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ABSTRACT The problem of the estimation of a discrete probability density from indepen- 
dent observations is considered. For a wide class of noises, a method is given for estimating 
a probability density when the measurements are corrupted by additive noise. This method 
is shown to be consistent, and several bounds on the error are given. An application to the 
detection of a (nonparametric) random signal is discussed. Finally, the estimation of a 
probability density is considered where the measurements are noisy and some of the 
measurements are incorrect. This situation may arise when a machine collecting the data 
fails part of the time. 

1. Zntroduction 

The need for considering discrete data is often encountered in data com- 
munications, digital signal processing, and other areas. In this paper we 
consider discrete valued random variables, and we are concerned with estimat- 
ing the discrete probability density function. Measurements are taken, and 
from these measurements a density function is obtained. However, we assume 
that the measurements are imperfect. We derive the estimators, establish the 
appropriate forms of convergence, and supply an abundance of bounds on the 
errors. 

Assume that we can observe X1, X2, . . . , x, a sequence of independent 
identically distributed random variables with the unknown discrete probability 
density f. An obvious way of estimating f(x) is to use the empirical density 
based on the n observations. However, the estimation problem is complicated 
if we can only observe X1 +z,, x*+z2,...,xn+zn, where 
XI, Z,, X,,Z*, . . . , X,, Z,, are independent random variables and the Zi’s, 
commonly referred to as noise, have a common known discrete probability 
density function g. For a wide class of densities g, a method is given to recover 
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f which is shown to be strongly uniformly consistent, that is, 

lim sup ]fn(x)-f(x)] = 0 
n-co x 

with probability one (wpl), where f,, is the estimate of f with just n observa- 
tions. 

In signal detection, we observe X, + Z,, X, + Z,, . . . , X,, + Z,, if the signal is 
present, and Z,, Z2,. . . , Z,, if the signal is absent; and we are asked to decide 
whether the signal is present or not. A decision procedure is given with the 
property that, for all nontrivial f and for a wide class of discrete densities g, the 
probability of making a wrong decision tends to zero exponentially fast as n 
grows large. 

In some applications we are asked to recover f when we observe Z,+ 

X,S,, Z,+X,S,, . . . , Z,, + X,,S,,, where Si = 0 if the signal is not present at the 
ith time instant, and Si = 1 if the signal is present. The random variables 
S,, S2,. . . , S,, are assumed to be independent and identically distributed. 
Again, g, the density of Z,, and 7~~ = P{S, = 1) are assumed to be known. For 
this case, the method to recover f generalizes the method that is used when 
?r, = 1. 

IZ. Properties of the Empirical Density 

Let X,, X,, . . . , X,, be independent identically distributed random variables 
with a discrete probability density function f. Assume without loss of generality 
that f is supported on Z, the set of integers. The empirical density f,, is defined 

by 

fn(x) =; .z 4X:=x), XEZ, 

I-1 

where I is the indicator function. Thus, f,, is also a discrete probability density. 
We will briefly review some properties of f,,, starting with the pointwise 

consistency. By the strong law of large numbers [(l), p. 2391 we know that 
f,,(x) + f(x) wpl for all x. In fact, by Hoeffding’s inequality (2>, for all E > 0, 

P{]fn(x)-f(x)]>.s}I2exp(-2.na2), 

from which the strong consistency follows by the Borel-Cantelli lemma [(l), p. 
2281. This bound is independent of f and x. Since countable unions of null 
events are null, we immediately have the strong uniform consistency 

lim sup If,(x)-f(x)] =0 wpl. 
n-m x 

Now we consider some uniform error bounds. If F,, and F are the distribution 
functions corresponding respectively to f,, and f, then 

P{suplfn(x)-f(x)lrFI~2P{SuPl~“o-F(x)l~~} 
* x 

52C, exp [ -2n($J3 
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by an inequality of Dvoretzky et al. (3), where C, is a universal constant. In 
Appendix A it is shown that C, ~610.4. Recently, Singh (4) [see also, (5)] has 
shown that 

P(~~p~F,(x)-F(x)~r~}~4e~n~exp(-2rz~~) 

for np’r 1. This implies that 

for ns224. Both bounds (1) and (2) are valid for all discrete densities f and, 
by the Borel-Cantelli lemma, each implies that 

lim supIf,(f(x)l=Owpl. 
n-m X 

Now we consider the following measures of distance between f,, and f: 

(9 i Ifn(X)-f(X)I, 
x=-cc 

(ii) [ g If.(x)-f(x,l~fCx,]““, pz 1, x=--m 

(iii) 

and 

sup Ifnb-f(X)I, x 

where 9(Z) is the power set of the integers. Notice that in (iii) the supremum is 
taken over all singleton sets while in (iv) the supremum is over all subsets of 
the integers. For (i) we have the following result. 

