only valid asymptotically, 
with no guarantees regarding the applicability for finite n. 

Even if we accept that  n is large enough such that  the asymptotics may 
kick in, using a formula designed for L2 provides us with little clues as 
to its suitability for L1. Nevertheless, as the L2 plug-in methods are very 
popular, it is necessary to see how they perform even if L1 is the criterion 
that  is considered. 
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Even if we accept the formula and its validity, one typically needs ad- 
ditional guarantees in order to insure the convergence of the estimates of 
factors such as f If"l or f f , a .  

On the other hand, nearly all comparative simulations indicate that  
plug-in methods are competitive. In their favor, one might argue that  
small samples from arbitrarily ill-behaved densities are all but indistin- 
guishable from same-sized samples drawn from smooth small-tailed densi- 
ties, for which the plug-in formulae are approximately valid. Finally, one 
should not forget that  plug-in methods do not require any optimization at 
all. This may be important  when designing real-time software. 

8.4 L2 reference density methods  

The reference density method with a normal reference density used in (8.5) 
leads to the formula 

h : o- ( ~ - ~ )  1/5 

This suggests the bandwidths 

�9 hDH,L2 = 2-345an  -1/5, where ~ is (8.3). 

�9 h r e f , I , 2  = 2.345 ~ n  -1/5, where ~ is (8.4). 

= 2 . 3 4 5 . . . a n  -1/5 . 

8.5 L2 cross-validation 

Rudemo (1984) and Bowman (1984) proposed picking h so as to minimize 
an estimate of 

An unbiased estimate of this is given by 

M,h  = ]2 h n (n - -  l) Z K h ( X i -  X j )  . 
iCj 

The smoothing factor for which Mnh is minimal is called the L2 cross-valid- 
ation estimate. Asymptotically equivalent criteria have been proposed by 
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many. An example includes 

f 2 
7l 

7~ 

fnhi (X,) , 
i=1 

where f,~hi is the kernel estimate with Xi deleted. The optimality of the L2 
cross-validation estimate H was established in Hall (1983), Burman (1985) 
and Stone (1984). From the latter paper, we retain that  

f (f2H _ f)2 
---+ I a.s. 

infh(f~h -- f)2 

under the sole condition that  f is bounded. The L2 cross-validation method 
is too volatile,, leading often to undersmoothing (Hall and Marron, 1987a,b; 
Scott and Terrell, 1987; Hall, Marron and Park, 1992; Marron (1987)). Hall 
and Marron (1991) found that  the L2 criterion that  is minimized typically 
shows many local minima. Devroye (1989d) points out that  for any constant 
a > 1, one can find a density f such that  with probability tending to one, 
H _< n -a. The smoothing factor is thus much too small, leading to a 
divergent estimator. The densities in this class of counterexamples all have 
infinite peaks. 

Modifications proposed later include biased cross-validation (Scott and 
q~rrell (1987)), Stute's modified cross-validation (Stute, 1992), smoothed 
cross-validation (Jones, Marron and Park (1990)), presmoothed cross-valid- 
ation (Hall, Marron and Park (1992)), and the method of Jones and Kap- 
penman (1992). All methods essentially minimize 

f K 2 1 
n----h + --n2 E M h ( X i -  Xj) (8.7) 

i#j 

for some function M. We conjecture that  for any pair (M, K), the mini- 
mizer of (8.7) is not universally consistent. 

8.6 T h e  bootstrap method 

In the bootstrap, one picks h so as to minimize 

E* f (ff~h(X) -- Ah,(X)) 2 
J 

d x  
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where h I is some pilot bandwidth, f*h is the kernel estimate with bandwidth 
h based upon a bootstrap sample X~ ' , . . . ,  X~, and E* denotes expected 
value with respect to this bootstrap sample. The choice of h t and the boot- 
strap sample distribution have been the subject of various recent research 
projects: see Taylor (1989), Mihoubi (1992), Faraway and Jhun (1990), 
Cao (1990), Hall (1990), Cao et al. (1994) and Marron (1992). None of the 
bootstrap methods deals directly with the L1 error and for this reason, the 
method is not included in this study. 

8.7 O t h e r  m e t h o d s  

The idea of using spacings to select parameters has been explored by many 
researchers, both in a finite parameter setting (Cheng and Amin, 1983; 
Ranneby, 1984) and in a more general context (Roeder, 1990). Two band- 
width selectors based upon statistics related to spacings are studied and 
compared by Berlinet and Devroye (1994). 

The number h > 0 maximizing 

(X0, 
i-----1 

where f~hi is the kernel estimate based upon a sample of size n -  1 with Xi 
deleted from X 1 , . . . ,  Xn, is called the maximum likelihood cross-validation 
method. It was introduced by Duin (1976) and Habbema, Hermans and 
van den Broek (1974), and was later modified by Marron (1985). Conver- 
gence conditions were established by Chow, Geman and Wu (1983) and 
Devroye and GyJrfi (1985). Unfortunately, when the distribution has tails 
that decrease exponentially quickly or slower, the estimator is not consis- 
tent. This phenomenon was first observed by Schuster and Gregory (1981), 
while necessary and sufficient conditions of convergence are given by Bro- 
niatowski, Deheuvels and Devroye (1989). For the size of the smoothing 
factor, see Hall (1982) and van Es (1988, 1989). The estimate tends to min- 
imize the Kullback-Leibler distance between f~ and f,  and has no direct 
relationship to the L1 error. A universally consistent estimate can be ob- 
tained by transforming the data to [-1, 1] via a monotone transformation 
like x :--+ x/(1 + Ixl), applying the maximum likelihood cross-validation 
method, and re-transforming the data (Devroye and GyJrfi, 1985). In 
most studies carried out to date, and in particular in the study of Cao et 
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al (1994), the maximum-likelihood cross-validation method performed very 
poorly. For this reason, it is not included in our simulation experiment. 

Other interesting estimates based upon a Kolmogorov-Smirnov type 
criterion or penalized likelihoods were proposed by Eggermont and LaRiccia 
(1995, 1996). 

8.8  D o u b l e  ke rne l -doub le  h m e t h o d  (Ber l ine t  and  D e v r o y e ,  1994) 

If K and L are a pair of kernels of second and fourth order respectively, we 
may define the double kernel-double h method by 

(H, H') = arg m i n / I f n h  - -  g n h ' l  , 

where the kernel estimates are based upon the same data but different 
kernels K and L respectively. The optimization is not a sinecure, of course, 
but we believe that this method is asymptotically optimal in the sense that 
E f I f u l l -  fl  ~" infh E f lfnh - - f l  for all smooth densities with a small 
tail. For small sample sizes, h ~ tends to hover around the value that makes 
f IKh - Lh, I smallest, and thus, h'/h tends to remain fairly constant. The 
effect of the double optimization is only felt at larger sample sizes. The 
theoretical properties of this method remain largely unknown. 

9 P r a c t i c a l  i m p l e m e n t a t i o n  of  t h e  d o u b l e  k e r n e l  m e t h o d  

It is computationally interesting to work with kernels that are piecewise 
polynomials of low order. For this reason, we suggest the double kernel 
pair 

3(1_x  2) , Ix l<l  K ( x )  = _ , 

L(x) 
{ 7-31x2 if Ixl < 1/2 

4 

= ~2-1 if 1/2 < Ixl < 1 
0 if 1 < Ixl 

In our simulation study we will use four kernels defined from L by rescaling: 

 L(x) 
L2I(x) = 21 -~ ' 
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with l = (1.2),(1.2)2,(1.2) 3 and (1.2) 4 . We denote the double kernel 

smoothing factor by hdk,1, hdk,2, hdk,3 and hdk,4 respectively. The the- 
ory tells us tha t  for large n, the scale factor of L should exceed that  of K.  
This is why we do not consider the case I <_ 1. 

When minimizing either J,~h = f If~h -- f l  or J~h = f tfnh -- g~hl with 
respect to h, we are faced with a multimodal optimization problem over 
an unbounded interval. The optimization is greatly facilitated by two al- 
gorithmic tricks: 

F I R S T  T R I C K :  QUICK D E T E C T I O N  OF A F INITE INTERVAL [a, b] TO WHICH 

WE MAY RESTRICT THE SEARCH. It is possible to find simple functions x(h)  
and ~(h) with the following property:  x(h) $, X(0) = 2, ~(h) 1" 2 as h 1" co, 
and 

J~h >_ m a x ( x ( h ) , ~ ( h ) )  �9 

The constant  a is then easily determined as the largest number of the form 
href,h/2 i with the property that  x(a)  > Jnhrof.h, and b as the smallest 

number of the form href,ll • 2 i with the property that  ~(a) > J~hrefla �9 This 
procedure works with any start ing point, not just  href,hJ1865. For J~h, 
the same thing is valid, except that  the limits of the functions X and 
are f IK - LI, not 2. The following functions are valid for J~h when f is 
unimodal with mode at m. We let s be the upper bound of the suppor t  of 
the kernel K (one, for the Epanechnikov kernel). In what  follows, F and 
F~ are the distribution functions for f and f~h respectively, X(o) = - c o  
and X(~+I) = co. We also assume that  K has a mode at zero, and define 
u < v as the two roots 

U = inf{x : x <_ m; f ( x )  >_ K ( 0 ) / h }  ,v = s u p { x :  x >_ m; f ( x )  >_ K ( O ) / h } ,  

These numbers are on both sides of the mode of f .  

x (h )  m a x  (2  - + 1 - F ( m  + , 

; 

i=0 

~(h) = max (2 (F(v)  - F (u )  - ( v -  u ) K ( O ) / h )  , 

2 ( F n ( X o ) )  + 1 - Fn(X(n)))  - 2 ( F ( X o ) )  + 1 - F ( X ( ~ ) ) ) ) .  
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For J~ ~h, we cannot use the unimodality of f ,  and are therefore somewhat 
more restricted. Let ~ be the sample mean, and let C be the Lipschitz 
constant  for K - L. Then 

4 ( h ) = i l K - L I -  1 
n 

E m i n  2 iK- LI, 
i=1 

+ ix<,) \{_l)clz<,)- 

n - 1  

l i lK-- Ll {~=2 I[x(,-1)2h<_X(i) <_X(,+~}-2h] ~ ( h ) -  n 

+ I[x(1)+2h<X(2)] + I[x(._~)+2h<X(~)] } �9 

These bounds are used in all our computat ions of inf Jnh and inf J'nh" 

<~ S E C O N D  T R I C K :  AVOID LOCAL MINIMA BY P R O F I T I N G  FROM L I P S C H I T Z  

C O N T I N U I T Y .  The minimization is also simplified because J,~h and J~nh 
satisfy the following simple Lipschitz condition: 

S Clh - h'l 
I J .h - -a .h ' l  < IKh-gh, I <_ max(h ,h ' )  ' 

where C is some finite constant  depending upon the kernel. Also, 

S CIh- h'l ]Jtnh -- J~h,I < I ( K -  L)h - ( K -  L)h,I <_ max(h ,h ' )  ' 

where C is some finite cons t an t  depending upon K - L. Therefore, the 
minimization can be carried out on a grid designed for a certain accuracy. 

10 A m o d i f i e d  d o u b l e  k e r n e l  m e t h o d  

Berlinet and Devroye (1994) introduce two versions of the plug-in method 
for use in an L1 context.  Both are based upon the approximately asymptot-  
ically optimal formula for h given in the section on the L1 plug-in method: 

(j15/(2~ -) f C-i) ~i~ n -ll~ 
h =  f If"l 

Let K, L, f,~h and gnh be as in the previous section. Here gnh uses LI.~, L 
with a stretch of 1.5. Also hdk represents the double kernel bandwidth based 
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h 

0 a h b 
0 

F i g u r e  2: A hypothetical L1 error J,~h is shown as a function of h. Also 
shown are the lower bounds x(h) and ~(h). The figure illustrates how one 
computation of J,~h directly leads to an interval [a,b] that contains the 
overall minimum, and yet stays bounded away from 0 and oc. 

upon (K, LI.s). In algorithmic format, the bandwidths hpi,ll and hpi,L 1 are  
defined as follows. The former will be referred to as the L1 plug-in method. 
The latter will be called the improved L1 plug-in method. 

h' +--- href,L, (hdk) 
A:yvT  

Av~f (K-L)~ R = ~Y~-Kf If.h,--g.h'l 

h" = h'm x @, 

h" f x2K 
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is defined by (8.3) 
hms,L1 -= 2 .71042. . .~n  -1/5 

hpi,ll(hpi,L1) = min .4 n -1/5 , hms,L1 

R e m a r k  10.1. A is an estimate of f x/~, and B is an estimate of f If"l. 
hms,L1 is a safe "maximal" bandwidth derived on page 113 of Devroye and 
GySrfi (1985). The coefficient 2.71042.. .  is computed for the Epanechnikov 
kernel and is equal to (984157r4/65536) 1/5. Note also that  both bandwidths 
are universally consistent (Berlinet and Devroye, 1994). Finally, both band- 
widths are rather robust in practice. 

