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ABSTRACT. 
We derive an algorithm that requires uniformly bounded 

time to generate the sum of n iid uniform [0,1] random vari- 
ables. The expected time spent on the computation of the 
density of the sum per generated random variate tends to zero 
as n+-. 

INTRODUCTION. 
Assume that we wish to generate many independent 

copies of the random variable S,, = EX,, where the X i ’ s  are 

iid random variables having a given density f . Obviously, we 
could always do this in time O ( n )  by generating and sum- 
ming the Xi’s. For very large n, ithis is rather inefficient. At 
the same time, it is unacceptable to generate a random variate 
with a properly normalized limit law for Sn since approxima- 
tions are not allowed. However, local central limit theorems 
can be helpful in the design of ,in exact generator. Section 
14.4 of Devroye (1986) deals with precisely this problem. 
Basically, one could in general dwelop generators for distri- 
butions with known characteristic function (see also Devroye, 
1986), and apply these to the situation at hand. This is 
promising if we know the characteristic function I$ off , since 
S,, must then have characteristic function Cp,. It is immedi- 
ately apparent that the resulting algorithms are rather cumber- 
some. 

The strategy we will explore in this note rests on the 
simple principle of solving a complex problem by solving 
many easier problems, i.e. on the principle of basic building 
blocks. In particular, we will deve:lop and analyze a generator 
for the sum S,, of n iid uniform [-1,1] random variables. This 
generator takes 0 (1) expected time per random variate. From 
this, the user can build at will. Indeed, many densities can be 
written as mixtures 

n 

r=l 

m 

i=l 

where the f i ’ s  are uniform densities on intervals [ai&]. The 
sum S,, of n iid random variable:; with density f can be gen- 
erated out as follows. 

The mixture method for simulating sums 

Generate a multinomial (n  ,p l.p2,...) random sequence N1,N2, ... 
(note that the Nils  sum to n ) .  Let K be the index of the largest 
nonzero Ni . 
x t o  
FOR i:=l TO K DO 

Generate S, the sum of N; iid random variables with com- 
mon density f; . 
x t x  +s 

RETURNX 

The validity of the algorithm is obvious. The algorithm is put 
in its most general form, allowing for infinite mixtures. A 
multinomial random sequence is of course defined in the stan- 
dard way: imagine that we have an infinite number of urns, 
and that n balls are independently thrown in the urns. Each 
ball lands with probability pi in the i-th urn. The sequence of 
cardinalities of the urns is a multinomial ( n , p l p 2 ,  ...) random 
sequence. To simulate such a sequence, note that N, is bino- 
mial (np , ) ,  and that given N1, Na is binomial 
(n-Nl,p2/(1-p 1)), etcetera. If K is the index of the last occu- 
pied urn, then it is easy to see that the multinomial sequence 
can be generated in expected time 0 (E (K)). 

Note that there is no special reason why the fils have to 
be uniform densities. However, uniform densities are con- 
venient in many cases, especially when f is unimodal. 

In section 14.4.6 of Devroye (1986), we pinpoint the 
difficulties in developing a uniformly fast generator for the 
sum of uniform [-1,1] random variables. These are related to 
the fact that the density f, of S,, can only be computed at 
Q(n)  time cost. This is best seen by noting first that Sn has 

characteristic function [ - ]’- For all n22, the density 

f,, can be obtained by the inversion formula 

We know that a uniform [0,1] random variable U has a 
binary expansion whose bits are iid Bernoulli random vari- 
ables with parameter 1/2. Thus, the sum S,, of n iid uniform 
[0,1] random variables can be written as 
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- Y .  

j=1 2' 
s, = C A ,  

1 
2 

where the Y j ' s  are iid binomial (n , - )  random variables. 

There are several algorithms now available for generating 
such random variates in expected time uniformly bounded 
over n (see Devroye (1986), Fishman (1979), Ahrens and 
Dieter (1980), and Kachitvichyanukul (1982)). Thus, if one 
desires S, with a fixed number ( d )  of accurate bits, it suffices 
basically to consider a sum truncated to its first d + l o g p  
terms. This time grows with n , and the resulting S, is only an 
approximation! 

THE GENERAL STRATEGY. 
We have seen above that the evaluation of the density f, 

of S, takes time proportional to n . Let us formalize this, and 
assume that the algorithm has a random integer cost associ- 
ated with it, consisting of the number of uniform random vari- 
ates needed before the algorithm halts, and of n times the 
number of evaluations off, (thus, reflecting the fact that each 
evaluation takes time proportional to n ) .  These two com- 
ponents will be called R and N respectively. The algorithm 
we are after has the following desirable properties: 
A. Uniformly over all n , E (R )<c <- for some constant c . 