Lemma 1 

Let f”(x) be the empirical estimate of the discrete density f(x). 
Then 

p( f Ifnb)-f(x)l~e}~Kl exp (--I&n) 
x=--P 

where K,, K2 > 0 depend upon E and f only. 
Proof: Pick N 2 1 such that 

(3) 

1 f(x)<;. 
Ixl>N 

Vol. 307, No. 1. January 1979 
F’rined in No&em Ireland 3 



Luc P. Deuroye and Gary L. Wise 

Then 

5P{ c 
l%lCN 

If.(x)-fwla;]+P{ c lfncx)-fwl~;] 
/*P-N 

5 c P[lfnC~~-f~~~l~& 
IxkN 

]+p[ c f,(x)- c 
Ixl=-N (xl=-N 

5(4N+*)exp [ -2n(&)Z]+exp [ -2n(i)J 

5(4N+3)exp [ -2n(&)J 

by Hoeffding’s inequality (2). Q.E.D. 
We see that a similar result is true for (iv) when we notice that 

f IfJX)-f(X)l=2 sup I c fn(x)- c fb)l. (4) 
*z--m AE~(Z) xcA XEA 

The question remains whether an upper bound exists that decreases to zero 
as n grows large and does not depend upon f. The answer to this question is 
negative because for fixed n, it suffices to let 

Clearly, if E <i, then 

x<l or x>2n. 

Distance (ii) has the disadvantage that it weighs If,,(x)-f(x)1 less when f(x) is 
small. For distribution-free results, (iii) seems the natural choice for the 
distance between f,, and f. For strong asymptotical results, but not distribution- 
free, (i) and (iv) can be used as well. The previous development gives explicit 
bounds relating to the distance measures. 

Consider the following Lemma. 

Lemma 2 

Let (Cl, $33, P) be a probability space. Let f,, fi, . . . be densities on the 
integers for each fixed w, and random variables on (a, 9, P) for each fixed x. 
We will write f,,(x, o) to make the dependency on o explicit. Let f be a density 
on the integers. If f,,(x, o) + f(x) wpl (in probability) for all x, then 

wpl (in probability). 

i Ifnk W)-f(X)l -I, 0 (3 
x=--m 
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The proof is given in Appendix B. 
By Lemma 2 we have that 

lim If,(x)-f(x)1 = 0 
n-m 

wpl (in probability) for x E iz implies that 

lim f If,(x)-f(x)I=O 
n-m x=--m 

wpl (in probability). From (4) this is equivalent to 

lim sup 1 c L(x)- c fb)l=O 
n-m ASS’(Z) xsA XEA 

wpl (in probability). This in turn implies that 

lim sup If,(x)-f(x)1 = 0 
II-- x 

wpl (in probability). Since 

[ 2 lf~~x~-f~x~l"f~x~]"p~supIf"~x~-f~x~l, x=--m x 

we then have that 

lim [ f lf.(x,-f(x)lPf(x,l"p=O 
n-m x=_-m 

wpl (in probability). Thus (5) implies that each of the four distance measures 
also converges to zero in the appropriate sense. Thus we conclude that for any 
sequence f,, of densities for which 

lim Ifnb)-f(x)l=O 
n-m 

wpl or in probability, for all x E Z, each of the four distance measures also 
converges to zero in the same sense. 