11 C o m p a r i s o n s  a n d  s i m u l a t i o n s  

The extensive comparative simulations carried out by Cao, Cuevas and 
Gonzs (1994) reveal that  the time-honored plug-in method is 
exceptionally good. Some modifications of the L2 cross-validation method 
are not far behind, and the double kernel method typically ends up third 
or four th  out of ten methods. After their simulation, Berlinet and Devroye 
(1994) proposed the modified double kernel estimate, a hybrid between 
L1 plug-in and double kernel methods, and found this modification to be 
excellent against 18 methods for 28 different test densities. Another conclu- 
sion of the Spanish study is that  the double kernel method never performs 
poorly--i t  is very robust. 

In the determination of bandwidths, some believe that  scale is impor- 
tant,  as measured by the collection of values {IXi  - X j l ) .  This is false. A 
density is only a tool for computing probabilities. Hence good bandwidth 
design should be based on probabilities. The double kernel method,  the L1 
plug-in method, the spacings method, the modified double kernel method 
and the bandwidths of Devroye and Lugosi (1996, 1997) do just that.  

Cao, Cuevas and Gonzs (1994) consider L1, L2 and L~  
error criteria, and provide us with a wealth of practical information. Fe~v 
other studies offer practical experiments with the L1 criterion. An example 
is Bean and Tsokos (1982), who are mainly concerned with penalized or 
smoothed maximum-likelihood estimation. Various L2 cross-validation and 
L2-based plug-in methods are compared from an L1 point of view on six 
normal mixture test densities in Park and Turlach (1992). 
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Define 
f ,  

JnH = ] ]fnH -- f[ I 

We will compare this with the best possible error, 

Qn = i ~ f / [ f n h  -- f[ 

which measures the quality of the sample (hence the choice of the symbol 
Qn). To partially offset the variablity in Q~ and J~H, one might look at 
quantities such as J ~ H - Q ~ ,  ( J n H - Q ~ ) / Q ~  or JnH/Q~. Especially the last 
two quantities are convenient as they allow a comparison across different 
densities on a more or less absolute scale. Note that  we do not a t tach a lot 
of importance to E f  [f~h -- f[ per se, as the E averages over many data  
sets, and this clearly is not something one would have in practice. 

For a fair comparison, all the kernels are the same--we  pick Epanech- 
nikov's kernel because of its optimality property among positive kernels. 

The twenty-eight test densities are those from Berlinet and Devroye 
(1994). Par t  of the results given here are borrowed from that  study. Ran- 
dom variate generation is trivial in all cases--see Devroye (1986) for a gen- 
eral description of non-uniform random variate generation. Throughout ,  we 
have n = 100. The group of densities contains several smooth bell-shaped 
ones with varying tail sizes and asymmetries,  five densities with an infinite 
peak at the origin, many discontinuous densities and continuous densities 
with discontinuous first derivatives, as well a~s eight multimodal densities 
with varying modal  structures.  

1. The uniform density on [0, 1]. 

2. The s tandard exponential density f ( x )  = e -x,  x > O. 

3. Maxwell's density f ( x )  = xe -~2/2, x > O. 

4. The Laplace density f ( x )  = (1 /2 )e -N .  

5. The logistic density f ( x )  = e-~ / (1  + e-~) 2. 

6. The Cauchy density f ( x )  = (1/Tr)(1 q-x2) -1. 

7. The extreme value distribution. The distribution function is F(x)  = 
e x p ( -  e x p ( - x ) ) .  



258 L. Devroye 

8. The infinite peak distribution, having density f(x) = 1 / ( 2 v ~  ) on 
[0,1]. 

9. The asymmetric Pareto distribution with parameter  3/2: it has den- 
sity f (x )= 1/(2x 3/2) on [1, oo). 

10. The symmetric Pareto distribution with parameter  3/2: it has density 
f(x) = 1/(4(1 + Ixl) 3/2) on the real line. 

11. The standard normal density. 

12. The standard lognormal density: f ( x )=  ( 1 / x v / ~ ) e x p ( - ( l o g x ) 2 / 2 )  
on [0, cxD). 

13. A uniform mixture: 50% weight is put on a uniform [ -1 /2 ,  1/2] dis- 
tribution, and 50% weight on a uniform [-5,  5] distribution. 

14. The Matterhorn:  an incredibly peaked density defined as the density 
of Se -2/U, where S is a random sign, and U is uniformly distributed 
on [0, 1]. The density has support on [ - 1 / e  2, 1/e 2] and is given by 

f(z) = 1/(Izl(log(Ixl)2)). 
15. The density of UV, the product of two independent uniform [0, 1] 

random variables: f(x) = - l o g ( x )  on [0, 1]. 

16. The isosceles triangular density: f(x) = (1 - Ixl)+. 

17. The beta (2, 2) density f(x) = 6x(1 - x), 0 _< x _< 1. 

] e-X/2 18. The chi-square density with one degree of freedom: f (x)  = ~ , 
x > 0 .  

19. The normal cubed distribution: the distribution of N 3, where N is a 
s tandard normal random variable. 

20. The inverse exponential distribution: the distribution of 1/E 2, where 
E is a s tandard exponential random variable. The distribution func- 
tion is F(z) = e -l/v~. 

21. The marronite density: if r  denotes the normal density with 
mean # and standard eviation a, define 

f : ~ r  1/4)q- 32--r 1) .  
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22. The skewed bimodal density: another normal mixture (density # 8 
in Marron and Wand, 1992), with 

f = 3r 1') + 1r 1/3).  

23. The claw density: a normal mixture (density # 10 in Marron and 
Wand, 1992), with 

= 1r 1) -4- ]-~r 0.1) A- r 0.1) 

1 
+ 1-~r ~6r ]-~r 

24. The smooth comb: a normal mixture (density # 14 in Marron and 
Wand, 1992), with 

f 
32 ( 3 1  32) 16 (17 16) ~3 (41 8 )  

- ~ r  2 1 ' ~  + ~ r  ~ ' ~  + r ~ '  4( 4) (0 1) + r 25--31,~ + ~ r  ~, + ~ r  ~ , ~  �9 

25. The caliper: The density of S(X  + 0.1), where S is a random sign, 
and X has density f(x) = 4(1 - x 1/3) on [0, 1]. 

26. The trimodal uniform density: 

27. 

28. 

f = 0.5f[_l,1] -4- 0.25f[2o,20.1] -1- 0.25f[-2o.1,-2o], 

where f[a,b] denotes the uniform density on [a, b]. 

The sawtooth density: the density of N -4- X, where N is uniformly 
distributed in {-9, -7,  -5,  -3,  -1,  1, 3, 5, 7, 9}, and X has the isosce- 
les triangular density on [-1, 1]. 

The bilogarithmic peak: f (x)  = -(1/2)log(x(1 - x ) )  on [0, 1]. This is 
the only density with two separated infinite peaks, and an outspoken 
U-shape in the middle. It also is the mixture of two logarithmic peak 
densities. 
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1.2 1.1 0.7 

--:--. 
4}.1 (1): uniform I.I  

0 .55 

-3 (4): thmble exponential 3 
0.4 

-3 (7): extrenm value 5 
0.25 

-5 (10): symmeuic  Pamto 5 

(2): exponential 

-5 (5): logistic 

(8): infinite peak 

-3 ( I1) :  normal 

0.3 

0 (3): Maxwr 4 
0 .35 

-4 (6): Cauvhy 
0.6 

(12): Iognormal 

F i g u r e  3: The unimodal densities in our collection (first part). 

I. 1 (9): Parcto 10 
0.45 0.7 
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I I 
-6 (13): unifm'm scale mixture 

0.6 

-I (16): isosceles triangle 

(19): mn'malcubod 5 -5 

l.I 

I I 
-0.15 (14): M atte, rhla'n (I. 15 

1.6 

0 (17): beta (2,2) 
0.7 

(20): inverse cxponcntial 

(15): logarithmic peak 

(Ig): chi-squarr (1) 

F i g u r e  4: The unimodal densities in our collection (second part). 



0.6 0.45 

A 
-22 (21): macronite 

0.4 

-3 (24): smooth comb 4 
0.15 

-10 (27): sawmolh 10 

-3 (22): skewed bimodal 

y 
-I.I (25): caliper 

-3 (23): claw 

1,1 

5 

J 
(28): bilogarithmic peak 
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H 
-21 (26): trimlxial-umfin'm 

0.6 

3 

2 

2l 

F i g u r e  5: The multimodal densities in our collection. 
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For each of the 28 densities, Berlinet and Devroye (1994) generated 20 
samples of size 100 each, and tried 17 different bandwidth selectors. By 
reporting results for the basket of densities, it is rather difficult to fine- 
tune bandwidths for all of them at once. For some densities n = 100 is a 
reasonable sample size, while for others it obviously is too small. Thus, it 
really is not a drawback to perform simulations for one value of n provided 
the basket is big enough. The program was written in PASCAL and then 
translated into C by the filter p2c. The computat ion of f [.[ needed in 
various places was done with great care as s tandard numerical integration 
routines are unsatisfactory under the extreme circumstances encountered 
here, especially when h is extremely small or very large. For example, if we 
have two density functions f and g, and if we can identify a finite number 
of intervals A~ = (aj, bj) for the set 

(f > g} k = Uj= 1Aj 

(by solving f = g), then we have 

k 

f i r  - gl = 2 Z ( F ( b j )  - - G(bj) + G(aj)) F(aj) 
j = l  

where F and G are the distribution functions for f and g respectively. 
This sort of property aids tremendously in getting precise numerical re- 
sults. Densities with infinite peaks and large tails are easy to deal with in 
this setting, while numerical integration is known to be problematic. The 
following quantities are est imated for each density: 

A. The average L1 error, i.e., the average value of f If  - f n H ] ,  where 
H is the (random) bandwidth.  In one case, hop, we take for H the 
optimal bandwidth: 

hop a r g m i n / I f  - f, hl �9 
h>O 

B. The average relative L] error, i.e., the average value of 

f I / -  A-I 
= infh>o / I / -  Ahl 

- 1 .  

C. The probability that  the relative L1 e r r o r  P~ exceeds 0.1: P{P~ > 
0.1}. 
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D. The probability that the relative L1 error P,, exceeds 0.5: P{Pn :> 
o.5). 

E. The maximal value of Pn observed over the runs. 

Our-experiments shows why density estimation is fascinating--every 
method seems to "like" certain types of densities. The Ll-based plug-in 
methods are admissible with respect to the basket of criteria given above 
for 16 out of the 28 densities. Of these 16, 10 are densities for which the 
rate n -2/5 is not achievable because of either a big tail or a discontinuity. 
We provide a method-by-method discussion. 

The conclusions of the study may be summarized as follows: 

For smooth unimodal densities (grouped on top in the figures), the 
reference density and plug-in methods perform better than the op- 
timization methods (L2 cross-validation, double kernel, hdl, hdl,it, 
hall,rot), simply because the plug-in formula is relatively accurate in 
such situations. 

The reference density methods are clearly not useful in general as 
they fail abysmally for long-tailed and multimodal densities (which 
are grouped near the midle and bottom of the figures respectively). 

Most plug-in methods fail as well for multimodal densities with the 
notable exception of the improved L1 plug-in method hpi,L1, which 
has the best overall performance. 

The new methods hdl, hdl,it, hdl,rot are robust across the spectrum 
and seem at par or slightly better than the double kernel methods. 

