
142 IEEE TRANSACTIONS ON INFORMATION THEORY,  VOL. IT-24, NO. 2, MARCH 1978 

The Uniform  Convergence of Nearest Neighbor Regression 
Function Estimators and Their Application in Optim ization 

LUC P. DEVROYE 

Abstract-A class of nonparametric regression function esti- 
mates generalizing the nearest neighbor estimate of Cover [ 121 is 
presented. Under various noise conditions, it is shown that the es- 
timates are strongly uniformly consistent. The uniform conver- 
gence of the estimates can be exploited to design a simple random 
search algorithm for the global minimization of the regression 
function. 

I. INTRODUCTION 

T HE PROBLEM of optimizing a function Q with 
respect to x E Rd arises frequently in the synthesis of 

complex systems. Often the optimization problem cannot 
be solved by analytical methods because the mathematical 
description of the function is unknown or extremely 
complicated. However, in many cases, the value of the 
function can be determined with a certain accuracy for any 
given value of x. It is known that in such situations, ran- 
dom search can be,successfully used (for a review of the 
literature, see [l]-[3]). Two large classes of random opti- 
m ization techniques can be distinguished, the nonse- 
quential methods and the sequential methods. The most 
primitive nonsequential method is the crude search [4], 
where one lets the estimate of the m inimum of Q  be the 
best Xi among a sequence Xi, . a. ,X, of independent 
random vectors, uniformly distributed over the set B of Rd 
in which the m inimum is sought. If Q(Xi) can be exactly 
determined, then the value of Q  at the estimate will ap- 
proximate the (essential) infimum of Q  on B as n grows 
large. However, if for every x, only noisy estimates 
Yl,Y2, * * - > (independent identically distributed random 
variables with distribution function F,) can be obtained, 
then one could estimate the regression function 

Q(x) = SY @x(y), 
which is assumed to exist for all x:, by the average 

A 
Q~(x) = X-l C Yi. 

i=l 

Upon computing such a X-average for every Xi, it is logical 
to define the best Xi as the one with the lowest value 
Qx(Xi). Again, we can expect that the true value of Q  at 
this best Xi is close to the m inimal possible value of Q  if 
X and n are large enough. 
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It is not unreasonable in most applications to assume 
that Q  is well behaved (smooth, continuous) so that in- 
formation about Q(x) can be gathered from the values of 
Q(y) for all y with ](y - x I] small. If we construct an esti- 
mate qn of Q  (qn is a function of 3c and of the Xi, Qh(Xi), 
1 5 i I n) and then m inimize qn, chances are, in view of 
the smoothness assumption, that Q(Xi), the value of Q  at 
Xi, the m inimum of qn, is close to the extreme value. One 
such multiple trial estimate (multiple, because X > 1) is the 
one that lets qn(.lc) = Qh(Xf) where Xf is the nearest 
neighbor to x among Xi, . . . ,X,. 

Often the cost of obtaining the Yi is very high, so that 
the said crude search method, or its modification using a 
multiple trial estimate, is not economical since both use 
An measurements. If we let X = 1 and Qx(Xi) = Yi (so that 
wl,yl),~~~,Kuyn) are independent and identically 
distributed), then we can only hope to satisfactorily recover 
Q if Q  is “almost continuous.” To illustrate this, let us 
briefly review some history of single trial estimates. 

Estimates that first partition B up into a grid and then 
let qn be constant on each rectangle in the partition have 
been suggested by McMurtry and Fu [5], Hill [6], Jarvis 
[7], and others in multimodal optimization theory. If 
(B1, . . .. ,BN) is the partition, then, for all x in Bi, this his- 
togram estimate uses 

qtZ(‘) = i: ‘jl[XjFBil 2 ‘{XjEBil 
j=l I j=l 

where I is the indicator function. Of course, unless n - a, 
N - ~0, and all the Bi shrink in size, there is no hope or 
guarantee that q,,(x) will be close to Q(x) for a given x. In 
the literature, two classes of nonparametric regression 
function estimates have been developed that possess such 
asymptotically optimal properties (i.e., such that qn is close 
to Q for large n in some probabilistic sense). The first one 
has evolved from the Parzen-Rosenblatt kernel density 
estimate [8], [9] and is commonly referred to as the Nad- 
araya estimate [lo], [ll] or kernel estimate. Nadaraya 
lets 

Qn(X) = fI YiK((Xi - X)/hn) i: K((Xi - X)/hn) 
i=l I i=l 

(1) 

where K is a density on Rd and (h,) is a sequence of posi- 
tive numbers. In [lo], he shows that sup jqn(x) - Q(x)] “, 
0 with probability one if d = 1, if Q, K, and (h,) satisfy 
some regularity conditions, and if the Xi have a common 
density. The drawback of his estimate is that the h, are 
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picked without regard to the data. If K is the uniform A global measure of the accuracy of a  curve estimate qn 
density on  the sphere S(O,h,) centered at 0  with radius h,, is its distance in L, (I 5  r I a) from Q , provided that both 
then (1) computes the average over all the Yi corre- qn and Q  belong to L,: 
sponding to Xi that take values in the sphere S(x,hn). 
Assume now that Xp is the nearest neighbor to x and  that 
Yt is the corresponding Yi, and  define h, = ]lXq - x 11; then 
(1) reduces to the simple nearest neighbor estimate 

llqn - Q Ilr = 

q,(x) = Y? 
1 

(S1qn(x) - Q(x)l'dG(~))~", r < ~0 

ess s”Gp lqn(x) - Q(x)l, r= ~0, 

which is noted by Cover [12]. where G  is the common distribution function of the Xi. In 
In pattern recognition, (Xl, Yl), . . . ,(X,, Y,), (X,Y) are the context of this paper, we will define llqn - Q 11 co by 

independent identically distributed random vectors, the supxEn lqn(x) - Q(x)] where B is the support of G . Ob- 
Yi are (O,l}-valued, and  Y is unknown. Upon observing X viously, if qn and Q  are continuous, then both definitions 
= x, Y is estimated by Y, a  function of X and of the are equivalent. 
(Xi,Yi). One  rule for which the probability of error P{ Y #  If the F, are such that 
Y) is m inimal is the following: 

E#‘II’I = SSIYI~~E;,(Y) dGb)> for some r < 00, 
Y=l, ifQ(X)=E(l ly=111X=xl=PIY=11X=xJ11/2 andif 
Y = 0, otherwise. 
Since the conditional expectation Q(x) is unknown, this 
rule cannot be  realized. The  obvious solution is to replace 
Q  by a  regression function estimate qn: 

P= 1, ifq,(x) 2  342 
E= 0, otherwise. 