111 Estimation in the Presence of Additive Noise 

Because of background noise, faulty equipment, or other practical problems, 
it may not be possible to observe X,, X,, . . . , X,, ; but instead, we can observe 
Y,, Y2, . . . , Y,,, where 

Yi = Xi + Zi, 15 i 5 n, 

and X,, G, X2, L.. . , X,,, Z,, are independent. The Zi have a common 
known density g on the integers and the Xi have an unknown density f on the 
integers which we would like to estimate. The discrete probability density h of 
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the Yi is given by 

h(x)= 5 f(x-YMY). 
),=-cc 

Assume that we can write 

f(x)= f 5$(x-y)= 2 L,MY) 
y=-m y---m 

for some sequence {&} of real numbers. Resubstitution gives 

f(x)= c 5; If g(u)fb-y-u) 
y=-cc UC--m 

which should hold for all x and all fi 

Lemma 3 

Equation (6) is valid for all x and all f if and only if 

(6) 

(7) 

for all integers k. 
Proof: Clearly, if (7) holds, then (6) is valid for all x and all f. Conversely, let 

f(0) = 1, and note that 

1 &g(n) = 1. 
y,u:y+u=o 

Next, let f(0) = 4 = f(k), k f 0. Then (6) reads, for x = 0, 

I=_ &x(u), 
y,u.y+u k 

from which (7) follows by the arbitrariness of k. Q.E.D. 
Deferring for the moment the question of how to determine the 5, from g so 

that (7) is satisfied, we return to the construction of an estimate of f assuming 
the knowledge of the 5,. Let h, be the empirical density for Y,, Y2,. . . , Y,, 

which suggests the following estimate of f: 

f,,(x)= 2 5&,(x-y) y=-m 

= 2 cL,h,(y) y=-cc 

6 
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Notice that for g with g(0) = 1 (and thus .$ = 1, & = 0, i# 0), we get back the 
original empirical estimate of f because 

5x--Y,= &Y,=*,. 

The first question that arises is the question of the closeness of f,, to f. Notice 
that f,, is not a probability density in general. Of course, fa defined by 

[ 

1, f*b)z 1 
f&) = fn(x), O<fnb)< 1 

0, ftt(X)~O 
is a strictly better density estimate than f,,. However, we will not further discuss 
this trivial modification of our estimate. Clearly, f,, satisfies 

and 

suPIfn(x)-fb)l~( 2 15,1)suPl~,~X~--h~x~l, 
x y=-a x 

SUP If,(x)-fb)l~ (SUP l&l) i lkIb)-Mx)l, x Y x=--m 

(9) 

(10) 

Let 

and 

: x=-m Ifnix)-fCx)lc( i l&l) f Ikb)-&)I. y---m xcpm 

C= f l5Yl y=-m 

D =sup kyl. Y 
Applying some of the results of the previous section, we have the following 
theorem. 

Theorem I 

Let f,,(x) be given by (8) and assume that {&j,,) satisfies (7). Then if C is finite, 
we have 

I 2C, exp -$$ , [ 1 all nrl 

PbyP If,(X)-fb)I) &>S 4e2np 
2 

(11) 

c 

exp -E- 
[ 1 2c2 ’ 

all n>F 

and 

(12) 

where K,, K,>O are constants depending upon E, h, and C. Also, if D is finite, 
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we have 

P{supIf,(x)-f(x)lrE}~K,exp(-K,n) 
X 

(13) 

where K,, K,>O are constants depending upon E, h, and D. 
The bounds in (11) are distribution-free but require that C<m. Eq. (13), 

which is not distribution-free, requires only that D < ~0. The strong result (12) 
assumes finiteness of C and is not uniform over all densities as we might expect 
from the remarks of the previous section. 

Using the Borel-Cantelli lemma, we obtain the following result. 

Corollary 1 

Let f,(x) be given by (8) and assume that (5,) satisfies (7). If D = syp \,$,I C 03, 
then 

2 If”(X)-f(X)I + 0 wpl. 

In the remainder of this section we briefly discuss practical solutions to (7) 
and give some examples of sequences {.$} for some common densities g. The 
problem of the finiteness of C or D is briefly considered. 

Practical Considerations 

A solution to (7) can be obtained recursively if g is a single tailed density, 
that is, if there exists a K such that g(x) = 0 for all x >K or g(x) =0 for all 
x <K. For example, assume that g(K) > 0 and g(x) = 0 for all x <K. Let [,, = 0 
for y C-K and .&-K = l/g(K). It is easy to see that the k ~0 equations of (7) 
hold and that the k = 1 equation results in 

5-,+,g(K)+&,g(K+l)=O, 

from which we find .$--K+l. Solving the k = 2 equation of (7) gives us &K+2 and 
so on. Clearly, this is probably not the only solution to (7). Consider the 
following simple example. 