The plug-in, reference density and double kernel methods typically 
oversmooth, the L2 cross-vMidation method usually undersmooths, 
while the new methods hdl , hdl,it, hdl,rot undersmooth and oversmooth 
about equally often. For this reason, rotating the sample as is done in 
hall,rot, should reduce the variation in H and stabilize the performance. 

The variability of the results may be measured by the ratio of the 
worst relative error over the  average relative error, although some 
may argue that this criterion itself is too "variable". As a measure of 
general trends, it will do. We found the reference methods and the 
plug-in methods to be amazingly stable in this respect. 
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F i g u r e  6: T h e  ave rage  re la t ive  e r ror  (P~) is shown for all densi t ies .  
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F i g u r e  9: P { P n  > 0.5}. 
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F i g u r e  10: The probability of oversmoothing. 
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Table 1 below gives the performances, averaged over the set of 28 den- 
sities. This includes the average L1 error, the average relative error, the 
average worst relative error, the est imate of the probability that  the relative 
error exceeds 10% and 50%. 

A summary  of the results, averaged over 28 test densities and 20 repe- 
titions each, with n = 100. 

plug-in: L1 

plug-in: L1 improved 

plug-in: Sheather-Jones 

ref: L1, large 

ref: L2, quartile 

ref: L1, small 

ref: L1, std. dev. 

ref: L2, std. dev. 

L2, cross validation 

double kernel 1.20 

double kernel 1.44 

double kernel 1.73 

double kernel 2.07 

Devroye-lugosi: global 

new iterative 

iterative with rotation 

average worst probability pr bability 

average relative relative of relative of relative 
e r r o r  

e r r o r  eFFOF e r r o r  > e F r o r >  

10% 50% 
0.429 0.345 0.784 0.583 0.185 
0.366 0.146 0.613 0.391 0.075 
0.448 0.421 0.935 0.594 0.196 
0.491 0.563 1.137 0.680 0.275 
0.495 0.576 1.157 0.685 0.280 
0.459 0.472 1.069 0.610 0.216 
0.643 0.843 1.501 0.789 0.446 
0.647 0.859 1.526 0,798 0.453 
0.480 0.472 1.496 0.639 0.298 
0.375 0.237 0.811 0.467 0.164 
0.379 0.220 0.931 0.467 0.137 
0.386 0.239 0.963 0.480 0.137 
0.404 0.301 1.055 0.525 0.166 
0.388 0.303 1.229 0.541 0.166 
0.385 0.249 1.229 0.483 0.130 
0.388 0.217 0.863 0.480 0.105 

T a b l e  1: A summary  of the results, averaged over 28 test  densities and 20 
repetitions each, with n = 100. 

11.1 C a t a s t r o p h i c  b e h a v i o r  

Our experiments are too limited to properly illustrate several important  
issues in density estimation. Most  software users will undoubtedly  be ab- 
horred by possible catastrophic behavior of an estimate.  Foremost  among 
this is the consistency: is there a nonempty subclass P of densities for 
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which 

inf l i m s u p E ] ] f n H - f ] > 0 ?  
] E ~  n--+oo J 

All methods that  rely somewhere on a scale factor computed as an av- 
erage (such as  hDH,L1, hDH,L2) fail this test whenever the scale est imate 
diverges (i.e., when f has a long tail). Many estimates we did not consider 
(including most bootstrap estimates) are ill-defined as the criterion to be 
minimized would yield H = co. Strictly speaking, they are not consis- 
tent. The maximum likelihood method is inconsistent whenever the tail 
of the distribution is at least as big ms an exponential tail (Broniatowski, 
Deheuvels and Devroye, 1989). As pointed out in Devroye (1989d), the 
choice hey is inconsistent when the densities have too large infinite peaks. 
The double kernel and plug-in bandwidths as well as  hdl are universally 
consistent. 

Another  important  point, also discussed in Jones, Marron and Sheather 
(1992), is that  some methods do not pass a bimodality test. To put it 
simply, let g be a fixed unimodal density on [0, 1], and consider the family 
of bimodal densities 

f ( x )  = pg(x)  + (1 - p)g(x  - 5) , 

where 5 > 1. Create an infinite family of samples from f as follows: s tar t  
with n i.i.d, pairs drawn from (Y, U), where Y has density g and U is 
uniform [0, 1]. Define 

Y + 5 otherwise 

Then X has density f .  Fix n. A kernel density est imate fnH does not pass 
the bimodality test if for some g, almost surely, 

f 
sup I ]fnH -- f] = 2 
p,5 J 

for the given sample. This would happen if as 5 -+ 0o, we have H -+ 0o. 
Densities that  fail the bimodality test are typically based upon the reference 
density method in one step of the definition. These can be made to perform 
arbitrarily poorly in the sense given above. As such, the parameters  href,Ll, 
href,ll, href,L:, hDH,L1, hou,L2 are inadmissible. Plug-in methods invariably 
require the estimation of certain functionals. This typically forces one to 
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solve another nonparametric estimation problem. A pilot bandwidth is 
introduced, which in turn depends upon an unknown functional. One may 
continue this chain, but  eventually it has to come to an end (for a simulation 
that  involves a variable number of layers in this chain, see Park and Marron, 
1992). If a reference method is used at the end of the chain, then bimodal 
examples may be constructed that  for sufficiently large n make the whole 
procedure useless. Absolute methods are those that  end the estimation 
chain by appealing to an absolute principle, such as minimization by L2 
or L ~  cross-validation, or the double kernel method. Only those will be 
totally immune against bimodal separation viruses, hpi,l 1 and hpi,L2 are 
not immune. Among the tested bandwidths,  only hdk,1, hdk,2, hdk,3, hdk,4, 
hpi,L1, hdl and hey are absolute and pass our bimodality test. 

Robustness  may be measured in many ways. Perhaps the most trivial 
way of measuring it is by what  happens if we move one da ta  point to 
different locations: we say that  the density est imate is sensitive to one 
point if 

J IfnH - fl = 2 sup  

almost surely, where H = H(Xl,  X 2 , . . .  , Xn). This would occur for exam- 
ple if with probability one, infxl H(xl ,  X2, X 3 , . . .  , X,~) = 0 (as in the case 
of hcv) or supx I H(x~,X2, X 3 , . . . , X n )  = cc (as in the case of hDH,L1 or 
hDH,L2). This idea may be generalized to insensitivity with respect to an 
e-fraction of the sample. 

11 .2  E x p e d i e n c y  

The previous sections describe scenarios for catastrophic behavior that  must 
be avoided at all costs. So, to narrow the scope, let us look at the behavior 
of the bandwidth selectors on the class N of nice densities, tha t  is, all 
densities on [0, 1] that  have infinitely many continuous bounded derivatives 
on the real line. We say that  H is expedient if 

E f If,~n -- fl sup lim sup 
]c~V n - ~  infh E f Ifnh - -  fl  

This criterion says that  we come within a finite constant  of the optimal 
performance for large n, uniformly over all nice densities. All L2-based 
methods,  including hpi,L1, fail this test. While it is true that  for all nice 
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densities, the optimal L1 and L2 choices for h differ by a constant  factor 
only, the ratio is not uniformly bounded. The bandwidths hpi,h, hpi,L1, 
and the double kernel choices hdk,1, hdk,2, hdk,3, hdk,4 are expedient. And 
of course, hdl is expedient because it is universally suitable (so, Af in the 
supremum may be replaced by the class of all densities). 

12 Adaptat ion  for min imax  criteria 

In a minimax setting, a subclass 9 v of densities of interest is given, and the 
minimax risk is commonly defined by 

d~f inf sup E [  IA - fl  R,~(~-) 
fn fEY J 

where the infimum is over all density estimates. For many smoothness 
classes it is known that  if fi~h is the kernel est imate with an appropriate 
kernel K, then 

/ b  

inf E [ [.f,~h -- fl  < C R n ( 7 )  sup  
f E ~  h J 

for some universal constant (! > 1 (see, e.g., Devroye, 1987). In fact, 
the proof of such a result usually reveals a formula for h as a function of 
f E ~ .  However, we do not know f ,  and so we are stuck. If we use the 
data-dependent  II,+ of Devroye and Lugosi (1997), then with m = o(n) and 
t% = O(n ~) for some finite a, we have 

sup E f l fall  -- fl  < (3C + o(1))R=(~-) -4- O( l v ~ n l m  ) . 
fE~ r J 

In many cases, the last term is negligible. Thus, our results may be used for 
existence proofs of minilnax optimal estimators; if one can find a formula 
h = h(f ,  n) for the bandwidth that  gives a certain rate, then that  same 
rate will be achieved with II. 

A more interesting problem occurs when we define ~- up to a parameter,  
such a,s the class of all Lipschitz densities on [0, 1] with unknown Lipschitz 
constant  a.  I~br fixed a, the class is denoted by J-~,. Assume that  we know 
that  for each a, 

i n f e r  Ifnh - fl  < Cc, R,n(.~o~) " (8) Slip 
f E 3 r  h J 



274 L. Devroye 

When c~ is not given beforehand, the challenge is to find a data-dependent  
H,, such that  

sup supj'eT~ E f  IfnH,, - f l  < C' 

for some suitable constant (Y. In that  case, we may say that  H,~ adapts 
itself nicely to the union of the classes 9vr Such a point of view is not 
without merit. Assume that  H,~ is picked by the second method of 1)evroye 
and Lugosi (1997). Then, using the inequalities of Theorem 4.1 and its 
second corollary, assuming ~,~ = O(n ~) for solne finite a > 0, we see that  
there exist universal constants D and E such that  

s u p l e 7  ~ E f If,~H. - f l  sup/e~-o D infh E f Ifi,/~ - f] + E,v fi-~''' 
sup R,~ (t',~) < sup 

DC~,Rn(.F~,) + E I~ 

< supr R,~(Y~) 

= D s u p C ~  + inf~ R,~(.Ur 

In the majori ty of the interesting cases, this is Dsup~Cr + o(1). Indeed, 
then, one may use H,~ and be assured of good adaptive capabilities whenever 
(8) holds and the constants (.',~ are uniformly bounded. Typically, (8) is 
easy to verify, so that  one need not be concerned with the details of the 
random bandwidth Hn. Furthermore,  the universal nature  of the above 
result says something very powerful about the kernel est imate and about 
the bandwidths described in the first part  of the paper. 
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D I S C U S S I O N  

J. Be ir lant  
Katholieke Universiteit Leuven, Belgium 

Luc Devroye is to be congratulated for his review of the s ta te  of the art on 
the illustrous problem of selecting the smoothing factor in nonparametric 
density estimation. I enjoyed the graphical procedure presenting the results 
from the simulation experiments. Figures 5-9 provide an efficient way to 
reduce the information and to show important  trends. 

The author  has spent quite some of his research time focusing on density 
estimation in the true nonparametric sense: putt ing no restrictions on the 
densities. As such, from the theoretical point of view, the results presented 
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in Devroye and Lugosi (1996A and B) are really remarkable. The practical 
implementations of the corresponding bandwidths are quite involved and 
time-consuming, which constitutes an intrinsic drawback. However, the 
simulation results show that these new techniques have important potential 
in practical analysis, next to e.g. the popular plug-in methods, certainly in 
case of small and moderate sample sizes. 

Next to the conclusions stated by the author as a consequence of the 
simulation study, I would like to add a few concerning the Devroye-Lugosi 
algorithms: 

�9 they seem to have some trouble in case of densities with important 
discontinuities of the first kind at the border of the support. Their 
performance in case of the uniform and Matterhorn densities seems 
to indicate this. 

�9 they perform especially well in case of smooth subexponential distri- 
butions, satisfying 

lim e x p ( A x ) f ( x )  = co 
x---~ o o  

for any A> 0. 

This last observation is really intriguing to me. Any explanation is welcome 
here. These remarks make me conjecture that the choice of a bandwidth 
selection method could be combined with the estimation of the extreme 
value index of the underlying distribution at specific points, e.g. at infinity. 
For an expose on the latter see e.g. Beirlant et al. (1996). More study is 
needed here however. 