If q,(x) = YT as with the nearest neighbor estimate, we 
obtain the nearest neighbor discrimination rule which lets 
Y = Yf. For more on  the nearest neighbor rule, see [12], 
[13]. O f course, it is unreasonable to expect that q,(x) 
approaches Q(x) as n grows large, unless Q  is cont inuous 
at 3c and F, concentrates its mass at Q(x) (no noise situa- 
tion; this condit ion corresponds to the nonover lapping 
classes condit ion in discrimination). To  correct for this 
noise sensitivity, Cover and Hart [13] proposed the use of 
a  k-nearest neighbor rule in pattern recognition. The  h- 
nearest neighbor regression function estimate is def ined 
by 

qn(x) = k-l 5  Y.1 L (XL 1s among the k-nearest neighbors to r) 
i=l 

(2) 
where k/n !!. 0  and  k !t ~0. To  estimate nonparametrical ly 
a  density f at n, Loftsgaarden and Quesenberry [14] used 
a  similar idea, viz., they let the estimate be  k/n V,(n) 
where V,(x) is the volume of the sphere centered at x with 
the kth nearest neighbor to x on  its surface. The  k-nearest 
neighbor regression function estimate (2) was recently 
general ized independently by Stone [15] and  Devroye [16] 
as follows. F irst, reorder the (Xi, Yi) according to increasing 
distances l]Xi - 3t 11  (if IlXi - 3c ]I = l\Xj - x 11, then we ar- 
bitrarily call Xi closer to x if i < j), and  obtain 
(Xi, w, * * * > (XX,, Y;). Then  define 

4n(X) = 2  UniYP (3) 
i=l 

where u, = (~~1, . . . ,unn) is a  probability vector. Picking 
U,i = l/k if i I k and 0  otherwise gives us back the k- 
nearest neighbor estimate. 

i) u,i 2  un2  I ss. >_ unR, 
ii) maxi U,i !!+ 0, and  

iii) Z&+l~ni : 0, and  k&z II. 0  for some integer se- 
quence h  I, 

then Stone [15] shows that E( ljqn - Q /l,] !!. 0. This result 
is quite surprising because Q  is not required to be  “almost 
cont inuous” or smooth, the assumption that was at the 
basis of our use of k-nearest neighbor estimates. In addi- 
tion, the Fx and G  need not have densities as with the 
Nadaraya estimate. Condit ion i) insures that more weight 
is attached to nearer neighbors; the tails of the probability 
vector u, must become negligible as n grows large (first 
part of iii)) so that only an  increasingly small proport ion 
(k&z) of the samples plays a  role in the estimation of Q(x). 
However, the noise on  the observations can only be  aver- 
aged out if k, diverges and if, among the k, nearest 
neighbors, there is none whose weight dominates the other 
weights. But this follows if we make the vote u,i of every 
(Xl,YI) asymptotically negligible (condition ii)). 

Implicit in [16] is the following result. If Q  is G-almost 
everywhere continuous, if ess sup ] Yi ] < a, and  if ii) and  
iii) hold, then Iqn(X1) - &(X1)] “, 0  in probability. If in 
addit ion 

C exp (-a/m? un;> < ~0, for all 01  > 0, 
n  

then the convergence is with probability one  as well. The  
ma in result of this paper  is that (lq, - &II m  r4, 0  with 
probability one  if Q  is uniformly continuous, if G  has 
compact support B, and if (u,] and  the F, satisfy some 
regularity condit ions (for instance, it suffices to pick the 
uni as with a  k,-nearest neighbor estimate and ask that 
k,ln !t. 0, that k,llog n 14. *, and that Y\ is a  bounded 
random variable). 

The  nearest neighbor estimates are useful in applica- 
tions because, as will be  shown below, all their powerful 
properties remain valid for a  large class of dependent  
sampling procedures. If the estimate qn is used as a  guide 
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in optimization, then rather than use a nonsequential 
random search technique, it may be more economical to 
estimate and optimize Q in a sequential manner by re- 
peating the following steps: 

i) make one observation Y, from the distribution 
function Fx,, where the distribution function of X, 
itself is picked as a function of qn-i, 

ii) find qn and update the current best estimate of the 
m inimum of Q. 

The details of this sequential optimization procedure will 
be discussed in Section VII. We require that the distri- 
bution function of X, be of the form cr,G + (1 - a,)G, 
where G is a distribution function as for crude search in B 
(e.g., uniform in hypercube), &an = ~0 (this will insure 
enough crude search), and the G, are arbitrary distribution 
functions, possibly depending upon (Xi,Yi), * * *, 
(X,-i,Y,-1). If G, is Gaussian, centered at the old best- 
estimate Xi-, of the m inimum and with a gradually de- 
creasing variance 02,, then the frequency of samples Xi in 
the area of interest for the optimization of Q  will increase 
as n grows large. 

We will study the asymptotic properties of (lqn - Q  (I-, 
first for the noiseless case (that is, when Yr = Q(Xi) with 
probability one), next for the noisy case, and finally for the 
noisy case with dependent sampling. A brief section is 
devoted to the study of the rate of convergence. In the final 
section, we show that all uniformly good regression func- 
tion estimates (estimates for which l]qn - Q  ]I m  !!. 0 in some 
sense) can be used to design asymptotically optimal ran- 
dom search procedures. For clarity, all proofs are deferred 
to the Appendix. 

II. ESTIMATION IN THE ABSENCE OF NOISE 

Assume that Xi, . . . ,X, are independent random vec- 
tors with a common distribution function G whose support 
B is a subset of Rd. Assume further that Q  is a Bore1 
measurable function and that, for all 3c, F, puts mass 1 at 
Q(x). This implies that Yi = Q(Xi) with probability one 
for all i. The following condition on the sequence of weight 
vectors (u,) will be needed throughout. 