B. AS n +=, E(N)-+O. 
This means that the contribution from the evaluation of f ,  is 
asymptotically negligible. In other words, one could be rather 
sloppy in the implementation of these evaluations, and barely 
notice any impact on the expected time per random variate. 
Furthermore, the overall expected time is uniformly bounded 
over n .  To be able to avoid the evaluations off, nearly all 
the time means that we must in fact derive a relatively accu- 
rate expression for the actual density of S,. The problem we 
are trying to solve can be tackled as suggested in exercise 
14.4.6, based upon the Gram-Charlier series (see e.g. Ord, 
1972, p. 26). The truncated Gram-Charlier series leads to the 
function 

which approximates the density f, ( x )  of the normalized sum 
GS,. This normalization will be assumed throughout the 
remainder of this note. We need to know how good the 
approximation is. Thus, we need something like the follow- 
ing Lemma: 

1 where A = 3.960828044 5... is equal to 

I 

This bound leads to a uniform local limit theorem (see 
Petrov, 1975). For nonuniform bounds, see e.g. Maejima 
(1980). Our bound serves two purposes. First, we could try 
to use it to derive a dominating curve for use in the rejection 
method. Indeed, we know that -J3/nSn has support on 
[-J?;;,,115;;]. Thus, we have on this support set, maximizing 
the quartic polynomial in the definition of g, with respect to 
X ,  

6 A  (1 + -) + - 1 f , (n) 4 - .-xza & 2 0 n  .2 ' 

The dominating curve has integral not exceeding 
1 1+-+-= 2Ad3 1 + 0 ( - )  

20 n .3/2 

This is good enough for us. Next, we need to look at how 
Lemma 1 can be used. This is done through a squeeze step, 
both for rejection and acceptance. An evaluation off, is only 
necessary when both squeeze tests fail. It is known that the 
expected number of evaluations off,  is the the area between 
the squeeze curves (Devroye, 1986, p.54). In our case, this 
yields a value not exceeding 

4A 6 
n3/2  ' 

Hence, E ( N ) ,  which equals n times this value, is O(l/&). 
We have thus achieved our goals A and B stated at the outset 
of this section. 

In an additional section, we will improve the latter result 
by an additional tail bound, to obtain E (N) = 0 (Gin). 

THE ALGORITHM. 

the rejection method in a straightforward manner: 
The inequalities of the previous section allow us to use 

426 



Rejection method. 

[SET-UP] 
2 1 6  96 2712 263503 A + - + -  

4a e312 5% .IZ 
+ =- + - . Note 

that A = 3.9608280445 ... . Compute p c l + b  and 
20 n 

q tu 6 l n  32. 

[GENERATOR.] 
REPEAT 

Generate a uniform [0,11 random variate U ,  

IF u 4 -  
P +Q 
THEN Generate a uniform [-n,nl random variate X 
(or set X t n  +2n (p +,q)U/q) .  
ELSE Generate a nomial random variate X . 

Generate a uniform [O, 11 random variate V . 

As mentioned above, f,, is the density of the normalized 
sum as,,, and g,(x) is the approximation of f n ( x )  given 
by ? + o x 2 +  b4 where y =  I--, a =  - and 

p = --. If $,, and 'y, are the respective characteristic 

functions (or rather, Fourier transforms), then we have 

3 6 
20n 20n 

1 
20n 

1 
StP Ifn(x) - gn(x)l 5 Z;l/len(f) - V n O ) l  dt . 

To compute this bound, we split the integral over two sets, 
D = [-m,m], and its complement, D c .  The bound 
now reduces to some simple but tedious computations. We 
start with the easiest ones. 

1 
IF IX ;>% THEN Accept c>alse  
ELSE IF T Sg,, (X )-An-' THEN Accept c True 
ELSE IF T2ga (X)+An" THEN Accept t False 
ELSE Accept t [Tcfa(X)]  

UNTIL Accept. 
RETURN X .  Note: X is the normalized sum, &a. 

The properties of the algorithm are well understood: the 
2A 6 expected number of iterations is 1 + 6 + -  

expected number of evaluations (of f, is not greater than 
4A f i ln 3/2, and thus E (N )54A Jg/n . 

20 n .3/2 ' the 

PROOF OF LEMMA 1. 

Lemma 2. 
We have the following simple identities: 

x4e-x'" 1 
.\/2n 2n 

-- - - J(3-6t2-tt4)e-'2/2 cos tr dt . 