Let me end with two comments. In view of my earlier comment on the 
performance of selectors for heavy tailed distributions, I wished the author 
had incorporated the transformation technique introduced by Wand et al. 

(1991). These authors proposed to combine any suitable bandwidth selec- 
tion method for a normal distribution with the transformation to normal- 
ity induced by the normal quantile plot. Finally, Devroye's paper makes it 
clear once more that enormous challenges lie ahead, not the least in gaining 
some theoretical insight in the global performance of the different selection 
methods. 
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R. C a o  
Universidad de la Corufia, Spain 

In this paper Luc Devroye gives an excellent survey of Ll-oriented methods 
for bandwidth selection, having in mind the universal suitability of the 
selectors. Two different versions of a new selector presented in Devroye 
and Lugosi (1996a) are developed and compared, via a simulation study, 
with many other existing competitors (even some L2-oriented methods!). 

The main idea behind the new selector is to split the sample into two 
parts and then select the smoothing parameter  in order to minimize some 
total variation-like quantity: 

s u p  /A fn-'~'h-- #m(A)i' (1) 
AEA 

where the class A is a strict subclass of the whole Borel class. 

In my view, the richness of this class ( that  in the paper was fixed to 
be the Yatracos class) is a kind of new smoothing parameter ,  whose effect 
is also very important .  In other terms, a kind of "pilot smoothing class". 
If .4 is too rich -let us assume, for instance, that  it is the Borel class- the 
supremum would be equal to 2, since ]~m is atomic, and every possible 
bandwidth would be equally recommendable..  On the opposite side, for 
very poor choices of .4, such as a single or thant  set, the method would be 
lead by the L1 error of the cumulative distribution function estimation at 
a single point. 

If we replace ~,~ with #, fn-ra.h with f~,h and the Yatracos class with 
the Borel class in (1), we get one half of the L1 distance between the kernel 
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est imator,  fn,h, and the underlying density, f .  The relation between the 
L1 distance and the total  variation distance is a key idea in the definition 
of the new selector. I wonder if the idea behind this new selector can be 
still extended to an L2 bandwidth selection setting. 

When some preliminary information is assumed for f ,  one could incor- 
porate  it in the empirical measure, #m, in (1). For instance, if we happen to 
know that  the underlying density is symmetric around the origin, one could 
reflect the last m da ta  points and use the empirical measure pertaining to 
this reflected sample: 

1 n 

#~m(A) = 2m 
i=n-m+l  

(IA(Xd + IA(-Xd) 

instead of the #m in expression (1). When the preliminary information 
reduces the class of densities to a parametric family, #m may be replaced 
by the closest measure in the class (performing then a minimization in two 
"parameters":  h and #) and fr~-m,h with fn,h. This leads to L1 minimum 
distance kernel estimation. 

I also would like to comment a couple of things, concerning other aspects 
of the paper. The connection between the double kernel method and the 
boots t rap  method is not very clear to me. As stated by Luc, the choice 
L = 2 K  - K �9 K leads to the selection of the bandwidth that  minimizes in 
h 

f lf,~h fnh * Iihl. 

The minimizer of this quanti ty is a degenerate bandwidth H = 0! 

It should be mentioned that  also the boots t rap  bandwidth selectors are 
close related to expression (8.7) in the paper. In fact, most of these methods 
can be expressed as minimizers of 

f K 2 1 1 
+ M IX - xj) + N (xi- xj), 

n---h 
iT~j iCj 

for some functions M and N.  
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R. Fraiman 
Universidad de la Repdblica, Uruguay 

I would like to congratulate Professor Luc Devroye for this seminal paper. 
He analyzes two "universally suitable bandwidths", introduced in recent 
work by himself and Lugosi, solving one of the most compelling problems 
in density estimation. These are the first published smoothing factors that 
have been proved to have the property of been universally suitable, i.e. 
they found universal results for global smoothing factors selection for the 
first time. Moreover, they also obtained non asymptotic results for one of 
those proposals. 

In this paper we found the result of several years of reflection about 
the problem of finding a method to select a bandwidth for kernel density 
estimation such that, for all densities in all dimensions, the L1 error of 
the corresponding kernel estimate can be bounded in terms of the error of 
the estimate with the optimal smoothing factor. The problem of imple- 
mentation of the proposed methods is also solved and a huge simulation 
to compare the performance of different bandwidth selection methods is 
included. 

As usual in Devroye's work, I find here a lot of stimulating ideas. The 
way they define the bandwidths is somewhat related to the double kernel 
method (Devroye, 1989) but now looking at the distance to the empirical 
distribution over a "specially picked rich enough class". 

Some nice new tools, like the use of Vapnik and Chervonenkis (1971) 
inequalities over Yatracos classes of sets, seem to be the key for these new 
results, and open the possibility to extend them to other nonparametric 
problems. Indeed, as an example, the extension of the results to nearest 
neighbor (and nearest neighbor with kernel) density estimates seems to be 
possible as follows. 

Let us define 
Hn,k = IIX (k) - xl] 

be the distance from x to its k-nearest neighbor among X1, . . . ,  X~-m, and 

k 1 7~--m 

f n - m , k ( x ) -  nHd,kA 1 -- ~1 : nHn, ~i=1 IB(x,Hn,k)(Xi) 
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where )~l stands for the volume of the unit ball in R k, IA stands for the 
indicator function of the set A and B(x, t) for the closed ball centered at x 
and radius t. The Yatracos class A for this problem would be the collection 
of sets 

k k r 
Ak,k, = {x E R d: H 7  > ~ )  

n,k -- Hn,k~ 

for k, k r nonnegative integers, while the smoothing factor K can be defined 
as the random value for which the supremum 

supAeXl /A f~_.~,k(t)dt #m(A) l 

is minimal, #m being the empirical measure based on the sample Xn-m+l, 
�9 . .  ~ X T b .  

Once we know that it is possible to find universally suitable bandwidths 
for kernel based density estimates, one could try to solve the same problem 
for other nonparametric estimates. Devroye-Lugosi method seems to be a 
powerful tool in order to find universally suitable smoothing factors for his- 
tograms, Fourier-series density estimates and for nonparametric regression 
problems 
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P. Hal l  
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The literature contains quite a few comparative studies of bandwidth choice 
for density estimation, but none that approaches the breadth of this remark- 
able paper. Devroye's work blends deep theoretical insight with detailed 
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numerical analysis, for a range of densities and bandwidth selectors that is 
so vast that it takes us well beyond the sort of problems that most of us 
have in mind when we study methods for smoothing papameter choice. 

The very breadth of Devroye's view, in terms of both target densi,ty 
and bandwidth choice method, argue in favour of a revised approach to 
bandwidth choice. As Devroye notes, no method works well across the 
spectrum of different targets, simpler, less variable bandwidth selectors are 
good performers for simple densities, but lack the adaptivity to deal with 
complex cases such as multimodal targets. 

It is perhaps possible that good local bandwidth choice methods will 
produce respectable performance in complex cases. However, high com- 
plexity usually means that the target density changes fast in a local sense, 
and so local bandwidth selectors would often have only a small amount 
of information on which to base a local bandwidth function. This would 
inevitably lead to high variability, and most likely to poor performance. 
Perhaps more promising is a general method for global bandwidth choice 
which, before taking the plunge and computing the bandwidth, assessed 
the complexity of the target density. 

Imagine that a software package first estimated a measure of the den- 
sity's complexity, and then effectively "looked up a table" to find the band- 
width selector that was most appropriate for the level of complexity. In 
general, complexity could be at lea.st a vector-valued quantity, but more 
siply, standar scalar measures suggest themselves. 

Thus, while in Section 8.7 Devroye is rightly critical of so-called "entropy- 
based" methods for bandwidth choice, it is possible that a statistical esti- 
mate of entropy could be a valuable predictor of the relative performance 
of different bandwidth selectors. The densities in Devroye's tables are very 
roughly ordered in terms of increasing entropy, with the high-entropy den- 
sities generally doing better with double-kernel or Devroye-Lugosi methods 
than simpler bandwidth selectors. Therefore, Figures 6 to 10 tend to be 
lighter in top right-hand and bottom left-hand corners than elsewhere. Per- 
haps there would be more "light" in the table if entropy were estimated first, 
and bandwidth selectors assigned to data sets according to the estimated 
degree of complexity. 
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M.C.  J o n e s  
The Open University, United Kingdom 

It is good to see the recent work of Luc Devroye on bandwidth selection for 
kernel density estimation gathered together in an interesting single source, 
and a pleasure to have the opportunity to comment  upon it. The paper has 
three distinct phases. The first is the 'universal' theory which displays the 
author 's  superb mathematical  virtuosity, and which I can only admire. The 
second is the suggestion of practical bandwidth selectors, those developed 
with Lugosi along with the double kernel methods. Most of these results 
and ideas have been published before, but it is very helpful to have them 
reviewed in one place. The third phase of the paper is a large, thorough 
and impor tant  simulation study. 

To take the third phase first, the simulation results for individual den- 
sities are wide-ranging and very informative. As the author  is well aware, 
any a t t empt  to summarise the results in terms of single overall numbers 
(here by equally weighted averaging over the set of 28 chosen test densi- 
ties) is open to criticism, and criticise it I shall. For example, in Figure 5, 
I suspect tha t  I should be more concerned about the relatively poor per- 
formance of the lower block of methods for some of the eas ier- to-es t imate  
densities than about  the apparently even worse performance of the upper 
block of methods for the more eccentric of the multimodal densities. Can 
the author  reassure me (by showing typical actual density estimates) that  
performance on the easier estimates is still acceptably good for the lower 
block of methods? The relatively good performance of the same methods 
for the eccentric multimodals may well be illusory; are the results of these 
methods acceptable or are they, as I suspect, just the best of a very bad 
lot? 

In fact, Professor Devroye has rightly pointed out that  for some of the 
lat ter  densities, there is just  not enough information in a sample of size 100 
to be able to est imate them well nonparametrically at all. For many other 
densities, it would seem also that  a basic kernel density estimate, however 
well the bandwidth is chosen, will provide quite poor density estimates, 
for example due to long tails, and more sophisticated methods might be 
considered (although I have my doubts about the practical usefulness of 
many of the ' improved bias' estimates, see Jones ~ Signorini, 1997~. ~ It 
seems tha t  all 28 densities were considered as densities on the whole real 
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line, yet surely many of those with bounded suppor t  are usually used as 
models for s i tuat ions where boundaries are known (e.g. values on a known 
interval, or nonnegative values). In such cases, it seems more realistic to 
t reat  t hem not as 'discontinuous densities'  but  as densities on a known finite 
suppor t ,  assessing them only over tha t  suppor t  and using appropr ia te  forms 
of boundary  correction in the est imates themselves. 

I think some insight can be given into the interesting double kernel 
me thod  of Professor Devroye by looking at the obvious L2 modification of 
it. In Jones (1997), I show tha t  when h ~ = h, the L2 double kernel method 
provides (essentially) a raft of methods  of the form (7) in the paper.  Indeed, 
in the case L = 2K - K �9 K,  the L2 double kernel method  is precisely 
Taylor 's  smoothed  boots t rap  approach.  Intriguing things happen in the L2 
version when h ~ > >  h. We do not get the improved rate of convergence of 
]~ to h0, the minimiser  of the mean  integrated squared error (MISE), tha t  
we have come to expect from using the same trick in the plug-in literature. 
But  we do seem, potentially, to get a particularly good es t imate  of ]~0, the 
minimiser of ISE (within the well known l imitat ions of the problem). 

The  au thor  follows Cao et al (1994) in utilising a modified, and infe- 
rior, form of Shea ther / Jones  bandwidth  selector. But  in Sheather  & Jones 
(1991), We recommended the choice of two kernel est imation steps (not one) 
before employing a normal  reference density, and of solving the defining 
equation for the opt imal  h and not directly plugging-in (admit tedly  losing 
the simplicity of an explicit formula).  These were not arbi t rary choices 
but  the results of considerable practical work in which such choices were 
found to be much the better.  (In fact, theory also dictates both tha t  two 
stages are necessary, Sheather  &= Jones, 1991, and tha t  so lve- the-equat ion  
is bet ter ,  Park,  1989.) 