Condition Cl: The sequence (u,) of probability vectors 
(Unl, - * - ,unn) is such that for some sequence (h,) of positive 
integers, i) 

n 
k,ln - 0 

and ii) 

i: n IJ,i - 0. 
i=kn+l 

Thus the tail of the vector u, must be asymptotically 
negligible. This condition is satisfied if U, = (al, . . . , 
ak,o, - - - ,O) for some fixed probability vector (al, . . * ,Uk). 

In particular, the nearest neighbor estimate of Cover has 
k = 1 (and thus al = 1). The main result for estimates 
satisfying Cl is the following. 

Theorem 1: If Q  is continuous, G  has compact support, 
condition Cl holds, and F, puts mass 1 at Q(x), then l]qn 
- &II m  !!. 0 with probability one. 

In [15], [16] it is indicated that for noisy situations, the 
influence of a single (Xi, Yi) on the estimate must become 
negligible as n grows large (maxi uni !L 0), and this of course 
forces k, to grow unbounded in condition Cl. Examples 
of sequences (u,l satisfying Cl while maxi u,i !!+ 0 are 
plentiful: 

i) rectangular weight vector: oni = l/k,, 1 I i 5 k,, 
and u,i = 0 otherwise; the sequence k, satisfies k, 
!!. m  and k,ln IE, 0; 

ii) triangular weight vector: o,i = 2(k, - i + l)/(k, + 
k:), 1 _< i I k,, and u,i = 0 otherwise; k, !!, m  and 
k,ln II, 0; 

iii) exponential weight uector: Uni = a,(1 + ~,)-~(l - 
(I+ a,)-“)-l; a, !!, 0 and nun !!. ~0. To see that this 
sequence satisfies the said conditions, let k, - 
v5& 

III. ESTIMATION IN NOISY CONDITIONS 

Assume that (Xi, Yi), . . . ,(X,, Y,) are independent 
Rd+l-valued random vectors with a common distribution 
function. The distribution function G of Xi has support 
B, a subset of Rd, and, given that Xi = x, Yi has distri- 
bution function F,. We distinguish between several types 
of noise. We say that the noise is 

absent if 

SUP SIY - Q(x)12 @x(y) = 0, 
XEB 

exponential if for all E > 0 there exists a C(E) > 0 such 
that 

sup Je”(Y-Q(X)) dF, (y) 5 e Is I e, all Is] I c(t), 
XGB 

bounded if there exist finite nonnegative numbers Ki 
and KZ such that 

S m  
SUP dFx(y) + S Q(x)-K2 

dFx(y) = 0, 
xtB Q(x)+Kl -m 

in Lt (where t > 0) if, for some finite K, 

SUP sly - QW dFx(y) 5 K, 
XEB 

uniformly integrable if 

lim  sup S IY - Q(x)1 c@‘,(y) = 0, and 
s-m XIZB IY-Q(x) 12s 

additive if there exists a distribution function F such 
that F(y) = F,(y - Q(x)) for all real y and all x E B. 

In random optimization and probabilistic automata 
theory, the collection {F, Ix. E B] of distribution functions 
is called a random environment, but in order not to confuse 
the reader with more technical jargon, we will use the term 
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noise to denote both this collection of distribution func- 
tions and the sequence of random variables Yi, . . . , Y,. 

To  situate the types of noise relative to each other, we 
recall that bounded noise is always exponential, that ex- 
ponential noise is Lt noise for all positive t , that L, noise 
is Lt noise if t I s, and  that if the noise is in Lt for some t 
> 1, then it must be  uniformly integrable. Further, additive 
noise is uniformly integrable since J 1  y 1  dF(y) < 00 by hy- 
pothesis. It will also be  Lt noise for t > 1  if J 1  y 1  t dF(y) < 
03. An interesting case for engineers is when all the F, are 
Gaussian with variance a: and  mean  Q(x). It is easy to see 
that this type of noise is exponential if suprtB a: < ~0. In 
most practical situations, all the F, put their weight on  an  
interval of length d,. This type of noise is exponential if 
suP,EB& < a. 

Let us for the moment  consider estimates (3) for which 
condit ion C2 holds. 

Condition CZ: The sequence (u,] of probability vectors 
satisfies uni = l/k, for 1, 5  i 5 k,, and uni = 0  for i > k,, 
where (k,} is a  sequence of positive integers with k,ln 14, 
0 and k, 5~. 

If the norm (I.IJ that is used to reorder the data is the 
maximum component  norm, then the following is true. 

Theorem 2: If Q  is continuous, G  has compact support, 
condit ion C2 holds, the noise is exponential, and  

k,llog n : 00, 

then 11~ - Q  II m  !!. 0  with probability one  for estimate 
(3). 

Theorem 3: If Q  is continuous, G  has compact support, 
condit ion C2 holds, the noise is in Lt for some t > 2d + 1, 
and  

kL-l ln2d r 0~ , 

then lh - Q ii- 5  0  in probability for estimate (3). If in 
addit ion 

then lb - Q llm  5 0 with probability one. 

For Theorem 3  to apply, the noise must be  at least in 
&d+i. The  question remains whether the conclusion of the 
theorem remains valid for the class of L2 noises which is 
so important in control engineering applications. If the L2 
norm is used instead of the maximum component  norm on  
Rd, then the factor n2d in Theorem 3  can be  replaced by 
nd+l and the condit ion t > 2d + 1  must be  replaced by the 
condit ion t > d + 2. 

The nearest neighbor mu ltiple-trial estimate with X, 
trials satisfies similar properties. Obviously, in the absence 
of noise, it is senseless to let X, > 1, while for X, = 1  the 
classical nearest neighbor estimate is obtained to which 
Theorem 1  applies. In noisy situations, the k,-nearest 
neighbor estimate eliminates the effect of the noise due to 

the averaging of Yf, . . . ,Yff,. W ith the nearest neighbor 
mu ltiple trial estimate, the noise reduction is achieved via 
averaging of Yi, * * . , Yx,. Thus we can expect that h, will 
replace k, in the condit ions of convergence, as is seen from 
the following theorems. 

