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1. Introduction 

The problem of :‘inding the convex huh of n 
points has received widespread attention in the past 
decade. In particular, if Xr, .,., X, are independent 
identically distributed random vectors from Rd with 
common density f, the following questions were 
investigated: if C is the complexity of the convex hull 
algorithm for X1, . . . . X, (thus, C is a random variable), 
then how do ess sup C (the ‘worst-case complexity’) 
and E(C) (the ‘average complexity’) increase with n 
for particular densities f? 

There are algorithms that have worst-case com- 
plexity O(n log n) for all densities f [ 1,5,10,1 1 ] on 
R*. The algorithms of Jarvis [6] and Eddy Ed.1 have 
worst-case complexity O(n*). 

Recently, several algorithms were shown to exhibit 
linear average complexities (E(C) = O(n)) for certain 
classes of densities on R*: 

(1) The ‘divide and conquer’ method of Bentley 
and Shamos does so whenever E(N), the expected 
number of points on the convex hull, satisfies E(N) = 
O(nP), p < 1. The latter condition 3s fulfilled, for 
example, when f is the uniform density on a convex 
r-gon [9] or when f is normal [8]. 

(2) The elimination method of Toussaint [l l] is 
known to do so for uniform densities on the unit 
square, and for all radial densities with a monotone 
and slow-varying tail [3]. 

(3) The recent method of Bentley et al. (21 that is 
based upon first finding the set of maximal vectors, 
has E(C) = O(n) whenever f can be written as a d-fold 

product of densities: 

d 

fh .**7 xd) = ? fifxi) . (1) 

This is true, e.g., for the normal density. 
The purpose of this paper is to show (3) and to ob- 

tain a few additional results on the distribution of M, 
the number of maximal vectors. 

We say that a vector x1 is maximal among 

(x 19 *.*9 x,) when none of the other vectors dominates 
it in every component. In other words, the positive 
quadrant centered at x1 has no other point in it. In 
fact, one can define for each quadrant, 1 < i < 2d: 

M(i) = number of maximal vectors 
for ifh quadrant among X1, . . . . X, . 

It is clear that when ff satisfies (l), the average number 
of maximal vectors taken from all quadrants does not 
exceed 

E(& M(i), - Td E(M) (2) 

and 

E((ZtM(i))‘) 4 E(Zi 2d@-‘) Mp(i)) 

= 2dpE(MP), p > 1 . ‘(3 1 

In (2) and (3) we use M for M( 1), the number of 
maximal vectors in the first quadrant. 

By Theorem 3 of [2] we can find all the maximal1 
vectors among X1, . . . . X, in Rd in expected time O(n) 

when f satisfies (1). If one uses a convex hull algorithm 
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with worst-case complexity O(nP), p > 1, on the set 
of all maximal vectors (there are at most Zi M(i) of 
them), then the 

1, there 
exjsts g(p) > 0 with 

where g(p) = (: t [pi2 t l t [pl bl)Pl bl and [- 1 
is the ceiling function. 

Of course, by Jensen’s inequality, it is always true 
that 

(6) 

and this. together with (5) shows the closeness of 
QMP) to (E(M))p. 

We also show 

Theorem 2. If ( I) holds, then 

More precisely, 

log !og n (log n)d-l ( 

logn (d- l)! ’ 

d-2 
. (8) 

The proof of Thehtrem 2 is entirely probability 
theoretical, and the result (‘7) is not obtainable from 
the combinatorial inequalities of Bentley [2]. From 
(4), (5) and (7) we have without calculation: 

Theorem 3. If (1) holds, then the algorithm which 
uses the method of [2] to find the maximal vectors, 
and then uses a worst-case O(nP) (p > 1) algorithm to 
find the convex hull among these points, has average 
complexity O(n). 

Note. In Theorem 3, p and d are arbitrary. Actually, 
it is known that a worst-case O(nd+‘) algorithm always 
exists for any d. 

;Z Proofs 

In view of(l), we can and do assume that XI, . . . . & 
are independent and uniformly distributed in [0, 1 ] d. 
Also, we will write Xi = (Xi13 . . . . Xid) when we need 
the individual components of Xi. 