I was intrigued by the s t a t emen t  in Section 11 tha t  "A density is only a 
tool for comput ing  probabilities. Hence good bandwidth  design should be 
based on probabilities." I suggest  tha t  the density also has major  roles in 
envisaging and interpret ing the properties of a distr ibution and in compar- 
ing different distributions.  But  if it really is probabilities tha t  are wanted,  
why is it not the distr ibution function F itself, ra ther  than  the density 
f ,  t ha t  is the pr imary target? The  L2 theory clearly demonst ra tes  tha t  
dis tr ibut ion function est imation is a much easier smooth ing  problem, tha t  
bandwidths  need be of a considerably smaller size (often zero), and tha t  - -  
in my interpreta t ion of recent work on bandwidth  selection for est imation 
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of F - -  any reasonable method of bandwidth selection tailored to F esti- 
marion will perform just  about  as well. Questions truly about  probabilities 
only do not require this paper 's  paraphernalia. 

The Epanechnikov kernel is a reasonable choice for simulation studies 
because of computat ional  ease, but  I would not wish its use to be encour- 
aged in practice. This is because the lack of continuous differentiability 
of the kernel is clearly visible as kinks in the est imated function. A good 
illustration of this can be found in Figure 7 of Keiding (1991). By the 
way, while the Epanechnikov kernel does appear in Bart le t t  (1963), I find 
it hard to interpret the latter paper as recognising the s tandard optimality 
property of the kernel. The paper referred to as Jones (1990) has since 
metamorphosed into Jones &: Foster (1993). 
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G~bor Lugosi 
Universitat Pornpeu Fabra, Spain 

It was a pleasure to read this great survey on kernel smoothing in density 
estimation. 

For me the greatest  surprise was that  the new methods proposed in 
Devroye and Lugosi (1996a,b) and their variants introduced in this paper, 
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even in their raw form, perform comparably well in the simulations with 
the fine-tuned bandwidths  matured over the years of the long history of the 
field. I suspected tha t - -even  though finite-sample performance guarantees 
exist for these est imates their advantages s tar t  to show at ' significantly 
larger sample sizes than 100, for which the simulations were made. 

Also, the simulation results provide empirical evidence that  the factor 
of 3 appearing in the asymptot ic  performance bounds is an artifact of the 
analysis, and it is not an inherent property of the new methods,  since for 
very small sample sizes even the best smoothing factor gives a large L1 
error, and a factor of 3 would push the error up to meaninglessly large 
levels. Another promising sign is that  the new methods  do not have a 
tendency for under or over smoothing, so their error may be credited to the 
variability resulting from the smM1 sample size. 

The paper concentrates on choosing the smoothing factor h once the 
kernel K has been fixed, and it is not concerned with the choice of K.  
However, the new methods may be adapted in a straightforward way to 
the data-dependent  choice of a kernel. Consider the following situation: 
let C = {Ko : 8 E O} be a class of kernels on T4 d, where O is some set of 
parameters  and f Ke = 1 for each 0 C O. The class C may possibly vary 
with the sample size n. Each kernel in the class defines a kernel est imate 

1 
Ke(x - Xi). = g 

i=1  

The goal is to select a parameter  On based on the available da ta  such that  
the L1 error f ]f,~,e,~ - f[ is close to the optimal L1 error in the class 
infeeo f ]f,~,o - fl. In the special case when C is the "one-dimensionM" 
class containing Kh(x) = (1/hd)Ii(x/h),  h > 0 for some fixed kernel K, we 
are back in the situation of selecting a smoothing factor, as discussed in 
the paper in great detail. The estimate,  called "the first bandwidth" in the 
paper, may be adapted to this more general situation in a straightforward 
way as follows. Choose an n-U2-covering of the class C of kernels, that  is, 
let C be a finite set Of functions of cardinality N such that  for each Ko E C 
there exists an Lj C g ( f o r  some j < N)  such that  f ILj -Ke]  _< 1/x/-~. (We 
implicitly assume here that  such a finite covering is possible, otherwise the 
est imate is undefined.) Then split the da ta  into two parts, and based on 
the first (larger) part  form N kernel estimates using the kernels L1,.. �9 , LN 
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in the class C': 

n - - m  

f i~-m,j(x) - 1 E L j ( x  - Xi ) ,  j = 17.. .  ,N .  
n - m  

i----1 

Among these N est imates we choose the one which minimizes 

sup I f  fn-m,j(x)- #m(A) , j =  1 , . . .  ~N~ 
AEA IJA 

where #m is the s tandard empirical measure defined on the second (small) 
part  of the da ta  X~-m+l ,  �9 �9 �9 , X~ and .4 is the class of sets containing all 
sets of the form 

{x: A-m,j(x) > i , j<_ N.  

Let f~ denote the obtained kernel estimate.  

Now it is easy to see that  most of the analysis of Devroye and Lugosi 
(1996a) can be repeated for this more general situation. In particular with 
small s traightforward modifications one can prove the following: 

T h e o r e m  1. Assume  that the covering numbers satisfy N = O(n  a) for 
some a < ec and that for some b < 1/2 and c > O, 

in f l iminf  n b inf Ef Ifn,o- f] > c. 
f n~c~ OEO J 

Then if  m /n - -+  0 and 'm/(n2b log n) ---)- (X), then 

sup l imsup  E f  IL - fl  < 3. (1) 
] ~ - ~  i n f o ~ o E f l A , o - f [  - 

Thus, the choice of the kernel is "universally suitable" within the class C 
of kernels if two properties are satisfied: (i) C should be "finite-dimensional" 
in the sense that  the 1/x/~ covering numbers do not grow faster than a 
polynomial of n; (ii) the L1 error of the best est imate in the class does not 
decrease too rapidly. This second condition assures that  the denominator  
in (1) does not get smaller than the inevitable estimation error of order 
n-1/2.  
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While the first condition is quite easy to check in many cases, checking, 
the second condition may not be trivial for specific situations. Devroye 
(1988b) provides several such examples. Here we provide one simple case. 

E x a m p l e .  Let K be a fixed elegant kernel on 7~ (i.e., satisfying the Lip- 
schitz condition ]K(x) - K(y)]  < C]x - y] and vanishing outside [ -1 ,  1]), 
and introduce the class C of kernels on 7~ d as the class of product  kernels 

;: (x#) 
K o ( x )  = l - I  K , 

j = l  

h i , . . .  , hd E [e -n,  e~], 

where 0 = ( h l , . . . , h d )  is a vector of smoothing factors and X l , . . . , x d  
are the components  of the vector x E T~ d. Thus, here we are allowed 
to select a different smoothing factor in each coordinate direction. Just  
like in the single-smoothing-factor case, the restriction of the range of the 
hj's  is necessary to make sure that  the class of kernels has finite covering 
numbers.  Clearly, this restriction is insignificant in an asymptot ic  sense 
since the optimal smoothing factors eventually all fall in this interval. 

To see why condition (i) is satisfied, consider the set of O's whose coor- 
dinates are all of the form e-m(1 + ~ ) k  for some nonnegative integer k such 
that  e -n(1  + 3n)k _< e ~, where (~n : 1 / ( 2 d c d - l ( d +  1)v/~) �9 The number of 

possible k's is at most 

log(bn/an) 4n 
log(1 + 6n) + 1 < ~ ,  

( 4 n )  d = O(n3d/2) ,  a so the number N of different such O's is at most \ a n ]  

polynomial in n. To see that  the kernels with such O's indeed form an 
n-1/2-covering of C note that  if 0 -- ( h l , . . . , h d )  E 0 is arbi trary and 

is the 0' -- ( h l , . . .  ,h l )  is the element in the finite subset  such that  hj 
smallest "discretized" value which is at least as large as hi, j -- 1 , . . . ,  d, 
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then 

fl K o -  Ko, l 
j= l  

(where bj = h}/hj)  

j=I-~l d 
j=l 

j=l d +/ . . . I  ,Xl...,x,. 
j= l  

By applying the inequality [ac - bd I <_ aic - d I + cla - b I and the fact that  
elegant kernels are bounded by C, it is easy to see that  for each x E 7~ d, 

FI~=I K(x j )  d K(bjxj)  _ C ~-' - - N j = I  < ~ j = l ( b j  - 1), which implies that  

the first term on the right-hand side is at most 2tic d- '  ~J=~ (bj - 1). On 
the other hand, the second term is easily seen to be bounded above by 

d FIj=I (bj - 1), and therefore 

f lKo- Ko,[ 
d d 

~ 2 d e  d-1 ~-~(bj - 1) + H ( b j -  1) ~ 2dcd-adSn + 5~ 
j=l j=a 

1 
<_ 2 d c  d - l (d  + 1)5,~ -- V/~, 

as desired. 

To check condition (ii) just note that  if g and g~,o denote the marginal 
densities of f and f~,o with respect to the first component  of x, then by an 
inequality mentioned in the paper, 

E f lfn,o - fh >_ E S Ig~,o - gl. 

Moreover, it is easy to see that  g,~,o is just the univariate kernel est imate 
of g with kernel K and smoothing factor hi, so the cited result of Devroye 
and Penrod (1984) implies that  

infliminf n 2 / ~ ]  ,~oo 0~oinf Ef Ifn,o - f [  >_ 0.86, 
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and therefore the conditions of the theorem are satisfied with a = 3d/2, 
b = 2/5, and c = 0.86. 

It seems probable that  this is just one of many interesting examples, 
and the full potential of the new new methods is yet to be explored. 

E. M a m m e n  
Universiffit Heidelberg, Germany 

I enjoyed reading this paper. It is very impressive to have a density 
est imate f~ whose Ll-risk is universally bounded for all densities. At first 
sight the construction of this estimate suggested that  this result was mainly 
of theoretical interest. Now, it is nice to see in the simulations of this paper 
that  this was not true. In fact, the idea is very applied and it leads to an 
est imate with a very good practical performance. 

I have some remarks on the practical use of the proposed kernel density 
est imate ]~. In particular, I would like to highlight that  it is very important  
to develop some asymptotic  distribution theory for ]~. 

Kernel density estimation offers a tool box for statistical inference on the 
shape of the underlying density f .  Inference on many practically relevant 
questions can be based on the inspection of kernel density estimates. This 
broad area of applications makes kernel density estimation so important  
and attractive.  Examples of applications are the following questions: Is 
f a normal density or does it belong to another parametric  class? Is f 
skewed? Does f have heavy tails? How many modes does f have? How do 
the densities of several samples compare? 

A first mathematical  check on the statistical performance of a density 
est imate is to s tudy its asymptoti  c or finite sample risk. In this paper and 
in related work of L. Devroye and G. Lugosi this has been done for the 
Ll-risk of ]~. However a good risk performance does not guarantee that  a 
density est imate is suitable for a specific inference problem. For a rigorous 
t rea tment  of a statistical inference problem, visual inspection of the plot of 
the density est imate does not suffice and for a more reliable approach one 
should consider test statistics (or other statistical procedures, e.g. confi- 
dence intervals or bands) based on the density estimate. Judgement  on the 
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observed value of a test statistic requires some (asymptotic) distribution 
theory on fn. 

There is another motivation to look at the distribution of f~. It is given 
by the simulations of this paper. Here, asymptotic knowledge would help to 
understand the results of the simulations. For instance, in the simulations 
the estimate ]~ was outperformed by plug-in estimates for smooth unimodal 
densities. Intuitively, this would have been expected (as mentioned in the 
paper). However, more insight would be given by knowing the asymptotic 
distribution of f~ for smooth densities f .  

For many kernel density estimates fnHn [with data adaptive bandwidth 
selector H~] asymptotics is based on the following considerations. First it 
is shown that  H~/h~(f) = 1 + op(1) for a deterministic sequence hn(f) 
depending on the underlying density f .  In general, this implies that  the 
asymptotic behaviour of fnHn coincides with that  of fnh~(])" In particular, 
typically test statistics based on fi~H~ will have the same asymptotics as 
the test statistic where fi~H~ is replaced by fnh~(]). So it is a very inter- 
esting research problem to study the following questions for the bandwidth 
selector H that  has been proposed by L. Devroye and G. Lugosi 

(1) Does it hold for the bandwidth selector H that  H/hn(f) = 1 + op(1) ? 