Proof of Lemma 2. 
If +( t )  = e-"" is the normal characteristic function, then 

it is easy to check that +(') = (t2-1)+ and that 
$(4) = (3-6t2+t4)$. Let f be the normal density. Lemma 2 
now follows from the facts that 

1 
2x 

x'f (x ) = -- J@)(t cos tr dt 

and 

x4f(x) = 1 J+(4)(1) COS 
2n 

dt . 

Lemma 3. 
Assume that n22. 

and 

Proof of Lemma 3. 
function of the normal- 

ized sum is 

Also, vn(f) = 

be simplified to 

(y + a(1-r') + P(3-6t2+t4)), which can 

(1 - L). Thus, 
20 n 

where we used the simple inequality t4e-'2'4 2 64 e-'. If g is 
a nonnegative function with nonnegative nondecreasing first 

derivative, then dt S /g ' (u) .  This can be used 

on both integrals in the last sum. We obtain the further upper 
bound 

- 
U 

3 2 e-nn 64 &- [T + -1. 
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The main part is treated in Lemma 4. 

=exp 

Proof of Lemma 4. 
In this proof, the letters 8,q,&p,X,h,o and 5 are used to 

denote numbers in [OJ] which may depend upon t and/or n .  
They all originate from the remainder term in Taylor's series 
expansion. We begin by noting that, by Taylor's series expan- 
sion of sin U ,  

t 2  1 -- _ _  
2n 2 

L 

t 2  3t4 30t6 &y(t) = 1 - - + - - - 
2n 40 n 2  560n3 

.- 
3t4 3et6 --- 

-- q 40 n 2  560n3 
2 t 2  l - -  

2n c 

3t4 3et6 --- 
4 0 n 2  560n3 

1 - -  
2n 
t 2  

I 

72- 

where we used the fact that t4/40n2 2 t6/560n3. Using the 
fact that (1-t2/2n)-' = 1+2xt2/2n when r%n, we have 

9 q t8 (1 + Xfl-)Z(l - X)2 
14n 

3200 n3 

A t2 
- u, ( t )  . 

Since u,(t)>O on D (which needs the fact that t2S2n/3), we 
see that 

$,(t) =e-?' (1 - u,(t) + ,u?(r)) h 

U:@) , 
+ L 1 ,-1*/2 

2 

We conclude from this that 

(20  ' 3 1680 ' 9 5600 9 
It8 dt + - I 

4~ n 2  D 8 G n 2  
(173/600)' 105 6 , 9 

4xn 8 G n 2  
209503 + 9 - 263503 

s 

4 8 0 0 0 G n 2  8&n2 48000&n2 ' 

Finally, we are in a position to combine all the bounds 
into one, and prove Lemma 1. 

Proof of Lemma 1. 
We will repeatedly use the fact that xCe" 5 (c/e)" for 

all positive c and x .  The bounds of Lemmas 3 and 4 can be 
added together to get a general bound, provided that we suc- 
cessfully bound the exponential terms. Indeed, the fact that 
n23 implies that the first bound of Lemma 3 can be estimated 
from above as follows: 

Next, the value of the second bound of Lemma 3 is 
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All these bounds, together with Lemma 4, prove Lemma 1. 

We can obtain a messier but better inequality if the esti- 
mates from Lemmas 3 and 4 are directly used in Lemma 1. 

However, doing so would make the presentation too heavy, 
and in any case, not much is lost in the simplified version. 

AN IMPROVEMENT VIA TAIL BOUNDS. 
Improvements in E ( N )  can be obtained in several 

manners, such as (i) approximalions based upon Gram- 
Charlier or Edgeworth series with extra terms added in; (ii) 
bounds in the local central limit theorem that are a function of 
x and n (see Devroye (1986, pp. 720-731) for a worked out 
example); (iii) additional quick rejection steps that are 
effective in the tails of the diritribution. The first two 
approaches are straightforward but very tedious and space- 
consuming. Interestingly, the third approach is both simple 
and effective. Note however that by introducing an extra 
squeeze step, we don't change the expected number of itera- 
tions in the rejection algorithm. The only quantity that is 
affected is E (N). Suppose for example that we can show that 

f , ( x )  h , (x)  9 I x  I 2 a, , 
for some symmetric bounding function h, and some sequence 
of constants a,. Then, obviously, 

("*.IT I m I 
1 I 

E ( N )  5 

We will see that we can take a, proportional to 6, and 

find a function ha such that, in fact, E ( N )  = O(& 
considerable improvement over the 0 (U&) rate obtained 
without the modification. 

), a 
F- 

The modification in the algorithro. 

