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1. Introduction

The problem of ‘inding the convex huil of n
points has received widespread attention in the past
decade. In particular, if Xy, ..., X,, are independent
identically distributed random vectors from R¢ with
common density f, the following questions were
investigated: if C is the complexity of the convex hull
algorithm for X,, ..., X, (thus, C is a random variable),
then how do ess sup C (the ‘worst-case complexity’)
and E(C) (the ‘average complexity’) increase with n
for particular densities f?

There are algorithms that have worst-case com-
plexity O(n log n) for all densities f [1,5,10,11] on
RZ. The algorithms of Jarvis [6] and Eddy [4] have
worst-case complexity O(n? ).

Recently, several algorithms were shown to exhibit
linear average complexities (E(C) = O(n)) for certain
classes of densities on R:

(1) The ‘divide and conquer’ method of Bentley
and Shamos does so whenever E(N), the expected
number of points on the convex hull, satisfies E(N) =
O(nP),p < 1. The latter condition is fulfilled, for
example, when f is the uniform density on a convex
r-gon [9] or when f is normal [8].

(2) The elimination method of Toussaint [11] is
known to do so for uniform densities on the unit
square, and for all radial densities with a monotone
and slow-varying tail [3].

(3) The recent method of Bentley et al. [2] that is
based upon first finding the set of maximal vectors,
has E(C) =0(n) whenever f can be written as a d-fold

product of densities:
d
fxe, - xa) = 11 £iCx0). (1)

This is true, e.g., for the normal density.

The purpose of this paper is to show (3) and to ob-
tain a few additional results on the distribution of M,
the number of maximal vectors.

We say that a vector x; is maximal among
(x4, ..., Xp) when none of the other vectors dominates
it in every component. In other words, the positive
quadrant centered at x; has no other point in it. In
fact, one can define for each quadrant, 1 <i<2%:

M(i) = number of maximal vectors
for it" quadrant among X, ..., Xq .

It is clear that when f satisfies (1), the average number
of maximal vectors taken from all quadrants does not
exceed

E(Z;M(i), = 27 E(M) (2)
and
E((Z;M(1))P) < E(Z; 2401 MP(i))

=29PEMP), p>1. (3)

In (2) and (3) we use M for M(1), the number of
maximal vectors in the first quadrant.

By Theorem 3 of [2] we can find all the maximal
vectors among Xy, ..., X in RY in expected time O(n)
when f satisfies (1). If one uses a convex hull a‘gorithm
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with worst-case complexity O(n®), p > 1, on the set
of all maximal vectors (there are at most Z; M(i) of
them), then the overall average complexity of the con-
vex hull procedure is

E(C) €kyn + Kk, E{MP}, 4)

where k,, k; are constants possibly depending upon
p and d. but not on n.
Here we show the following:

Theorem 1. If (1) holds, then, for every p > 1, there
exists g(p) > 0 with
E(MP) < g(p) (E(M))P, (5)

where g(p) = (i + [p]* + -+ fp'lfp])p/[p-l and [-]
is the ceiling function.

Of course, by Jensen’s inequality, it is always true
that

E(MP) > (EM)P, (©)

and this. together with (5) shows the closeness of
E(MPj to (E(M))P.
We also show

Theorem 2. If (1) holds, then

_EM_
T M

(d-1j)!

More precisely,

(-2 0 e <

d
<SEM)<2 =8

-1 .
 (log n)!
i-o i
(log n)?-! d
<—2—— te(i -2,
1 e(log n)° (®)
The proof of Theurem 2 is entirely probability
theoretical, and the result (7) is not obtainable from
the combinatorial inequalities of Bentley [2]. From
(4), (5) and (7) we have without calculation:
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Theorem 3. If (1) holds, then the algorithm which
uses the method of [2] to find the maximal vectors,
and then uses a worst-case O(nP) (p = 1) algorithm to
find the convex hull among these points, has average
complexity O(n).