(2) How does hn(f) depend on f?  [for densities f for which the first 
question can be answered positively]. 

(3) What  is the speed of convergence of H/hn(f) to 1? [if it converges at 
all]. 

Study of the third question for other bandwidth selectors has been one of 
the major topics in the smoothing literature of the latest years. Clearly, 
fast convergence of H/hn(f) suggests that  the approximation of fi~Hn by 
fnh,~(l) is accurate. On the other hand it has been argued that  it implies 
more "stable" estimates f, mn. 

Study of questions (1) - (3) for the bandwidth selector H of L. Devroye 
and G. Lugosi may be rather complicated. I conjecture that  in particular 
the random nature of the family of sets ,4 makes a mathematical  analysis 
difficult. This may be the case even under restrictive assumptions on the 
density f .  It is possible that  modifications of H or related methods can 
be treated more easily. A promising related approach has been proposed 



298 L. Devroye 

by Lepski (1990). He suggests to use the largest bandwidth H such that  
the absolute differences If,~I-I - fnhl are not "significantly" large. For an 
implementation of this method for local bandwidth choice in a white noise 
model see Lepski, Mammen and Spokoiny (1997). There it has been shown 
tha t  the relative pointwise risk of this estimate is uniformly bounded in 
9C(L) = { f  : s u p x f ( x ) - i n f x f ( x )  <_ L} for each L > 0. This result can 
be interpreted ~s a pointwise analogue of the results of L. Devroye and G. 
Lugosi. 
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3. S. M a r r o n  
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Abst rac t  

The author is to be congratulated on yet another deep and interesting paper on 
bandwidth selection. This discussion comes in two parts. The first is for "mass 
consumption", i.e. is mostly addressed to non-experts in bandwidth selection and 
tries to make clear my view of the big picture of this area, and how the approaches 
described in the present paper fit into that. The second is of a much more esoteric 
nature, and is intended for experts on bandwidth selection. 

1 Big Pic ture  Discussion 

This is a nice paper with both the deep mathematics,  and also the enter- 
taining personal style, which characterize so many of this author 's  papers. 
It is also very good to see the author 's  continuing interest in how well his 
suggested methods actually work (beyond what is learned from the asymp- 
totics), via a very detailed and informative simulation study. 
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Because I have not yet experienced religious conversion to the L 1 norm 
as a means of measuring error, the promising results indicated in the present 
paper, motivated me to test these methods myself, from other viewpoints. 

A very important  way to test is to actually look at density estimates, 
and I was pleased to see that  the L 1 hnproved Plug-In bandwidth,  which 
performed very well in the present simulations, gave quite good perfor- 
mance. In my view, in this important  respect, this method is in the same 
general range of effectiveness as a group of others tha t  have been called 
"modern methods" in Jones, Marron and Sheather (1996). A number of 
other methods in this group have been discussed in the present paper, but 
note tha t  this does not include cross-validation type methods,  which I view 
as "unacceptably noisy". 

However, as noted in the present paper, not all these methods are the 
same. My point is that  in the "big picture sense for da ta  analysis" I view 
these as close enough that  differences between them are mostly esoteric 
in nature.  In the next section I take a more microscopic look at a few 
of these methods,  and show that  these differences boil down to personal 
preference. In particular, I show that  when the author 's  favorite L 1 norm 
is replaced by the "Visual Error Criterion" of Matron and Tsybakov (1995), 
then the Sheather Jones Plug In method becomes "superior". Hence the 
lat ter  method remains my personal recommendation (and what I use first 
on a new da ta  set). However I can understand how others would prefer to 
recommend other modern methods, and respect that  choice. 

While it is fun to debate exactly what is the "best bandwidth" (I 
heartily take this up in the next section), it is important  to keep in mind the 
big picture: for practical use, most "modern" bandwidth selection methods,  
including the L 1 Improved Plug In, are quite useful. 

2 E s o t e r i c  D e t a i l s  

This section discusses several fairly minor points, on some of which I take 
issue with the author.  
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2.1 R e l a t e d  k e r n e l  d e n s i t y  e s t i m a t e s  

In Section 1, the author gives a good overview of density estimation. Here 
are a few interesting new things it might be good to add to the list of things 
mentioned in the present paper. 

. 

. 

Transformations combined with density estimation. This idea was 
made practical by Wand, Marron and Ruppert  (1991), who devel- 
oped a da ta  based method for choosing among a parametric  family 
of transformations.  Yang (1997a) worked out the asymptotics of that  
approach, and also showed how it could be improved. Much larger 
families of transformations were shown to be useful in Yang and Mar- 
ron (1997b). The Yang papers give several other references to work 
in this area. 

Interesting unpublished work on location adaptive density estimation 
include the work of Farmen (1997), who shows tha t  many of the com- 
mon methods are often inferior to a well chosen constant  bandwidth.  
The "zero bias" ideas of Sain and Scott (1996) are surprising and 
deep. 

2.2 C h o i c e  o f  k e r n e l  f u n c t i o n  

The author  continues his traditional use of flowery terminology, with a def- 
inition of "elegant" for a certain class of kernel functions in Section 2. I 
agree tha t  "elegant" kernels should be nonnegative and at least Lipschitz 
continuous. However in my view a better  use of that  term would include 
much more smoothness, and allow infinite support,  and in fact be a syn- 
onym for the Gaussian kernel. 

In an upcoming paper by Chaudhuri  and Matron, "elegance of kernels" 
is explored using some ideas from scale space theory in computer  vision. 
In several senses, the Gaussian kernel is much more "natural  and elegant", 
than any which satisfy the currently stated definition of "elegance". For 
example the Gaussian kernel is the only kernel for which "features", such 
as modes, in the density estimate monotonically diminish with increasing 
bandwidth.  In addition, a set of "smoothing axioms" result in the family of 
smooths (indexed by the bandwidth) being a solution to the heat equation, 
which also essentially results in the Gaussian kernel. See Lindeberg (1994). 
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The Epanechnikov kernel has its advantages in some ways, but other 
kernels are quite competitive in other ways. A strong case can be made for 
the Gaussian kernel, especially on "elegance" grounds. Furthermore, the 
supposed computational advantages of compact support  are negligible if a 
fast computational method such as binning is used. See, for example, Fan 
and Marron (1994). 

2.3 A s y m p t o t i c  a p p r o x i m a t i o n s  

Near the end of Section 8.1, the author points out that  the asymptotically 
optimal bandwidth given in (1) is "often, but not always, close to the 
true optimal h ' .  In fact, given any sample size n, it is straightforward to 
construct examples where these bandwidths can be arbitrarily far apart, 
as shown by Matron and Wand (1992). The idea discussed there (adapted 
here to the L 1 norm) is that  there may not be enough information in the 
data  so that  f If"l is practically relevant to the smoothing problem at hand. 
In particular, if f has  features which cannot be discerned from the data 
(because the sample is too "small"), then f If"l will be unrealistically large, 
resulting in (1) being far too small. 

This point is illustrated in Figure 1, using the Double Claw target den- 
sity from Matron and Wand (1992). The underlying density has small 
spikes that  represent only two percent of the probability mass, and are thus 
indistinguishable from the n = 100 observations available. Yet the asymp- 
totically optimal bandwidth formula (1) "feels" these spikes (because f has 
very strong curvature at those points), resulting in serious undersmoothing. 
The estimate resulting from the bandwidth (1) is interesting in that  it seems 
to have spikes of the requested size, it is not reasonable in any other sense. 
The bandwidth that  is optimal in the L 1 sense is much more reasonable 
for this pseudo data  set. The poor recovery of the large left hand mode is 
quite common for any density estimate, because only n = 100 observations 
don' t  contain too much information about this density. 

2.4 W h y  do d e n s i t y  e s t i m a t i o n ?  

In the second paragraph of Section 11, the author states "A density is only 
a tool for computing probabilities." I have a much different view on this 
point. First off, if one only cares about computing probabilities, then those 
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nel est imator,  with the L 1 optimal bandwidth as the heavy dashed curve, 
and the asymptotically optimal bandwidth as the thin solid curve. The 
asymptotical ly optimal bandwidth is grossly undersmoothed.  
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based on the empirical cumulative distribution function will typically be 
far more accurate than those optimally tuned for the L 1 norm. Even with 
a much different choice of bandwidth,  there is no scope to do considerably 
better with a kernel estimator (following what has been called "deficiency 
theory") .  

But a much more important  issue is: what is the motivation for studying 
density estimation? More mathematical  researchers draw their motivation 
purely from the intellectual exercise, which is sensible because kernel den- 
sity estimation really is fun. However, more  statistically minded researchers 
draw motivation from the fact that  kernel density estimation provides a 
powerful da ta  analytic tool. In particular, it can allow the statistician to 
immediately discover features of the da ta  that  are much harder (if even 
possible) to find by other methods. A particularly compelling example of 
this type is the United Kingdom income data  set, perhaps best analyzed in 
Schmitz and Matron (1992). See the monographs Silverman (1986), Scott 
(1992) and Wand and Jones (1995) for many more such examples. 

2.5 B e s t  b a n d w i d t h  s e l e c t o r ?  

The author  concludes that  the L 1 Improved Plug In bandwidth is a very 
good choice, and I generally agree. However, I would not agree to sugges- 
tions that  this is "best", for several reasons. 

One place where different views can lead to different answers is in the 
design of the simulation study. Here the choice gets quite personal, and 
different motivations yield different preferences. Based on my personal mo- 
tivation of da ta  analysis experience, I find the present set of target  densities 
to be "too unimodal".  In particular, my personal interest is in finding fea- 
tures like bumps and modes, so I prefer more densities of this type, than 
the examples with poles and heavy tails that  are predominantly studied 
here. The author may answer that  my recommended bandwidth above 
fared the worst in such cases, but see below for another  way of looking at 
this. However, this issue of target  curves is not very important ,  unless one 
looks at summaries, as in Figure 10. 

Another  point which affects one's conclusions is the method tha t  error 
is measured. This author  and various co-authors have presented many 
interesting reasons as to why the L 1 norm is "most natural",  especially 
in comparison to L 2. Many of these are quite interesting and compelling. 
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However, other methods of measuring errors have their relative advantages 
as well. For example, L 2 is enduring in the literature, doubtless because of 
its mathematical  tractabili ty (in fact many key ideas in density estimation 
are developed first in the simple L 2 context,  and then after the idea is 
clear, the much harder L 1 version is developed, very often by this author).  
But  recently several researchers have realized that  none of the usual norms 
give the same bandwidth as "what one would choose by eye". See Matron 
and Tsybakov (1995) for further discussion, and development of an error 
measure which does work in this way. Marron (1997) applies this error 
me~sure to bandwidth selection. 

This error measure is used in a few additional simulations, to investigate 
how much the conclusions can change, depending on the error measure. For 
simplicity, just  the L 1 Improved Plug In, and the Sheather Jones Plug In, 
are compared, using average (over 500 pseudo da ta  sets) L 1 norm, and 
the average of Marron and Tsybakov 's  VE,  on the Smooth Comb target 
density, for n = 100. The results are summarized in Table 1 (these are not 
normalized as done in the major  study, because only a single example is 
considered here). The results for the L 1 norm are consistent with those 

L 1 Improved Plug In 
Sheather Jones Plug In 

Avg. L 1 (CI rad.) 
0.357 (o.oo3) 
0.371 (0.002) 

1 0 .  Avg V E  (CI rad) 
0.316(0.005) 
0.266(0.003) 

Table  1: Simulation results for 
n = 100, Smooth Comb density. Average errors over pseudo data sets 
are reported with simple 95Uo Confidence Interval radii in parentheses to 
indicate Monte Carlo error. 

presen ted  by the author,  with the L 1 Improved Plug In appearing to be 
substantial ly bet ter  than Sheather Jones. However, when the error criterion 
shifts to VE,  the ordering also shifts, and now Sheather Jones looks better.  
Insight into this apparent  contradiction comes from Figure 2. 