Theorem 2’: If Q  is continuous, G  has compact support, 
the noise is exponential, and  

X,/log n 2 03, 

then lb - Q Ilm  5 0 with probability one  for the nearest 
neighbor mu ltiple-trial estimate. 

Theorem 3’: If Q  is continuous, G  has compact support, 
the noise is in Lt for some t > 1, and  

then lb - Q ll co 5  0  in probability for the nearest neighbor 
mu ltiple-trial estimate. If in addit ion 

n=l 

then Ilqn - &II- 5  0 with probability one. 
The  nearest neighbor mu ltiple-trial estimate with X 

trials and  n samples Xi, s . . ,X, uses Xn measurements 
and can, in data collection cost, be  compared with the 
X-nearest neighbor single trial estimate with An samples. 
It has the advantage however that for a  given x, to find 
qn(z), it suffices to find the nearest neighbor to x among 
Xl, * * - ,X, and  to look up  the value &x(X;) that is already 
stored in a  memory.  Also, the convergence of II qn  - Q  II m  
can be  assured for all Lt noises (t > 1) if X, grows fast 
enough.  Thus the nearest neighbor multiple trial estimate 
seems better suited for situations with heauy noise, easy 
access to data, and relatively more expensive computing 
time. Notice that in some problems, the engineer has no  
access to more than one Yi for every Xi so that he  is forced 
to use a  single-trial estimate. 

IV. A SIMPLIFIEDREGRESSIONFUNCTIONESTIMATE 

Estimate (3) requires for every x the reordering of 
x1,**- ,X, and  the computat ion of a  sum of n terms. 
Consider the following simplified estimate derived from 
(3) 

On(x) = s,Lw 
which has none of these drawbacks because 

(4) 

i) the qn(Xi), 1  5  i 5 n, can be  computed in advance 
and stored in a  memory,  and  

ii) to find qn(-lc), it suffices to find the nearest neighbor 
XT and look up  the value of qn(Xf). 

Theorem 4: Let Q  be  cont inuous and let G  have com- 
pact support B. Assume that condit ion Cl holds, that the 



noise is exponential, that 1 and 2): 

(mpv,;) logn 30 pi ll4n - Q 11 co > 2~) I 2(8MC/c)de (-n(d4MC)2d)/2 

or that the noise is in Lt for some t 1 2, and that 
+ 2(1 + n)2de-yn~2(r/4MC)dlD2. 

The best choice of y seems to be 1, but since we want k, to 

(5) be just large enough so that the noise averaging effect and 
the influence of the variation of Q on the k,th nearest 

tJee;!f; - Q I] m It, 0 with probability one. If, instead of (5) neighbor are about equal, it is logical to try to pick y such 
that both terms in the given bound are equal. Matching the 
exponents would give y = min (1;(~/4MC)~(0/~)~/2). 
This is not a surprise since, with small noise (D small) and 
highly irregular Q (C large), the engineer will intuitively 

then II& - &II m !!, 0 in probability. prefer to use a smaller k, in the k,-nearest neighbor esti- 

The conditions of convergence of Theorem 4 do not 
mate. Similar finite sample studies can be made for other 

depend upon d or the norm ]].(I that is used to reorder 
types of noise, other estimates, and under other conditions 

Xl,... ,X, (actually, any norm on Rd can be used). The 
onGandQ. 

reason that the conditions of convergence are weaker than 
the ones given in Theorems 2 and 3 is because qn in (4) is 

VI. ESTIMATION WITH DEPENDENT SAMPLING 

better behaved than qn in (3) for large n (for one thing, dn In the introduction, we indicated why it is important in 
can take only n values while qn can take almost n2d some applications to gradually take more samples from a 
values). certain region of B such as the region close to the global 

V. RATE OF CONVERGENCE 
minimum of Q. Consider thus the following model for a 
dependent sampling procedure. Let ((Y,) be a sequence 

Knowing that llqn - Q I] m 5 0 with probability one as- from [O,l] with cumulative sums p,, n 1 1, and let 
sures the engineer that taking n large enough will force qn &,Zz, * * . > be a sequence of independent binary-valued 
to be uniformly close to Q. Two questions immediately random variables with P(Z, = 1) = LYE, n 1 1. If 2, = 1, 
arise. then X, is independent of Xi, . . . ,Xn-1 and has distri- 

i) How large should n be such that, for given e, 6 > 0, 
bution function G; while if 2, = 0, then X, has an arbi- 

P{ ]lqn - Q ]I m > tl < 6? That is, how fast does P( I/q, 
trary distribution function G,, possibly depending upon 

- Q I] o) > ~1 tend to 0 as n grows large? (Xl, Yl), . * * , (Xn-i, Y,-1). Thus the distribution function 

ii) How fast can we make E, decrease to 0 in order that 
of X, is a,G + (1 - a,)G,. Given XI, ... ,X,, the Yi, 

P(llqn-Qllm>en)stilltendstoOasn+~? 
. . . , Y, are independent random variables with distribution 
functions Fxl, s - - ,Fx,. In the Appendix, we prove the 

Some authors prefer to use ii) in the study of rates of following generalization of Theorems l-3 for the Stone- 
convergence of random sequences but, in the context of Devroye estimate (3). 
this paper, i) seems to be a far more interesting question. 
Assuming for the moment that the conditions of Theorem 

Theorem 5: Let G have compact support B, let Xi, 

2 are fulfilled, we see from a quick inspection of the proof x2, --*J take values (with probability one) in a closed set 

of Theorem 2 that for every t > 0, we can find an N large 
B. containing B, and let Q be continuous and bounded on 

enough and positive constants oi, all depending upon E, Q, Bo. 