Example 1 

Let g(0) = g(1) = 4 and g(x) = 0, x # 0, 1. Then (7) results in 

‘51-t&0=2 

. . . =c$_-2+t_, =&)+(-, =s$,+5;=. . .=o. 

If &, = (Y and [-, = 2 -(Y, then all solutions of (7) can be written as 

&=a(-l)Y, yro 

&,=(2-cu)(-1)y+1, yrl 

where a! is any real number. For this case we note that D is finite while C is 
infinite. 

8 
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Example 2 

In Example 1 we have syp I,&;\ < ~0, but this is not always the case. If 

g( - 1) = g( 1) = l/4 and g(0) = l/2, then it is straight-forward to show that for 
any solution of (7) we have svp \&,I = 03. 

Now we will give solutions for some well known densities g. 

Example 3. Poisson Noise with Parameter A > 0 

Let 

g(x) = seeA, X2-0, 

and it can be verified that a solution to (7) is given by 

1 

(-A)y * 
ty= Fe’ yrO. 

0, Y<O 

It is easily seen that 

In (6) the estimation of a continuous probability density function from meas- 
urements corrupted by Poisson noise is considered. 

Example 4. Geometric Noise with Parameter h > 1 

If 

g(x)=@-1)/h”+‘, xro, 

then a solution to (7) is given by 

{ 

A/(A - 1), y = 0, 

5, = -l/(A-l), y=l, 

0, y#O, 1. 

Example 5. Binomial Noise with Parameters N and p # 0, 1 

If 

g(x)=(,N)p”(l-p)N-“, Osx_=N, 

then a solution to (7) is given by 

5 = ~-1)Y(N+;-1)(l-p)-N(&)17 yz-0. 

Y 

I 0, y-Co. 

We notice that 

Vol.3CV.No. l.Jmvary1979 
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if and only if p < l/2, and that &I %m if p>1/2 or if N>2 and p=1/2. 
Another solution to (7) is given by 

&N--y = 

i 

(-l)y(N+yy-l)p-N(~J yzo 

0, Y<O 

and it is easy to see that for each p > l/2, 

To be able to use the results of Theorem I, we have to know whether 

sup l&l<m or 
Y 

Can this be done without actually determining the solution to (7)? The answer 
to this is positive in many cases of practical interest. For example, let g(x) = 0 
for x 5 0 and x > M, and assume that g(1) > 0 and g(M) > 0. Then (7) reduces 
to 

Let a prime denote the transpose. Let 

5(k) = E&-M, * * . , &-II’. 
Now consider the equation 

where 

A= 

and 

.$(k+l)=At(k), kz0 

0 1 0 . . . 0 

0 0 1 . . . 0 
. . . 

0 

0 

1 

g(2) 

g(1) 

(14) 

(1% 

s(O)=[O,O Y..., O.&J 
The solution (5,) we are considering has 5, = 0 for y < - 1, and ty is determined 
by (14) for ~2-1. Define the norm of V=[U~, . . . ,uMr as 

llWci$ I”il* 

10 
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Notice that 

if and only if 

Ah SUP lk(k)\l <m if and only if D =sup \.&\<m. 

Let e: denote an M dimensional 
zeros ekewhere. Then we have the 

Lemma 4 

Let A be given by (15). Then 
m 

Y 

vector with a one in the ith position and 
following result. 

c llA”VII<w 
IL=0 

for all V E UP” if and only if 

“zO llA”eMll<m. 

Proof: The sufficiency is obvious. For necessity, notice that we need only show 
that 

2 IIA”eiII<w n=O 
for all 1 si<M. For e, we have 

f IIA”eIll = 1. 
n=O 

For l<i<M, we have 

nzo IIA”ei II = 2 IIAn-‘Aei II + 1 II=1 

5 2 IIA"-lei-lll + “Mp;l:- i) 2 I(An-'eMII+ 1 
n=l n=l 

5 2 ~~A”e~-~~l+g(Mpjl:-i) 2 llA”e,ll+l. 
n=O n=O 

Thus the result follows by induction. Q.E.D. 
From Lemma 4 and the stability theory of discrete dynamical systems [see, 

for example, (7)], we have the following result. 