Figure 2a shows that  these two bandwidth selection methods have 
rather different characteristics. For example the Sheather Jones Plug In 
is much more stable across different pseudo da ta  sets, and there is a small 
proportion of da ta  sets for which the L 1 Improved Plug In is surprisingly 
large. Figure 2c shows that  the L 1 and V E  performances are rather 'dif- 
ferent as well. In particular, the Sheather Jones Plug In fares bet ter  with 
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curve. 
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respect to V E  mostly by avoiding the proportion of quite large values that  
the L 1 Plug In suffers. On the other hand the L 1 Improved Plug In is 
bet ter  in the L 1 sense, because the L 1 error is often slightly smaller. Note 
that  most of the time each method is quite acceptable with respect to both 
measures. 

An important  way of comparing the performance of different bandwidth 
selection methods is to look at the resulting density estimates, as done in 
the right hand panels, Figures 2b and 2d. Again personal opinions will 
vary, but  I much prefer the Sheather Jones in this case, because I am 
most interested in finding features such as bumps, and prefer not to see 
"bumps that  are not really there". The L 1 Improved Plug In has too 
many spurious bumps in the region of the first large peak, although there 
is improved performance in other regions. This density would be most 
effectively est imated by a location varying bandwidth,  which is large on 
the left hand side, and smaller on the right, but  it is still interesting to see 
how well a constant  bandwidth method can perform, especially as location 
varying bandwidths are not so well understood yet. 

2.6 F i n a l  r e m a r k s  

It has been fun both reading this deep and informative paper, and also 
writing up this discussion. I am sure the author 's  response will also be 
interesting. Again, I would like to stress the point from Section 1 above, 
that  I view all of these "modern" bandwidth selectors as being effective 
da ta  analysis tools. 
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Universidad de Santiago de Compostela, Spain 

J. de Ufia 
Universidad de Vigo, Spain 

This paper provides a review of the new methodology developed by Luc 
Devroye and Gabor  Lugosi for smoothing factor selection and a compari- 
son with some of its best competitors. We would like to congratulate the 
author  for the comprehensive s tudy accomplished here and for the graphi- 
cal presentation of the simulation results. We also admire the introduction 
of the minimum distance principle in the problem of density estimation 
and the appeal of establishing a relationship with the empirical measure. 
With respect to the theoretical results, we emphasize their application to 
all densities in all dimensions and their nonasymptotic  character.  
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The author  has developed this methodology in two steps, published in 
two different papers, and here defined as "first and second bandwidths".  In 
this paper an implementation of the first bandwidth is provided, but  not 
of the second one. We wonder whether the first bandwidth could in fact be 
considered as an implementation of the second one. 

We would like to raise two points regarding the application of the 
method.  First,  the parameter  bn, that  is, the upper bound of the can- 
didate bandwidths is assumed to go to infinity in Theorem 1. We think 
that  it is enough to require the convergence to a constant.  In fact, this 
upper bound is taken as the interquartile distance in the implementation. 
Second, the possibility of nonuniqueness of the minimum is pointed out. 
We feel this as a drawback of the method. How often does this happen? 

In the practical implementation of the double kernel method, the author 
proposes four rescaling values for the second kernel L and asserts: "The 
theory tells us that  for large n, the scale factor of L should exceed that  of 
K" .  This is nothing but  a second bandwidth for the second kernel. We 
think that  double kernel requires double bandwidth and we think that  the 
author  is of the same opinion. 

According to the simulation study, the Ll-plug-in improved selector 
seems to be the best one. The new methods,  at the bo t tom of the figures, 
have an overall good performance. However, we are worried about  their 
problems with the simpler densities, most of them at the left side of the 
figures. We also observe in the simulation results that  the iteration and 
rotation do not supply significant improvements to the Devroye-Lugosi se- 
lector. Given the increase in the computat ional  cost that  these procedures 
imply, we are not sure about  their usefulness. 

This methodology can and should be adapted to obtain two main pur- 
poses: To take advantage of some known properties of the da ta  (for in- 
stance, knowledge of the support) ,  and to deal with special types of data.  
Regarding this lat ter  case we have in mind the many types of incomplete 
data.  In particular, we have designed a new bandwidth selector for random 
right censored data.  This was done defining the total variation in this way: 

^ 

where fn-m,h is the convolution of the rescaled kernel with the product- 
limit est imate under random censorship constructed with the first n - m 
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data points, and F,~ is the product-limit estimate with the test set of m 
data points. We stress the fact that suitable estimators of the distribution 
function could substitute the empirical estimate in order to obtain selec- 
tors adapted to many other contexts. In this sense, still under the model of 
random censorship, if we want to take advantage of the hypothesis of pro- 
portional censorship (submodel of the previous one), we could replace the 
product-limit estimator by the ACL estimator of the distribution function. 

We carried out a small simulation study to assess the behavior of this 
selector and to compare it with a plug-in selector. We have chosen the 
plug-in selector adapted to censorship by Ss Sellero, Gonzs Man- 
teiga and Cao (1997). Weibull distributions with scale parameter 1 and 
shape parameters 1, 2 and 3 were chosen for the variable of interest and 
a proportional censoring model was simulated with a probability of cen- 
soring of 25%. One thousand samples of size 100 were generated. The 
numbers represent the averages over the one thousand samples of the ISE 
and the IAE (the values were multiplied by 1000 for ease of presentation). 
We can observe that the Devroye-Lugosi bandwidth adapted to censoring 
is perfectly competitive. We also point out that the introduction of the 
proportional censoring information gives place to an improvement in the 
performance. This was expected. Finally, in our experience we noted that 
the kernel density estimate with DL bandwidth has a better performance 
when it is constructed with the whole sample than when it is computed 
using only the first n - m data points. 

Means of the ISE Means of the IAE 
Selector W(1, 1) W(2, 1) W(3, 1) W(1, 1) W(2, 1) W(3, 1) 

DL with PLE 39.6 20.0 10.6 189 113 74.9 
DL with ACL 34.3 16.9 8.98 176 103 68.6 

Plug-in 44.1 21.0 8.85 181 109 65.3 

Table  1: Results of the simulation study. 
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F. U d i n a  
Univers~tat Pompeu Fabra, Spain 

1 I n t r o d u c t i o n  

I would like first to thank the editors for setting up this forum around 
the very interesting paper written by Luc Devroye and giving myself the 
opportunity to participate in it. 

As I knew about the new methodology for bandwidth selection devel- 
oped by Devroye and Lugosi (DL), I was attracted by both the elegance 
and simplicity of the involved ideas and, of course, by the universality they 
achieve. My second thought was about the practical performance of these 
selectors. Luc Devroye has made a really great work by comparing the new 
methods with the classical ones and showing that they are very competi- 
tive. It would be very interesting to extend it to include sample sizes other 
than N -- 100. 

In the following lines I want to discuss how Devroye-Lugosi bandwidth 
selectors behave in practice when facing real data sets. This concern two 
main issues: how to adapt the method to work in a binned data com- 
putational setting and how to protect the method against typical data 
manipulation such as rounding or sorting. 

2 B i n n e d  v e r s i o n  of  D e v r o y e - L u g o s i  s e l e c t o r  

Using kernel estimation techniques in practice means to use some discretiza- 
tion technique like binning as described, for example, in Fan and Mar- 
ron (1993) or, under the name of warping in Hgrdle and Scott (1992). It 
is the only practical way to deal with big or moderately big data sizes. 
For a given grid gk, {J = 1 . . .G) ,  bin counts ck are computed for the first 
n - m data points using linear binning. Then approximated estimates for 
density values are computed for every gk needing only a few kernel function 
values. The finite convolution needed can be computed even faster using 
fast Fourier transform techniques. We use in this quick study the global 
version of the "First bandwidth" as described in Devroye's paper. The 
slight changes we make to the algorithm will be commented. In this binned 
context, the approximated Yatracos set Aij is simply a union of bins (the 
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ones where fh, (gk) > f% (gk)) that  can be coded as a bit vector of length G. 
Yatracos distance computat ion is really fast and simple in this situation. 

A potential problem that  would need some study appear: 'al though 
binning gives very good approximated density values we have no guarantee 
of having good approximation to the true Yatracos sets (whatever this 
means) and this can distort the distances to be minimized. Our experience 
show that  the choice of G and the binning width w do not affect the selected 
bandwidth,  provided that  G is big enough and the width is small. We 
usually take G in the hundreds. Once w is fixed, we use it to decide the 
minimum bandwidth to be considered, because it makes no sense to take 
bandwidth values that  would include less than several grid values in the 
computat ion.  

3 D e a l i n g  w i t h  real d a t a  s e t s  

When we deal with real da ta  sets we must be careful about how da ta  has 
been transferred to the analyst. It's quite usual, for example, that  da ta  have 
been collected in rounded form or have been rounded a posteriori. Some 
bandwidth selectors are robust against any small change in da ta  values, 
but the Devroye-Lugosi universal selector can have problems with repeated 
values. We will discuss some examples below. 

Another  source of problems can come from data  being arranged in some 
way before arriving to the algorithm. Some of my time was spent inves- 
tigating strange behavior in the algorithms proposed by the paper. The 
reason was tha t  the da ta  were sorted in increasing order in the file where it 
came to me. Obviously the method doesn' t  work at all with sorted data  if 
split is done in the usual way, taking the first m values. Similar problems 
can appear if da ta  are collected or t ransmit ted in a non-random ordering, 
by different categories, for example. Even in some Monte-Carlo simulations 
I found tha t  some of my algorithms were generating da ta  from normal mix- 
tures in a component-by-component  way. This normally doesn' t  have any 
consequence but when splitting the da ta  set to apply the Devroye-Lugosi 
procedures, problems arose. 

The strategy to follow when data  is suspected to have been sorted is 
not easy to devise. One possibility is to shuffle randomly the da ta  set and 
then to take the first m da ta  values to build the empirical measure. This 
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has the problem of producing a different selected bandwidth every time the 
algorithm is applied. As we will see in the examples, changing the m length 
subsample introduces a lot of variability in the selected bandwidth.  In the 
paper, Devroyein t roduces  the rotation idea to compensate  it. The obvious 
drawback is that  computat ion time grows, as the method itself is quite 
time consuming. Another possibility could be extracting the m da ta  points 
in some systematic  way. For example, a simple scheme could be, to take 
m elements out of n, sort the da ta  set and take those with ordered index 
[ni/m] for i = 1 . . .  m. But this needs some theoretical justification because 
violates the independence assumption and in case of repeated values would 
favor even more coincidences between the two subsamples.  

4 S o m e  r e a l  d a t a  s e t s  

I was trying first to work with the Miguel Hidalgo s tamps  da ta  set brought 
to the density estimation area by lzenmann and Sommer (1988). It 's a 
da ta  set that  presents both a rich s tructure to s tudy and a reliable sample 
size (n---485). Da ta  comes from thickness measured from a collection of 
old s tamps issued in 1872-74 in Mexico. But unfortunately, da ta  is heavily 
rounded to thousandth  of millimeters resulting in a high proportion of 
repeated data.  This results in the impossibility to apply the described 
techniques to it. The Sheather-Jones plug-in bandwidth,  for example, is 
0.00272 for this da ta  set, so it is in the same order of the resolution of 
the data.  To select this bandwidth,  DL would need to fix a minimum 
bandwidth so small that  the estimates will result a series of single value 
peaks. When splitting the data,  the m subsample results to be a subsample 
of the n - m one. The result is that  the minimum bandwidth is selected 
most of the times the algorithm is run. Probably Devroye-Lugosi theory 
might be modified to work with smoothed discrete distributions and then 
some work could be done with this da ta  set. 

Postman,  Huchra and Geller (1986) studied the velocities of 82 galaxies 
moving away form our galaxy. The da ta  set was deeply analyzed from the 
kernel smoothing point of view in Park and Turlach (1992). They gave 
bandwidth values selected by several automatic  selectors. Translated to 
our kernel, they found from 1.37 for least squares cross-validation to 3.48 
for biased cross-validation. For the Sheather-Jones plug-in they gave 1.44 
and 2.72 for the normal-reference rule-of-thumb. The da ta  set arrived to 
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me sorted in increasing order, so the re-shuffling strategy was applied. 

# of h values 
m/n 10 20 30 40 
0.1 
0.2 
0.3 
0.4 
0.5 

1.339 1.686 2.543 2.626 
1.928 1.418 1.811 1.724 
2.777 3.365 3.189 3.107 
2.777 2.382 2.271 2.414 
1.928 1.686 1.811 1.724 

F i g u r e  1: Values selected by the DL algorithm as described in the text, 
for several values of m/n and of the number of estimators in contest. 

