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Abstract. We consider a standard data structure for a Delaunay triangulation in the plane based upon

n independent points drawn from a common density f that is bounded away from 0 and ∞ on a convex

set. A simple easy-to-implement (but, of course, suboptimal) heuristic for point location is shown to take

expected time O(n1/3).
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Introduction and main result.

Assume that we are given n points X1, . . . , Xn in the plane together with the standard imple-

mentation of the Delaunay triangulation for these points (Okabe, Boots and Sugihara, 1992). That is,

in pascal terminology, the information is stored as points, edges and triangles, linked by neighborhood

information and would have the following rough type definition:

point: RECORD x,y: real

neighbors: edgelist END

edgelist: RECORD next: ↑edgelist
key: ↑edge END

edge: RECORD pt1,pt2: ↑point
tr1,tr2: ↑triangle END

triangle: RECORD ed1,ed2,ed3: ↑edge END

delaunay: ARRAY[1..n]OF ↑point

No other structure is assumed on top of this simple graph-like object. The objective is to

investigate how fast we can perform point location for a query point x when we are not allowed to

further preprocess the data. A simple heuristic is proposed that has an acceptable expected complexity

and is very easy to implement:

step 1. Selectm points Y1, . . . , Ym at random and without replacement fromX1, . . . , Xn.

step 2. Determine the index i ∈ {1, . . . ,m} for which ‖Yi−x‖ is minimal, and call it j.

Define Y = Yj .

step 3. Locate the triangle to which x belongs by traversing all triangles crossed by the

line segment (Y, x): this is easy to do by the adjacency list implementation mentioned

above.

The time T taken by the algorithm is Θ(m) (for the distance computations) plus Θ(N), where

N is the number of triangles visited by the line segment (Y, x). The notation Θ(.), O(.) and Ω(.) is as

in standard textbooks on data structures (see, e.g., Cormen, Leiserson and Rivest, 1990). Since Y is

random, T is random as well. Our main result is the following.

Theorem. If X1, . . . , Xn are independently drawn from a distribution with density f on a compact set

C ⊆ R2, if α
def
= infC f(x) > 0 and β

def
= supC f(x) < ∞, and if the query point X is independent of

X1, . . . , Xn, then the expected time of the simple algorithm given above is bounded by

c1m+ c2
√
n/m ,

where c1, c2 > 0 are universal constants possibly depending upon the geometrical properties of C. In

particular, the expected time is O(n1/3) if m = Θ(n1/3).



Proof of the Theorem.

The proof rests on the following Lemma.

Lemma (Bose and Devroye, 1995). If X1, . . . , Xn are as in the Theore, and if L is a fixed line

segment of length |L|, then the expected number of triangles or edges of the Deaunay triangulation (for

X1, . . . , Xn) crossed by L is bounded by

c3 + c4|L|
√
n ,

where c3, c4 are universal positive constants not depending upon L or n.

To use this Lemma for a random line segment L, we must make sure that L is independent of

X1, . . . , Xn. This is not the case in our example. For this reason, we make a small detour. Let D be the

Delaunay triangulation for X1, . . . , Xn, and let Dm be the Delaunay triangulation for {X1, . . . , Xn} −
{Y1, . . . , Ym}. Then L = (Y,X) is independent of the n − m data points defining Dm. Thus, by the

Lemma, the expected number of triangles or edges of Dm crossed by L is not more than

c3 + c4E‖Y −X‖√n−m .

The number of triangles or edges of D crossed by L is not more than that for Dm plus the sum S of

the degrees of Y1, . . . , Ym in the Delaunay triangulation D. The expected value of S is, by symmetry, m

times the expected degree of Y1. By the planarity of D, we know that sum of all degrees of X1, . . . , Xn

is twice the number of edges, which does not exceed 6n. Therefore, the expected degree of X1 or Y1 does

not exceed 6. Combining all this shows that

ET ≤ O(m) +O(
√
n)E‖Y −X‖ .

We note here that the maximal degree of the Xi’s is known to be Θ(logn/ log logn) on average (Bern,

Eppstein and Yao, 1991), so that the detour suggested above was indeed necessary to avoid an additional

logarithmic factor.

We conclude the proof by showing that E‖Y − X‖ = O(1/
√
m). Let Sx,t denote the circle of

radius t centered at x, and let λ(A) =
∫
A dx. Fix x ∈ C. Note that there exist positive constants γ and

t0 such that for t < t0, λ(Sx,t ∩C) ≥ γt2 (this is obvious if C is a circle or rectangle, and is easy to show

for general convex C of nonzero area). Then, if D is the maximal distance between any two points of C,

E‖Y − x‖ =

∫ ∞

0
P {‖Y − x‖ > t} dt

=

∫ ∞

0
Pm {‖X1 − x‖ > t} dt

=

∫ ∞

0
(1− P {‖X1 − x‖ ≤ t})m dt

≤
∫ ∞

0
e−mP{‖X1−x‖≤t} dt

≤
∫ ∞

0
e−mαλ(Sx,t∩C) dt



≤
∫ t0

0
e−mαγt

2
dt+

∫ D

t0

e−mαγt0
2
dt

≤
∫ ∞

0
e−mαγt

2
dt+De−mαγt0

2

=

√
π

2αγm
+De−mαγt0

2
.

This shows that ET = O(m +
√
n/m).

Remarks.

The Theorem may also be used to obtain a very simple on-line algorithm for insertion and deletion

in a Delaunay triangulation with O(n1/3) expected time per operation. Clearly, this is not as good as

the O(log n) expected time fully dynamic algorithms of Devillers, Meiser and Teillaud (1991, 1992), but

the data structure is also less complicated.

Using the given point location, a Delaunay triangulation can be constructed in O(n4/3) expected

time. Again, this is theoretically slower than some well-known O(n log n) algorithms (Shamos and Hoey,

1975; Lee and Schachter, 1980; Guibas and Stolfi, 1985) or some O(n logn) expected time randomized

algorithms (Guibas, Knuth and Sharir, 1990; Boissonnat and Teillaud, 1993).

It should be noted also that we do not make use of the power of truncation and bucketing, so that

the algorithm cannot be expected to compete against fine-tuned bucket methods such as those of Maus

(1984), Dwyer (1986, 1987), Katajainen and Koppinen (1988), or the research group at the University of

Tokyo (Ohya, Iri and Murota, 1984; Sugihara, Ooishi and Imai, 1990; Ooishi and Sugihara, 1991) which

all achieve O(n) expected time under certain conditions on the distribution of the data.
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