Lemma 5 

Let (5,) be defined through (14). Then 

c= 2 l&.l<~ y=-a 
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if and only if all the eigenvalues of the matrix A have magnitudes less than 
one. A sufficient condition for 

D =sup (.&l<m 
Y 

is that all the eigenvalues of A have magnitudes less than or equal to one, and 
any eigenvalue with magnitude one is a simple zero of the minimal polynomial 
of A (i.e. corresponds to a Jordan block of order one in the Jordan canonical 
form of A). 

We can also construct a solution in the above situation with &-M = l/g(M) 
and &, = 0 for y > -M. Then we can use the above type of argument to 
establish similar conditions on the solution. 

IV. Signal Detection 

Assume that we observe Yr, Y2, . . . , Y,, where either Yi = Xi + Zi or 
Yi = Zi. We assume that X,, . . . , X, are identically distributed and Z,, . . . , Z, 
are identically distributed. Also, X1, Zr, . . . , X,,, Z,, are independent. As in the 
last section, we assume that X1 has an unknown probability density f on the 
integers and that Z1 has a probability density g on the integers. In engineering 
applications, the Xi are often identified with the signal and the Z are 
considered as noise. The goal is to devise a machine to detect whether we are 
observing a signal with noise superimposed on it, or just noise. We say that f 
defines a signal if f(0) # 1. 

Assume that a solution (5,) to (7) exists for the density g. Now consider the 
following detection procedure. Let fn(0) be the estimate of f(0) given by 

Let {E,,} be a sequence of positive numbers and define the random variable D,, 

by 

D = 1 if L(O)<~-G 
n 

I 0 if fn(0)>l-en’ 

If D,, = 1, we decide that the signal is present, and if D,, = 0, we decide that it is 
not present. Let E,, be the indicator of an error, that is, 

i 

1 if D,, = 1 and the signal is not present 
E,, = 1 if D,, = 0 and the signal is present 

0 otherwise. 

Then we have the following result. 

Theorem I1 

Assume that 

12 
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where (6,) is a solution to (7) for the density g. Let {E,,} be a sequence of 
positive numbers such that, as n + ~0, 

E” --;, 0 

and 

n&,2 + co. 

If f(O)# 1, then 

lim E,, = 0 in probability 
n--r- 

under both hypotheses. If in addition 

then 

under both hypotheses. 
Proof: Let N be such 

lim E, =Owpl 
VI-+= 

that for all n 2 N, 

E ,1-f(0) 
n 4 * 

(16) 

Now consider n 2 N. Let h be the density of X1 + Z1, and let fi be the density 
of Y,, i.e. Ii = h if Y1 = X1 + Z1 and h = g if Yi = Z,. Let $ be the empirical 
density for 6. From (9) it follows that if 

sup I&Ax)- &x)1 <$, 
x 

then 

6) 

(ii) 

Thus 

If,,(O) - II<; (and thus D,, = 0) if the signal is absent, and 

If,(O) -f(O)1 <F (and thus D,, = 1) if the signal is present. 

P{E, = I}~p(sup I&&)-I;(x)+] 
x 

by (1 l), regardless of whether 6 = h or A = g. Therefore, E,, ---, 0 in probability. 
The convergence with probability one follows from the Bore&Cantelli 
lemma. Q.E.D. 

Thus the described signal detection procedure is asymptotically error-free for 
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a large class of discrete densities g. The theorem applies to all probability 
densities f with f(0) f 1. Notice that 

. ns2 n=CQ 
f’,“m log n 

is sufficient for (16) regardless of C. Thus, for example, E, = neo! for 0 < (Y < l/2 
satisfies the conditions of Theorem II. 

V. Recovery of a Density when Some Measurements are Incorrect 

We now assume that Y,, Yz, . . . , Y,, is a sequence of independent identically 
distributed integer-valued random variables with the discrete density ~,f + Tzg 
where rrr + rrz = 1, rrl > 0, vzr2 > 0, wl, TV, and g are known, and the density f is 
unknown. Thus, roughly speaking, a portion m2n of Yr, Y2, . . . , Y, have the 
known density g. This situation may occur when a machine or human collecting 
the observations fails part of the time. 