Applying the version of DL selector described above we obtained values 
around 2.0, depending on parameter  choice. To show how the value selected 
depends on these parameters,  we shuffled the da ta  set once (it arrived to 
me sorted in increasing order again) and we run the algorithm with 7n 
being 10%, 20%, 30%, 40%, and 50% of the da ta  size n = 82 and taking 
the number of different values for h in the range [0.15, 4.0] as 10, 20, 30, 
and 40. The minimum bandwidth is fixed as 1.5 times the binning width 
(so ensuring that  at least three bins are involved in any computat ion).  The 
maximum bandwidth is chosen to be the interquartilic range. The resulting 
values are shown in the table in figure 1. The variability of the selected 
parameter  is noticeable. As expected, higher values of the ratio m/n give 
less variability. But even using the same pair of parameters,  shuffling da ta  
can give very different values for the selected bandwidth.  For example, with 
m/n = .3 and 20 bandwidth values, we obtained 0.423, 1.418, 1.418, 1.686, 
and 1.193 in five runs of the algorithm with re shuffling. To test the rotation 
idea suggested by Devroye, we took m = n/2 and computed the geometric 
mean of the two selected bandwitdhs obtained using both halves alternately 
as m subsample. Number of bandwidths in contest were 20 in the range 
[0.15, 4.0]. The values obtained were 0.775, 1.004, 1.094, 1.546, 1.546. We 
see tha t  variability has not improved so much. As a mat te r  of curiosity, 
we also show in figure 2 the shape that  Yatracos sets appear to have. For 
10 bandwidth values (from .15 to 4.0 in geometric steps) we generated 
10 density estimates f l , . . . ,  fl0 and computed the Yatracos sets Aij = 
{xlfi(x ) > fj(x)} Each horizontal line in figure 2 represent a set. The lower 
band composed by nine lines corresponds, as going up, to Alj, j = 2 , . . .  , 10 
and so the other 10 bands. 
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Figure  2: Yatracos sets for galaxies data 

Most of the variability found in the selected bandwidths for the galaxies 
da ta  can be explained by the sample size being too small. We decided to 
contrast  it with the case of a very big da ta  set, also well known in the 
smoothing literature. The net income of 7201 British households in the 
year 1975 was studied in Schmitz and Marron (1992) and also discussed 
in Wand, Marron and Ruppert  (1991). Data  range goes from 0.026 to 
9.1225 the unit being the average income. Despite the da ta  range and 
resolution, the set contains a quite high number of repeated values, namely 
1357. We took a grid size of 800 in the range -1 to 10, so the minimum 
bandwidth to be considered is approx .022. The maximum was taken here 
as half the interquartilic range and 25 bandwidth values were taken in the 
resulting interval [.022, .4]. m was chosen to be 25% of the sample size. In 
figure 3 we plot Yatracos distance over (logarithm of) bandwidth values. 
8 different runs are plotted resulting from re shuffling before split. The 
selected bandwidths were 0.051, 0.058 twice, 0.065 three times, 0.094 twice, 
0.106 and 0.152. We see that  variability is somewhat  reduced but it's still 
quite high. Applying the systematic split discussed in section 2 selected 
a bandwidth of 0.025, clearly too small. The reason can be the relatively 
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high percentage of repeated values. Applying the rotation algorithm in this 
setting resulted to more reasonable and stable values, we got 0.10, 0.094, 
.081 in three different runs. 
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F i g u r e  3: Values for the Yatracos distance in vertical axis. In horizontal 
axis, log of bandwidth. Each line is a diferent run of the algorithm with 
previous data shuffling. 

5 C o n c l u s i o n  

We have seen that to use the DL selectors with real data, binning techniques 
can be used but some problems must be faced. The main one is how to deal 
with repeated values - this seems to need some theoretical adjustment. The 
other problem is to protect the algorithm against data that can be sorted 
or arranged in some non-random way. It looks like the shuffling-then-rotate 
approach is the safer one but further study is needed. 
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Rejoinder by L. Devroye 

Sometimes, researchers charge ahead like young bulls in a bullring, hit- 
ting anything tha t  moves in the arena, but  oblivious to the sword that  will 
eventually kill them. That  is exactly how I feel after reading some of the 
comments.  If the newly proposed methods are to be used in practice, as 
Frederic Udina points out, more work is needed to address the problems of 
the selection of a random subset and of real da ta  with repeated values. On 
his transparencies, Frederic used the phrase "repeated values kill Devroye- 
Lugosi ' .  C~sar and Jacobo correctly point out tha t  our work on the double 
kernel is unfinished: the unstudied double kernel/double h method is likely 
the one tha t  will survive most matadorial  attacks. 

Many comments  relate to generalizations of the new estimates or im- 
provements of the kernel estimate. These include transformed kernel esti- 
mates (Steve and Jan),  locally adaptive estimates (Steve again), support- 
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sensitive estimates (C~sar and Jacobo), symmetry-sensitive estimates (Ri- 
cardo Cao), generalizations to censoring (C~sar and Jacobo), and param- 
eter selection in nearest neighbor estimates (Ricardo Fraiman)., All these 
comments are pertinent and show real concern regarding the kernel esti- 
mate's performance. We are pleased that our study has uncovered new 
problems related to kernel density estimates. The existence of just a few 
patterns of behavior across the spectrum of densities (figures 6 through 
10) prompted Peter Hall to suggest the automatic selection of a bandwidth 
selector based upon entropy estimates. This could also be done based on 
spacings. Indeed, if we had a further i.i.d, sample Z 1 , . . . ,  Zk with order 
s t a t i s t i c s  Z(1 ) < . . .  < Z(k), then fzZ~_l f,,, 1 < i < k + 1, with Z(0) = - o c  
and Z(k+D = oc should ideally be distributed as uniform spacings. A stan- 
dard spacings test may be used to identify the best bandwidth selector. A 
related method was included in the simulations of Berlinet and Devroye 
(1994) to select the best h in the kernel method, but it yielded mediocre 
results. Nevertheless, this avenue of research should prove useful. 

No simulation study can ever be conclusive. Both Chris Jones and Steve 
Marron point out some problems with the selection of our test densities 
and with the interpretation of the results. For example, it is clear that 
all bandwidths that optimize some criterion perform rather abysmally on 
near-normal densities relative to plug-in methods. To expose behavior of 
this sort was precisely one of our goals. One should not forget that we set 
out to develop bandwidths with new broad performance guarantees, and 
that the simulation study came later. The instability of the Ll-improved 
plug-in method discovered by Steve is indeed puzzling. To make matters 
worse, the second bandwidth of Devroye and Lugosi (1997) is simply un- 
implementable as it involves minimization of a function over an infinite 
space, and each function value requires a supremum over an uncountably 
infinite ensemble. At this stage, we should take the bull by the horns and 
place the selectors in the hands of agile bandwidth engineers to fine-tune, 
adjust, modify, robustize and tame. 

Chris Jones mentions that we should have used a fuller version of the 
Sheather-Jones bandwidth. We picked the one used in the study by Cao, 
Cuevas and Gonzs (1994), in part to have a standard of com- 
parison with that study. In his comment, Steve Matron confirms our sim- 
ulation results with respect to the Sheather-Jones bandwidth, but it was 
not clear which version Steve used. 
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Chris Jones and to some extent  Steve Marron wave the red banner 
for the choice of the Bartlett-Epanechnikov kernel in the simulation study. 
There were various reasons for our decision. Among positive kernels, it 
is optimal for L1 and L 2. It is computationally convenient as the kernel 
est imate is piecewise parabolic. We also suspect that  the relative perfor- 
mance of various bandwidth selectors will not change much among smooth 
unimodal positive kernels. However, more importantly, one might consider 
the joint data-based choice of K and h. This should improve the absolute 
performance, but perhaps not for small sample sizes. If the complexity 
of the family of kernels K can be controlled (in the computat ion of the 
Vapnik-Chervonenkis shat ter  coefficient), then methods similar to those of 
Devroye and Lugosi (1997) may be useful. Gs comments  in fact read 
as a mini-paper in which he shows the way for parametr ic  families of ker- 
nels. We thank him in particular for working out a d-dimensional example 
in which the kernel est imate has d scale parameters.  

Steve sticks his banderilla in the right spot when he remarks that  n -- 
100 is too small for some densities in our study. But that  is precisely our 
point too. Those are the densities that  can be classified as difficult. Thus, 
our simulation study covers many different virtual (or relative) sample sizes. 
We can get more information either by changing n or by adding more 
densities and keeping n fixed. Eventually, if we increase n, all densities will 
appear easy, so increasing n alone will not be sufficient in a study. 

The choice of the L1 criterion is based on arguments  related to the 
estimation of probabilities, generating new approximate samples from the 
unknown density, invariance under monotone transformations,  visual dis- 
tance between curves, and the universality of the error scale. Our band- 
widths are designed with the L1 criterion in mind. Matron and Tsybakov's 
VE is different and requires appropriate and new bandwidth selectors. We 
unfairly threw sand in the readers'  eyes by comparing the Sheather-Jones 
bandwidth with the Ll-improved plug-in method (as the former was de- 
signed for L2). In the same vain, one should not compare our bandwidths 
with other ones based on VE, for example. It is also unclear whether in 
his comparison, Steve used VE(1), an L1 version of VE, or VE(2), which 
by definition should favor L2 bandwidth selectors such as Sheather-Jones. 
If f is Lipschitz, then VE(1) (f~ --~ f )  divided by f Ifn - f] is always be- 
tween 1 /v / i -+  C 2 and 1~ so tha t  we suspect VE(2) was used. Much blood 
can be spilled over the question of why we do density estimation. Chris 
Jones points out that  if we are interested in probabilities, we should stick 
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to empirical distribution functions. These are only good for probabilities of 
intervals, not probabilities of Borel sets. Indeed, the finite set of the data 
receives mass one from the empirical distribution function but has in fact 
zero probability whenever a density exists. Density estimates with good L1 
properties provide good probability estimates uniformly over all (possibly 
data-dependent!) sets. 

The paper builds on experiments first reported by Berlinet and De- 
vroye (1994) and on theoretical results with Gs Lugosi (1996, 1997). 
Alain's cooperation during the last few years is gratefully acknowledged, 
while Gs should have been a coauthor of the present paper (l asked 
him but he refused to enter the ring). Various commenters refer to equa- 
tion (7), which was changed to (8.7) in the final printed version. We also 
corrected typographical errors reported by C@sar and Jacobo. We changed 
only one sentence in the original manuscript after a comment by Steve that  
(8.1) is not always close to the optimum, as we hastily and incorrectly 
claimed. We thank Domingo Morales for a thorough job as editor and we 
thank Test for allowing us to publish five color figures. Finally, we thank 
Antonio Cuevas and Wenceslao Gonzs for the warm reception 
in Santiago, where we read our paper on September 11, 1997, and hit all 
moving objects thrown at us by Ricardo Cao, Frederic Udina and C~sar 
Sanchez-Sellero. They stopped just short of singing the Malaguefia. 

Let me conclude with a few open problems of my own. These show a 
strong personal bias and may be the last nervous jerks of an impetuous but 
wounded bull. 

. (1) Establish if the class of asymptotically optimal bandwidths is 
empty. Can the 3 in the bounds be replaced by 1 for some bandwidth 
selector? 

. (2) If the answer to (1) is negative, one should develop asymptotically 
optimal bandwidths for all densities in certain subclasses. We do not 
know for example how to pick an asymptotically optimal bandwidth 
for all monotone densities on the positive halfline. As there are in- 
finitely many classes of densities, this is like letting the prize bull 
loose in the cow barn. 

3. (3) Is the double kernel bandwidth suitable? 
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4. (4) Study the double kernel/double h method. Is it universally suit- 
able? 

5. (5) Study the properties of the iterative method of section '6. 

6. (6) Study the sensitivity with respect to changes in subsets of the 
data  of size k. That  means studying the supremum of the L1 error 
after the supremum is taken over all subsets of k out of n and all 
values on the real line for the k selected data  points. 