G, and the collection of F,, such that, for the Stone-Dev- 
i) If condition Cl holds, if k,lP, !!. 0, if P, 5 ~0, and if 

roye estimate (3), 
the noise is absent, then llqn - Q )I m !!, 0 in probability for 
estimate (3). If in addition &Jlog n - ~0, then llqn - Q II m 

P(llqn - Q/l- > E] I ulemazn + u3n2de--a4kn, !!, 0 with probability one. 

all n with k, I n/N. 
ii) If condition C2 holds, if k,I& !t. 0, if k,llog n !I. a, 

and if the noise is exponential, then I1qn - Q II m !!+ 0 with 
Truly practical expressions for the ai and N can be ob- probability one. 
tained only if additional assumptions are made regarding iii) If condition C2 holds, if k,lp,, !t. 0, if kh-11n2d 5 03, 
Q, G, and the noise.‘Assume for instance that Q is Lipschitz and if the noise is in Lt for some t > 2d + 1, then I1qn - 
with constant C (that is, ] Q(x) - Q(y) ] I C [Ix. - y )I for all QII m I”, 0 in probability. The convergence is with proba- 
x and y), that G is the uniform distribution function on bility one if in addition Z,n2dlkh-1 < 0~. 
[-M,M]d, and that all the F, put their mass on an interval 
of length at most D containing Q(x). For VII. AN APPLICATION IN OPTIMIZATION 

k, = yn(d4MC)d/2, O<y-<l, 
the following bound is valid (see the proofs of Theorems 

In estimation, the distribution function G of the Xi is 
often unknown, while in crude search of a regression 
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function the distribution function G  is picked in such a  way 
that it covers the area in which the m inimum of Q  is 

P(Q(Xi) I qm in + E]> 0. If Q  is continuous, then qm in is the 

sought, e.g., G  is uniform on  a  hypercube B so that the 
infimum, over the support B of G , of Q(x). If G  is atomic, 

search area and the support of G  coincide. 
then regardless of whether Q  is cont inuous or not, qm in will 

Consider the following general  setup for a  sequential 
be  the infimum of Q(x) over all x for which P(X1 = x) > 

random optimization scheme that uses all the past infor- 
0. 

mation in an  intelligent way. Let X;,X*,, . . . , be  the se- 
Theorem 6  shows why it is important that )/qn - Q  )I a, !!, 

quence of best estimates of the m inimum of Q  in Rd, and 
0  if the estimate qn  is going to be  used in optimization. 

let (Xr,Yr),(Xz,Ys), . . . , be  a  sequence of Rd+l -valued Theorem 6: If qn  is any estimate of Q  with the property 
random vectors. G iven X*,-i and  (Xi,Yr), . . . , that llqn - Q  (1 co !!, 0  in probability (with probability one), 
(X,-,,Y,-I), take three steps to find X*,, the next best if G  has support B, if all W , take values in B with proba- 
estimate of the m inimum. bility one, and  if 

i) Make one observation (X,,Y,) where X, has dis- 
tribution function a,G + (1 - an)Gn with (Ye E [O,l]. G , 5 Yn = O”, 
is an  arbitrary distribution function and a  Bore1 measur-  n=l 

able function of (Xi,Yr), . . . ,(Xn-l,Yn-i), XE-i. G iven then max (Q(Xi),qmin) I4, qm in in probability (with prob- 
that X, = x, Y, is an  independent random variable with ability one). 
distribution function F,. 

ii) Let 7n  be  a  number  from [O,l], and  let I-I, be  an  ar- 
Notice that we must use max (Q(Xi),q,i,) since it is 

bitrary distribution function and a  Bore1 measurable 
possible that Q(XL) is strictly smaller than qm in (e.g., let 

function of (Xi, Y1), s s . ,(X,,Y,), XL-,. Let further 
B = [O,l], let G  be  uniform on  B, and let Q(x) = 1  with the 

w;, * - - , W i be a  sequence of independent random vectors 
exception that Q(0.3) = 0. If 7n  = Ys and H, is atomic at 

with common distribution function G . W ith probability 
0.3, then Q(X*,) tends with probability one  to 0  while qm in 

Ye, define W , = W*,. W ,, called the candidate best esti- 
= 1). 

mate, has distribution function y,G + (1 - yn)H,. 
One  can object that the given optimization procedure 

iii) Compute qn  ( W I), . . . ,qn ( W ,) and let Xi be  the W i 
requires a  growing memory for the storage of the (Xi, Yi) 

for which qn  ( W i) is m inimal (in the case of ties, break them 
(and the W i in some cases). Clearly this is not a  ma jor 

arbitrarily). 
drawback in the presence of ultrahigh-speed and large- 

The  search is started with cyi = yi = 1. As an  example, 
capacity computers. Moreover, the loss (in terms of the 

let (Y, = Ye, H, = G ,, and  W , = X, so that, on  the basis 
number  of samples to be  collected for the same accuracy 

of qn, Xi is the best choice among X1, s.. ,X,. Usually the 
of the search) incurred by forgetting or not using some of 

search area B is a  hypercube, and  G  is a  global search ori- 
the (Xi,Yi) may be  higher than the cost of time  and 

ented distribution function such as the uniform distribu- 
memory resulting from the computat ions of the qn  ( W i) 

tion function on  B. G, is a  local search oriented distribu- 
and  the storage of the (Xi, Yi). Thus the specific field of 

tion function such as the one that is Gaussian with mean  
application of this class of optimization techniques seems 

Xi-, + D, (D, is an  Rd -valued random vector called the 
to be the one in which data collection is expensive and 

bias) and  variance S,, where 
computation is cheap. A paper  is in preparat ion in which 
the (X,,Yi) and  the W i need not be  memorized but in 

s,= O , 
1  

if X*,-, #  X*,-, which, upon observing a  new (X,,Y,), the estimate Xi is 

u2, if XL-, = X*,-,, updated, and  (X,, Y,) is forgotten. Such a  technique has 

and 
the lim ited memory flavor of the classical search tech- 
niques, but the engineer cannot use it in applications in 

D, = 6(X*,-, - X:-J, for some 6  > 1, c > 0. which for some reason he  desires to have an  estimate of the 

W e  can let (Y, tend to 0  (insuring however that Za, = a) 
regression function that he  is m inimizing. 