We assume the knowledge of rrl and 7r2 because in general they cannot be 
estimated from the data unless f# g, which we do not know. If h is the density 
of Y, and 

h,(x) = ; ,gl 4+x, 
I 

is the empirical density estimate of h(x), then we can estimate 

f(x) = F-Z,(x) 

(17) 

Since 

we have the following result. 

Theorem III 

Let f,(x) be defined by (17). Then 

i 

2C1exp[-y], all n21 

+JP Ifn(X)-f(x)l=}s 
4e2nr,e exp [-q-J, all nZ--&. 

Using the Borel-Cantelli lemma and Lemma 1, we have the following 
Corollary. 

14 
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Corollary 2 

Let f”(x) be defined by (17). Then 

lim 2 /fn(x)-f(x)I=O wpl. 
n-m x=-Cc 

Now consider the slightly more complicated model in which we observe 
Yi = XiSi + Zi, where {X,, Zr, S1, . . . , X,,, Z,,, S,,} are independent integer val- 
ued random variables where 

(i) the Zi have a known density g, 

(ii) the Si are (0, l}-valued and identically distributed with rrr = P{Sr = l}> 0 
known, 

(iii) the Xi have a common unknown density f to be estimated. 

The model of the data is different from that in the signal detection problem in 
that now a signal is sometimes present (Si = 1, Yi = Xi +Z) and sometimes 
absent (Si = 0, Yi = Z). In the previous part of this section we desired to 
estimate a mixture component of a density; and now we desire to estimate a 
convolution component of a mixture component of a density, since the density 
of Y, is rrlcf*g) + m2g, where * denotes the convolution operation. 

We construct our estimate of f in two steps. First, let h, be the empirical 
estimate of h with Yr, . . . , Y,,: 

and let 

be our estimate of (f*g) (x). Following the reasoning of Section III, we then try 
to recover f by deconvolving as follows, where {&} is a solution of (7) for the 
density g : 

fnb)= 5 5Ji(x-Y) 
y=-cc 

1 (18) 

Notice that 

fnb)-f(x) =&,z LyCk(y)- h(y)]. 

Thus we have 

sup IfAx)-fb)l+(,~ l&l) SUP b,,,(x)-h(x)1 x x 
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Printed in Northern I,&,,,d 15 



Luc P. Devroye and Gary L. Wise 

and 

supl~Jx)-f(x)l+~pl1Svl T Ikb)-Mx>l, x x=--m 

which are similar to (9) and (lo), respectively. Thus, from Theorem I, we have 
the following result. 

Theorem IV 

Let {&,> be a solution to (7) for the density g, and let f,,(x) be given by (18). 
Then if 

C= t k&T 
y=-cc 

we have 

I Xiexp[-s], all 

4e2n7r,E 
c exp[--s], 

n21 

4c2 
all nZ_ 

7TTT:E2 

where K1, K2> 0 are constants depending upon E, h, rl, and C. Also, if 

D =sup I&l<m, we have 
Y 

P{supIf,(x)-f(x)l2~}1K~exp(-K,n) 
X 

where K3, K4> 0 are constants depending upon E, h, rI, and D. 
Using the Borel-Cantelli lemma, we have the following Corollary. 

Corollary 3 

Let {&,} be a solution to (7) for the density g, and let f,,(x) be given by (18). 

If D = sup I,$ I < 00, then 
Y 

m 

lim C Ifn(x)--f(x)1 =0 wpl. 
n-m *=-cc 
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Appendix A 

In this appendix we prove the following Lemma. The bound that we present 
results directly from the work of Dvoretzky et al. 

Lemma 

If F is any distribution function on R and F,, is the empirical distribution 
function with X1, X,, . . . , X,,, a sequence of independent random variables 
with distribution function F, then 

where 

P{supIF,(x)-F(x)lrE}~C1exp(-2n&‘) 
x 

4J2 exp (40/9) 
de 

I 
. 

Proof: We will use the notation of Dvoretzky et al. [(3), pp. 
they establish that 

l-G,(r)l2[1-H,,(r)] 

where r takes values in (0, ,/n). Expression (2.9), 

l-H,(r)= 1-r n+rJn 
( ) 

n-1 

Jn 1 Q,ci, 4, 
j =CrJnl+l 

can be upper bounded as follows. Notice that 

( > l-2 “<exp(-2r’) 

(see (2.11)). 