After the quick rejection step, inuoduce another rejection step: 
"ELSE IF IX \>a, AND T>h,(X:i THEN Accept t False". 

We will see that we can take: a,=l and h, (x )  as defined 
in Lemma 7 below. The derivation of useful bounds rests 
upon the combination of two techniques, a monotonicity 
argument extending the methodology of chapter V11.3 of Dev- 
roye (1986), and Chernoff s expmential bounding technique 
for sums of independent random variables (see Chernoff 
(1952) or Petrov (1975)). 

Lemma 5. 

density f . Then, for all t>O, 
Let Y be a random variable with symmetric unimodal 

For t t l l l y  1 ,  we have 

Proof of Lemma 5. 
Observe that 

jet' f ( z )  dz 2 !e" f ( z )  dz 2 f b )  e . Y  > o .  I 
0 

Lemma 6. 

ables. Then 
Let S, be the sum of n iid uniform [-1,1] random vari- 

P(S, > x G ) < e ? &  E(e"") ,  

where t>O is arbitrary, and 
l n r l  et+20 

E ( e f s n ) < e 6  . 

Proof of Lemma 6. 
The first inequality is the cornerstone of Chernoff's 

bounding method. The second inequality can be obtained as 

The Lemma follows from this and the inequality l+uSe' 
provided that we can show that (e'-e-')l(2t) I 1 + t2e'"20/6: 
This is most easily achieved by expanding both sides into 
their Taylor series, and comparing all terms pairwise: the 
expansions are 

e*-e-' - $i -- 2t - j=o(2j+l)! c- ' 

and 

The ratio of the first over the second coefficient of t2j  0'21) 
is 

6 2 W 1  (j-I)! 
( 2 j + l ) !  . 
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S A 6  E ( N )  5 (l-tO(1)) - For j=1, we have equality. Increasing j by one makes the 
numerator jump by a factor of 20j, while the denominator 
jumps by a factor of (2j+3)(2j+2). The latter jump equals 
st-10j+4j2, which is >20j for all integer j .  This concludes 
the proof of Lemma 6. 

4- n 

This is what we had to show. 

Lemma 7. 
The density f, of 13/nS, satisfies the inequality 

Furthermore, defining h,(x)=O for Ix  I>&, we have for all 
z t l ,  

Proof of Lemma 7. 

evaluated at y , does not exceed 

- t e 6  
e -1 

From Lemmas 5 and 6, we see that the density of S, ,  

e ’nr2ex*(t2/20) 
e - t l y l  , t >_ I l ly  1 . 

In this bound we can choose t .  The nearly optimal (but con- 
venient) choice is t=3 ( y  Iln, which forces us to require that 
y22n/3. Resubstitution of this value of t ,  together with the 
transformation n ~ a  shows that the density f, of G S ,  
can be bounded as follows: 

Assume that the additional quick rejection is inserted, i.e. 
( X  ( 2 1  and Tth , (X)  together imply rejection, then we note 
that for any z t l ,  

E ( N )  I - 4A 6z + 2nYh, ( x )  dn 
z 

This expression is of the form Bz+Ce-Dz2, and is approxi- 
mately minimal when z is chosen equal to 

max(1 , 4 G ) .  With this choice, z grows as a 

constant times Gn, and 

OTHER POSSIBLE METHODS. 
The evaluation of f,, however rare, may cause some 

numerical worries for large values of n .  Here it would help 
if we could avoid evaluating f, altogether, and replace the 
rejection algorithm by a series-type rejection method based 
upon a converging series off,. Such series can be obtained 
in many ways. Firstly, we could mimick the development 
found on pages 698-700 of Devroye (1986), which applies to 
all densities f with symmetric, absolutely integrable, nonne- 
gative characteristic function $ (which is the case for S2, for 
all n ). Then f, ( x )  is sandwiched between consecutive partial 
sums in the series 

X 2  
f, (O)---f; 2! (o)++, 4! (0)- . ’ ‘ . 

This can be seen as follows: since cos(tx) is sandwiched 
between consecutive partial sums in its Taylor series expan- 
sion, and since 

where $, is the characteristic function for f,, we see that by 
our assumptions on +,,, f , ( x )  is sandwiched between con- 
secutive partial sums in 

where 
~2j , ,=- f i~’$ , ( t )  1 dt . 

2n 

There exists a simple recursive formula for the matrix of 
coefficients v~,,,, so that all the coefficients can be computed 
on-line provided that the column of coefficients v ~ , ~  is 
known. 

In a second approach, we could follow section XIV.3 of 
Devroye (1986), in which better and better approximations for 
f, are obtained by finer and finer numerical inversions of the 
characteristic function $,. 
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