so that in the beginning there is a  larger portion of global 
Theorem 6  remains valid if Xi is picked in such a  way 

that 
search, and  in later stages the emphasis will be  on  local 
search. To  control the portion of estimation relative to the 
effort spent on  optimization, H, can be  the distribution 

qn(X*,) = m in qn(x) 
XEB 

that puts mass 1  at XE-,. The  net result of this is that the 
number  of different values taken by the W i, 1 5  i I n, is when qn  is an  estimate which attains its m inimum on B (all 
approximately equal  to EFE1 yi. the estimates discussed in this paper  do). However, this 

The  m inimum of Q  is def ined by would require a  subsequent  search at every iteration in- 
stead of the proposed relatively simple comparison of n  or 

qm in = ess inf Q(X). less vectors. 
G For the selection of (Ye, Ye, Gn, and  vn, the engineer must 

Thus if qm in is finite, it is the unique number  with the be  guided by his experience. A choice for v, is suggested 
property that, for all t > 0, P(Q(X1) I qm in - t] = 0  and 

n  ,. ,o\ 
in the section on  the rate of convergence or estimate (3). 
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For choices of local search oriented distribution functions 
G,, the reader is referred to the random search literature, 
in particular to the work by Cockrell and Fu [3] and 
Matyas [ 171. 

APPENDIX 

We start off by showing that if B is the support of G, the 
common distribution function of Xi, * . . ,Xnr then P(Xi E B] = 
1, and B is closed. If Q  is continuous, then it follows that Q  is 
bounded and uniformly continuous on B whenever B is bound- 
ed. 

Proof: If G,(C) = P( /Xi - x 11 5 c), then the support of G  is 
the set of all x with the property that G,(C) > 0 for all t > 0. It is 
easy to see that B is closed. Indeed, if y is a cluster point of B and 
t > 0 is arbitrary, then there exists an x, in the intersection of B 
and S(y,t/2), the closed sphere with center y and radius e/2. Thus 
G,(t) = P{ 11X1 - y 11 5 c) 2 P(/Xl - .x,11 I 421 = G&/2) > 0. 
In conclusion, if there exists a finite M  such that P( [(Xl II I M) 
= 1, then B, the support of G, is compact. 

To show that P(X1 E B) = 1, note that BC, the complement of 
B, is the set of all x in Rd for which for some t(x) > 0, P(X1 E 
S&t(x))) = 0. We also know that Rd is separable, and thus that 
there exists a countable dense subset D of Rd. Since D is dense, 
find for each x in Bc a d(x) in D such that d(x) E S(x,t(x)/3). 
Thus, S(d(x),t(x)/2) is contained in S(x,t(x)), and therefore 
P(X1 E S(d(x),~(x)/2)} = 0. Also, x is in S(d(x),~(x)/3) so that 

P(X1 E BCJ I c P{XI E S(d,a)J = 0 
d=d(x) for some x in BE 

as a countable union of null sets, where 

a= sup 4x)/3. 
x in BC for which d(z)=d 

Q.E.D. 

Next we show that if B is bounded, then inf,.gGx(t) > 0 for 
all t > 0. 

Proof: Assume that inf,.gGx(t) = 0 for some t > 0. Thus 
there exists a sequence x1,x2, . . . , from B with GJt) - 0. Since 
B is compact, the sequence {x;) must have a cluster pointy in B. 
Therefore, there exists a further subsequence ($1 such that G;(t) 
- 0 and llxf - y II I t/2 for all i. Thus S(x;,t/2) is contained in 
the intersection of all the S(xf,t). Hence, G,;(t/2) 5 lim infi 
G,:(t) = 0, which contradicts the fact that x; belongs to B. 

Q.E.D. 

Lemma 1: If Xi,. . . ,X, are independent zero-mean random 
variables with the property that for every t > 0 there exists a C(C) 
> 0 such that 

E(eSX~) I elslr, forallIs] Ic(c)andl_<iIn, 

and if (al, . . a ,a,) is a probability vector, then 

P [ li aiXil > c] I Kle-Kdmaxiai 

for some Kl,K2 > 0 depending upon C. 
Lemma 2: If Xi,. . . ,X, are independent zero-mean random 

variables with the property that 

E{IX;l”) 5 M  < Q), lIiIn,somet>l, 

then 

P[ &WnI > c] 5Ks/nt-l 

for some KS > 0 depending upon L, t, and 6. If (al, . * * ,a,) is a 
probability vector and t I 2, then 

for some Kb > 0 depending upon L, t, and t. 

P 

Proof of Lemmas 1 and 2: For Lemma 1, we have that 

( k aiXi > c} I epSc ,ril E(eSaiXi), all s > 0, 
i=l 

5 e-lsl~e~lslQid2 alls withails] I c(e/2), 1 I i I n, 

5 e-IS142 5 e-C(e/2)/2 mmiai.  

Thus, by symmetry, Lemma 1 holds with K1 = 2 and K2 = 
cc (C/2)/2. 

The first part of Lemma 2 is a direct corollary of a theorem of 
Wagner [22]. In [22], no explicit expression for KS is derived. 
Values for KS for the case t L 2 can be found in Fuk and Nagaev 
[19, p. 6531. In addition, they show that 

+ 2exp ( -2e-k2t2/(t + 2) i$I E( InaiXi 1 2]). 

By using the facts Zai = 1, E{ IXi ) 2] 5 (E( (Xi I t])2/t I M2it, 
E(IXi(t) 5 M, th is expression can be overbounded by Kk (maxi 
ai)+ + 2 exp (-K,&nmi ai) where Kk = 2(1 + 2/t)tM/tt and KS 
= 2e-tt2/(t +.2)M2/t. Since, for all x,y > 0, eer I (ylex)Y, we 
can further overbound the last expression by Kd(max; oi)t-’ if 
we let K4 = Kk + 2((t - l)/eK,#-l. Q.E.D. 

A last word of caution is in order before we can start to prove 
Theorems l-6. It is in general not true that one can specify a 
collection of distribution functions F, for x belonging to a closed 
subset B of Rd, and then claim that there exists a random vector 
(X,Y) where X has distribution function G  on Rd and, given that 
X = x, Y has distribution function F,. However, this measura- 
bility question is easily solved if there exists a probability space 
(Q,A,P) and an(OXB,+%$ - (R,%)measurable function h 
(‘i3$ is the class of all Bore1 sets contained in B, and ?I is the class 
of all Bore1 sets of R) such that Y = h(w,X). In that case, we de- 
fine 

F,(y) = Pblw E Q,h(w,x) 5 ~1, x E B,y E R. 