Clearly, 

E(M) = nP(X1 is a maximal vector) 

= nE((l - (1 - X1 1) l a* (1 - X1,))“-‘) 

= nE((l - XllX1* _* X1$+‘) 

=E 
1 

xl2 “* Xld 
(1 - (1 -x12 9 (9) 

where we have used the integral Jo’ (1 - za)n-r dz = 
(1 - (1 - a)“)/na with a = Xl2 *** Xl&z = XII. From 
(9) it is clear fhdt E(M) increases with n. 

Proof of Theorem 1. We show Theorem 1 for n even 
and p = 2. The other cases follow trivially. Let M’ be 
the number of maximal vectors among X1, . . . . X,/z. 
Then, if I is the indicator function, 

E(M’) = E((&I[x i iS a maximd vector] j2) 

= Zi,jP(Xi is a maximal vector, 

Xj is a maximal vector) 

= ZiP(Xi is a maximal vector) 

+ n(n - 1) P(X, and X2 are maximal 
vectors) 

= E(M) + n(n - 1) P(X, and X2 are maximal 
vectors) 

< (E(M))2 + nP(X1 maximal vector among 
X1, x3. x5, ..*I 

X (n - 1) P(X2 maximal vector among 
x2, x4, l *.) 
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G (E(M))2 + (2 E(M’))2 

< ( E(M))2 + 4( E(M))2 

= 5 (E(M))2 . 

For p integer, the proof is analogous. Let M’ be the 
number of maximal vectors among X1, . . . . Xw,, where 
we assume that n is a multiple of p. It is easy to ob- 
tain the inequality 

E(Mp) G E(M) i- (p E(M’))2 

t (p E(M’))3 t ... t (p E(M’))p 

< (E(M))P (1 + p2 + p3 + ..* + pp). 

For p not integer, we have 

E(Mp) < (E(M rp l))p’ rp 1 

< [(E(M))k’l(l + [pl2 + [p13 + .a. 

Proof of Theorem 2. The density of Y = Xl2 . . . &J is 

(10) 

To see this, use the facts that -log XI2 is exponen- 
tially distributed, that the sum of (d - 1) independent 
exponential random variables is gamma (d - I), and 
proceed as follows: 

P{Y <y) = P(--log X,2 - log X13 - *** - log Xr,j 

%-logy) 

cm Ud-2 
= s 

-h3Y 
(d e-udu- 

Next, use the transformation u = log z, du = (-1 /z) dz. 
With (lo), we can rewrite (9) as 

E(M)=/;(log;)d-2&(l-(l -y)“)dy. 
. 

To find an upper-bound for this, we have 

E(M) G ] 

r/n 

; (log $-’ & dy 
. 

+nJr” (logt)dB2~~ dy 

0 

because (1 - y)” Z 1 - ny. Since, by park! intcgra- 
tion, 

(d - 1) / $(log $-’ dy = (log$-‘, 

the first of these terms is equal to (log n)d-‘/(d - 1)! 
The secono one is equal to 

1 t log n/l ! + *.* + (log n)d-2/(d - 2)! 

in view of the recursive relation 

= -+iog n)d-2 (&, 
n . 

+j” (log;)d-3 &! dy, 
0 

Therefore, 

da:. 

E(M) G c i’ 
d-1 (log n)’ <(log n)d-1 + e(log n)d-2s (, 2) 

-p_ 
i=O . . (d -- I)! 

Furthermore. 

E(M) 2 i (I - e-“)!Jog ire2 A, dy 
. 

a/n , 
n d-l 

(1 -evQ! log- 
)( ) ck 

= 
(d - I)! 

(13) 

for arbitrary cr E (0, n). Picking QL = log n shows that 

_L; l-1. EiM) 

( )( 

logiogn d-’ 

(log n)d-s n, 
l_--L_ 

) 

1 1 

’ logn , 
L- 

(d - l)! 

Also, from (i 2), 

E(M) 
---,,a+ 

e(d - 1Y “-, 1 

(log n) - log n 
, 

(d - l)! 

concluding the proof of Theorem 2. 
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