First, consider those j for which j -5 5:. 
I I 

We will show that 

Q,(j, 0) < c,n-2 
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for c2 = 16/,/(67r). By an approximation of Feller (8) for n! we have 

Q,, (j, 0) = C;)-$ n - j)“-i- ’ 

1 
~~ J jcnn_j~~ exp [ 

1 1 1 
---- 12n 12j+l I 12(n-j)+l * 

Notice that j(n - j)’ 2 3(n/4)4. Also, 

1 1 
---- 

exp 12n [ 
’ ]<exp[&]<l. 

12j+l 12(n-j)+l 

Thus, 

Q,,tj, O)<J~Tjn-i. 

Next, we know that 

1, J@) 
n 

exp(-8r2t2)dt<1+- 

and (2.15) holds: 

rJnC’ Q,,(j, r)<2c, l+- ( J(y)) exr (- 2r2) 

= (-&+-&) exp (-2r2). 

Now consider those j for which (j - n/21 > n/4. It follows from the equation at 
the top of p. 647 that 

Qn(it r>l Q,(i, 1) ew [-fh r, i)+f(n, 1, iI1 
for rz 1, where f(n, r, j) is the negative of the exponent in (2.12). From (2.9) it 
follows that j 2r r Jn. Thus, it is easily seen that f(n, 1, j)s40/9. Define c = 
exp (40/9). Therefore, we have that 

Q,(i, r)~cQ,Ci 1) exp l-f@, r, iI1 
for r 2 1. Since f(n, r, j) 2 2r2 + r2/64, we have that 

Q,(j,r)(cQ,(j, l)exp(-2r’)exp(-6). 

Using the fact that r exp (- r2/64) is maximized at r = 4 J2, we obtain 

4cJ2 
Q,,(i, r>s- rJe Q,,(i, 1) exp (-2r’). 

Thus, 

4cJ2 
rJnC” Q,(j, r)sJeJn exp (-2r2)Y Q,,ci, 1) 

from (2.16): 

18 
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Collecting bounds, we find that, for r 2 1, 

4J2 exp (4Ol9) 
Je 1 exp (- 2r’). (Al) 

For r < 1, the expression on the right hand side is greater than one, so that 
(Al) is valid for all r. Q.E.D. 

Appendix B 

In this appendix we present the proof of Lemma 2. For the first part, notice 
that 

P{w: lim i ~fn(X,0)-ff(X)~fO}5 
PI-CO X=--m 

P{o: f lim ]fn(x,m)-f(x)]fO}= 
x=--m n- 

P 
1 ( 

6 lim If,( x=-cc n-w.2 x,4-fbwO)}~ 

2 P{o: lim Ifn(x, o)-f(x)] $0). 
x3-u n-m 

Therefore, if f,,(x, o) + f(x) wpl, then 
m 

c Ifnb, ~)-fb)I + 0 Tl. 
x=--m 

For the second part, let U’ denote max (0, Uj. Since f,, and f are densities, 
we have 

m m 

c Ifn(% ~)-ff(X)l= 2 1 Lfb>-fn(x, 0)1”2 
x=-o2 

for all n and o. Thus 

x=-cc 

2 Ifnk ~)-ff(X)I + 0 x=-a 
in probability if and only if [(l), p. 1581 

I 
f [f(x)-fnb, o)l+P(do) -+ 0, R x=-co 

and by Tonelli’s theorem (9) this is equivalent to 

.z, I, U(x)-fn(x, o)l+J’tdw)+ 0. 

But for every x 

I [f(x) - f,, (x, o)l+P(dw) --, 0 
n 
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since 0 I u(x) - f,,(x, o)]+ <f(x) and f,, (x, o) + f(x) in probability [(l), p. 1251. 
Also, 

f j U(x)-fnb, ol+P(dw)s f f(x) = 1; 
x=--o1 n *z-C0 

so that by the dominated convergence theorem [(l), p. 1251, 

in probability. Q.E.D. 

20 

f Ifnk @)-f(x)l+ 0 
x=-Da 
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