Throughout we assume that the distribution functions F, are 
obtained in this fashion without explicitly mentioning the 
mapping h. Thus, we can write 

Q(x) = J-Y dFx(y), 

instead of Q(x) = Jh(w,x)P(dw). This approach has the advan- 
tage that (X,h(w,X)) is a random vector whenever X is a random 
vector. 

Proof of Theorem 1: Let c > 0 be arbitrary, and find an a > 
0 such that IQ(z) - Q(x)] I t/2, for all z,x E B, and [le. - x (1 I 
a (use the uniform continuity of Q  on B). Let A, be the event that 
11X& - x II I a for all x E B, and let qrnax = maxXEBQ(x), and qmin 
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= minxsBQ(X). Clearly, 

P SUP h(x) - Q(x)1 > c 5  P(A”,J 
1  XGB 1 

+ P An, sup h(x) - Q(x)1 > c 
1  XEB 1  

5  P(A”,) +  P 
II 

it %(4max - qmin) > c/2 
i=k”+l I 1 

+ P  [Au ,“zps Iizl uni(QGW - Q(x)) 1 > 4 

5  PIA”,) 

for all n  large enough,  since Z&+i u,i I”, 0, qmax - qmin < ~0, and  
since, on  A,, ] Q(Xy) - Q(x) I <  42  for all 1c  in B and  1  5  i 5  k,. 
W e  tacitly use the fact that, with probabil ity one,  all the X; take 
values in B and  that, also with probabil ity one,  Yi =  Q(Xi) for 
all i. 

Next, 

A, c {pn(S(x,a)) <  k,/n for some x in B), 

where p,(C) =  ZF’, Ip+.&n is the empirical measure of a  set C 
with Xi,. . . ,X,, and  where S(x,a) is the c losed sphere with 
center 1c  and  radius a. If p  is the measure on  the Bore1 sets of Rd 
that corresponds to G, then we have seen that inf,,Bp(S(x,a/2)) 
=  c >  0. Since B is compact,  we can find a  finite number  Ni of 
points x 1, - - - ,xN1 from B with the property that, for every 3c in 
B, there exists an  1ci, 1  5  i 5  Ni, with ]]r - xi 1) I a/2. Thus, if n  
is so large that k,/n <  c/2, then 

Ph - &II- >  4  5  fW,l 5  P [;l:f, ~~(S(x,u)) <  Wn]  

5  P “u’ bLn(S(xd2)) < k,/n) 
I i=l I 

5  Nl sup P(pL,(S(x,u/2)) <  k,/n) 
XEB 

5 Nl SUP aL(Shd2)) - P(S(%U/B)) <  -c/2) 
IEB 

5  2Nle -2n(~/2)~ 

= 2Nle -d/2 

where we used Hoeffding’s inequality [21]. Theorem 1  now fol- 
lows by the Borel-Cant& lemma since the last term in the chain 
of inequalit ies is summable with respect to n. Q.E.D. 

Proof of Theorems 2  and  3: Let 6  be  arbitrary and  note 
that 

P [zyp, Iq,(x) - Q(x)1 > 24 

5  p  suPlq,(x) - q&)l >  E 
I IEB I 

+ P SUP Iq,o(x) - Q(x)1 > t 
1  XEB I 

where q,o(x) =  Z:S,u,iQ(Xf). The  last term on  the right side is 
overbounded as in the proof of Theorem 1  because the condit ions 
of Theorem 1  are fulfilled. The first term, account ing for the 

noise, is overbounded as follows: 

p  sup Iq,(x) - q,o(x)l >  6  
I XEB 

= E P sup k (Yf - Q(XI))/kn > tlxl, . . ..x. 
II I xsB i=l 

IE P 
1  1  

sup 
AEJ(XW,X,) 

- iFA (Yi - Q(X,N/kn( > ~1x1, ---,Xn]] 
I 

I E 
I 
s(&,n) sup 

all subsets ~w,j~J of Il..4 

-I’ i@"i-QG'Gh'k,I >~lXl=xl,...,Xk,=~k.], iI 
where J(Xi, . . . ,X,) is the collection of all sets of k, indices from 
(1, * * * ,n) such that A = lji, . . . ,jk”] belongs to J(Xi, a.. ,X,) if 
and  only if there exists an  x in Rd for which Xii, . . . ,Xjk,, are the 
k,-nearest neighbors (not necessari ly in that order) to x among 
Xl, - - - ,X,; & is the class of all c losed and  open  spheres in Rd; 
and  s(A,n) is the maximum, over all (xi, . . . ,xn) E Rdn, of the 
number  of different sets in ((xi, . e  a  ,x,J n  A IA E A). 

From Lemmas 1  and  2, we know that, for every t >  0, there exist 
posit ive constants Kl,Kx,Ks such that 

SUP p  
?,,EBkn iI $  (y; - Q(Xi))/k,I > ~1x1 = xl,*..,-%, =  xk, I I Kl ew (-K&A I if the noise is exponential,  

KS/k;-I, if the noise is in &(t >  1). 

Again using the fact that llqn - Qjlm I SUpxtBlqn(x) - Q(x)1 
whenever  B = support  (G), we have,  using a  result from Theorem 
1, that for all n  large enough,  

Phn - Qlim  >2tlI P [;rg  Iq,(x) - Q(x)1 > 24 

2Ni exp (-nc2/2) +  s(&,n)Kl exp (-Kzk,), 

I 

I 
if the noise is exponential,  

2N1 exp (-nc2/2) +  s(&,n)K3/kL-‘, 
if the noise is in Lt. 

W ith the maximum component  norm s(&,n) 5  (1 +  n)2d and  
with the standard L2  norm, s(34,n) I (2n)d+1. Thus collecting 
bounds  completes the proof of Theorems 2  and  3. For the “with 
probabil ity one” part of the theorems, the Borel-Cantell i lemma 
is used together with the fact that, for any  a  > 0, 

C naeCbkn < a, for all b  >  0  
n=l 

if and  only if k,/log n  5  ~2. Q.E.D. 