Note. In Theorem 3, p and d are arbitrary. Actually,
it is known that a worst-case O(n¢*1) algorithm always
exists for any d.

{2. Proofs

In view of (1), we can and do assume that X,, ..., X,
are independent and uniformly distributed in [0, 1]9.
Also, we will write X; = (X;y, -.., Xjq) when we need
the individual components of X;.

Clearly,

E(M) = nP(X, is a maximal vector)
=nE((1 — (1 = X11) (1 — X30))"™Y)
=nE((1 - X1 Xi2  Xa)"™h)
l n
=E (m (1-(1-Xy2  X4q) )), 9

where we have used the integral [ (1 — za)*! dz =
(1 — (1 —a)")/na with a =X;5 - X;4,2 = X;;. From
(9) it is clear that E(M) increases with n.

Proof of Theorem 1. We show Theorem 1 for n even
and p = 2. The other cases follow trivially. Let M’ be
the number of maximal vectors among X, ..., Xp/2.
Then, if 1 is the indicator function,

EM?) = E((Z;l{x;is a maximal vector])%)
= Z; jP(X; is a maximal vector,
X; is a maximal vector)
= 3;P(X| is a maximal vector)

+n(n — 1) P(X, and X, are maximal
vectors)

= E(M) + n(n — 1) P(X, and X, are maximal
vectors)

<(E(M))? + nP(X, maximal vector among
xl’ x3', XS’ "')

X (n — 1) P(X, maximal vector among
X,, Xa, ...)
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<(E(M))* + (QEM))?
<(E(M))? + 4(E(M))?
= 5 (E(M))? .

For p integer, the proof is analogous. Let M’ be the
number of maximal vectors among X, ..., Xy, where
we assume that n is a multiple of p. It is easy to ob-
tain the inequality

E(MP) <EM) + (pE(M'))?
+(pEM")® + - + (p EM))P
<(E(M))P (1 +p? +p* + - +pP).
For p not integer, we have
EMP) < (Ee e [e ]
<(EMpPTa+ [pP +[p] +

+ [p] P Ty fe]
=(E(M))P g(»).
Proof of Theorem 2. The density of Y =X, - X4 is
1 1\9-2
= log— , 0 .
M=oy foeg) . o<y<i. o)

To see this, use the facts that —log X, is exponen-
tially distributed, that the sum of (d — 1) independent

exponential random variables is gamma (d —- 1), and
proceed as follows:
P{Y<y}=P{-log X;; — log X;3 — =~ — log X4
>-logy}
- ; ud-2 -u
J 1oy (d-2)

Next, use the transformation u = log z, du = (—1/z) dz.
With (10), we can rewrite (9) as

~(1-y)y"dy.
(11)

1 d-2
1 1 1
EM) = —(lo —) 1
J‘ y\*%y)  @-oy (
To find an upper-bound for this, we have

1\4-2
E(M)<f (log ) (d—12)! dy

l/n
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1/n 1
+n (log ) —_—
of y) @ ®

because (1
tion,

(d- l)‘f l%(log -:;) - dy = (log"é-)d_!,

the first of these terms is equal to (log n)4=1/(d - 1)!
The seconc one is equal to

+(logn)~%/(d - 2)

—y)* 21 — ny. Since, by partial integra-

1 +logn/1!+ -

in view of the recursive relation

Therefore

E (log n)’

i=o 1!

(Iog n)d !
Tod-1y

EM) < +e(logn)d=2.(12)

Furthermore,

. 1 142
E(M) > f (- e‘“)-(log —)
Y y
a/n
n)d—-l
— e~ flos —
i (1-e )(og N
da-un!

for arbitrary a € (0, n). Picking a = log n shows that

E’M) - ( 1)( log Iog_rl)d—l " |
(logn)™™" n)d 1= logn ’
(@-1n!

Also, from (12),
_ 1

E(Mg , <l+e(d 1)! 01
(log n) log n
@-nr

concluding the procf of Theorem 2.

1
(d - 2) d

(13)
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