Proof of Theorems 2’ and  3’: Copying the proof of Theo-  
rems 2  and  3, we see that we need  only overbound,  for all t >  0, 
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Plsup,,BIq,(x) - qno(x)l > tl where qnc(x) = Q(XT). But 

P sup IQ,(X) - q,oCx)l > c 
I .XtB I 

I P  ijGl {IQ(&) - Qx,Wl > 41 

5 nsupPIIQ(x) - &x,(x)1 > 4 
XEB 

1 

0, in the no noise case, 

5 Kin exp (-KzX,), if the noise is exponential, 
Kgz/Xk-‘, if the noise is in Lt, 

for some K1,K2,Ks > 0. The “in probability” part of the theorems 
follows trivially. For the “with probability one” version, the 
Borel-Cantelli lemma is used. Q.E.D. 

Proof of Theorem 4: Let t > 0 be arbitrary and note that, 
with the same a, qmax, qmin, and A, as in the proof of Theorem 
1, 

P sup 14n(x) - Q(x)1 > 36 
I XEB I 

5P(A”,J+P A,,supI~,(x)-Q(x)l>3~. 
I XEB I 

NOW, on A,, I Q(x) - Q(Xf) I < c/2 for all x E B; while, also for 
all x E B, 

I Q(X) - q,o(XZ) I 

5 (%nax - qmin) 2 Vni + 9 V,i Cl2 I t 
i=k,+l ( > i=l 

if ~&,+l Uni 5 E/2(qmax - qmin). Thus with Ni and c as in the 
proof of Theorem 1, we have, for all n large enough, 

P 1;;s l&b) - Q(x)1 > 361 

I 2Nle-nc2’2 + P sup )qn(Xq) - q,&Xf)I > 3~12 . 
i XGB 1 

The last term is overbounded by 

P ‘Z’ ilqn(Xi) - qno(Xi)( > 3d2) 
i i=l I 

5 nPilq,(Xd - q,dXl)l > 3t/2) 

In sup 
W=(XI,...,X~)E B” 

*P [ Ifi UnitYi - Q(Xi))l > 3d2lX1= XL ..*,Xn = xn) 

1 

nK1 exp (-Kz/my ani), if the noise is exponential, 

’ nKs (my vni)t-l, if the noise is in Lt (t 1 2), 

where Kl,Kz,Ks are constants not depending upon n (use Lem- 
mas 1,2, and the definitions of exponential and Lt noise). This 
concludes the proof of Theorem 4. Q.E.D. 

Proof of Theorem 5: Let N,, = x$i Zi, and note that N,, has 
mean & and variance zgl ai(l - ai) I & Thus, by Bennett’s 
inequality for sums of independent bounded random variables 
[19l-P11, 

PWn 5 &I21 5 P((N, - E(N,j)/n I -&/2n) 
5 exp (-n(P,/2n)2/(2&Jn + &J2n)) = exp (-&/lo). 

Since 6, is monotone, it is clear that zEzl e;@!‘/i” < m  if and only 
if &/log n h a. Let e > 0 be arbitrary, and let a be so small that 
IQ(x) - Q(z)\ < e/2 for all z and x from Bo with ((x - z (( I a. 
Define further c = inf,,Bh(S(x,o/2)). Then 

P 1~:; Iqnb) - Q(x)1 > 2~1 

su~(q,(x)-q,o(x)l>t,Nn>P~/2 
XEB I 

+ P  sup hno(x) - Q(x)1 > c, N, > &I2 I 
+ PIN, I &/2). 

XEB 1 

Proceeding as in the proof of Theorem 1, we have, with the same 
definition of Ni, 

P sup lqno(x) - Q(x)1 > e, N, > &/2 
I ZEB 1 

4P sup IlX;,--XII >u,Nn > &I2 
I XGB I 

+P ~~~I~no~~~-Q~x~l~c,su~IIX~,-xll~u I XEB I 

I SUP P {for some x E B, S(x,a) contains less than k,Xi’s 
k>Bn/2 

with Zi = IIN, = k] 

(for all n large enough by condition Cl and the boundedness 
of Q  on Bo) 

5 2N1 exp (-&c2/4) 

(for all n large enough by Pn r4, 0~ and k,/&, 50). 

To obtain an upper bound for P{SUpzG B 1 q,&(x) - qdx) 1 > t) in 
the proof of Theorems 2 and 3, we did not use the independence 
of the Xi. Thus the derived bounds remain valid for all sequences 
Xl, *--> X, of random vectors taking values in B. In particular, 
for some positive constants Kl,Kz,Ks not depending upon n, 

p sup 14/z(x) -q,o(x)l >t 
I XEB I 

0, in the no noise case, 

5 (1 + n)2dK1 exp (-K2kn), if the noise is exponential, 
'(1 + n)2dKs/kL-1, if the noise is in Lt. 

Theorem 5 follows from all these inequalities and the Borel- 
Cantelli lemma. Q.E.D. 

Proof of Theorem 6: We sketch the proof for the “with 
probability one” part only. The “in probability” part is proved 
in a similar fashion. Let 6 > 0 be arbitrary. Then 
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P I 6 IQ(Xi) > qm in + ~1 
k=n 1  

Iqk(x) - Q(x)1 >d4 

+ P I? iQ(wi) > qm in + d2) 9 I i=l 1 

in view of the fact that all the W i take values in B with probabil ity 
one.  As n  grows large, the first probabil ity tends to 0. If 0  =  
P{Q(Xd I qmin + e/2], then 

P ?I iQ(Wi) > qmin + 421 1 i=l 1 

I P 
1  

6  ((Wi has  d.f. Hn) U (Wi has  d.f. G  
i=l 

and Q(Wi) > qmin + d41 I 

5  fI (1 - pi + yiPiQ(Xl) > qmin +  &I) 
i=l 

I fi (1 - ri0) I fi exp (-Tie) 
i=l i=l 

= exp (-0 2  ri) 2  0. Q.E.D. 

111 
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