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Abstract-Frequently the need arises for the computer generation of variates that are exact/y distributed as 
2 = max(X,, . , X.) where X,, . . . , X, form a sequence of independent identically distributed random 
variables. For large n the individual generation of the Xi’s is unfeasible, and the inversion-of-a-beta-variate 
is potentially inaccurate. 

In this paper, we discuss and compare the corrected inversion method, the log(n)/n-tail method and the 
record time method. The latter two methods have an average complexity O(logfn)), are very accurate and do 
not require the inversion of a distribution function. 

The normal, exponential and gamma densities are treated in detail. The existence of fast and accurate 
inversion methods for the error function makes the corrected inversion method faster than the other ones 
for n large enough when the Xi’s are normal random variables. 

1. INTRODUCTION 

We consider random number generators for 2, = max(X,, . . . ,X,,) where Xi,. . . ,X, are 
independent identically distributed random variables with a common density f (and cor- 
responding distribution function F). Such generators are important in various Monte Carlo 
simulations and experiments involving extrema. In this paper we study the speed and the 
accuracy of several techniques such as 

(i) the inversion method, 
(ii) the “brute force” method, 

(iii) the log n/n-tail method, and 
(iv) the record time method. 

The choice of a particular method depends upon n, F, the desired speed, the desired accuracy, 
the particular computer in use, and the nature of the application. We will briefly discuss 

(v) approximate methods 

and theit accuracy for large n, but for obvious reasons, these methods should not be compared 
with the exact ones presented below. 

2. INVERSION 

It is easy to see that F-‘(U”“) is distributed as Z, whenever U is a uniform (OJ) variate (or, 
in short: U is uniform). If one is going to follow this course, three situations can be 
distinguished: 

(1) F is easy to invert (e.g. F(x) = 1 - e-I, x > 0, or F(x) = 1 - x-“, x > 1, a > 0). 
(2) F-l can be arbitrarily closely approximated through a series expansion or a class of 

functions. 
(3) None of the above is possible: one has to solve the equation U”” = F(x) for x. 
In all three situations, there is an accuracy problem for large n because U”” is likely to be 

close to 1. The problem remains even if we consider instead of F-‘( U”“), 

G-Y1 - U”“) or G-‘(1 - (1 - U)““) where G(x) = 1 - F(x). 

One possibility is to replace 1 - (1 - U)‘ln by its Taylor series expansion about 0, 

n-1(U+(1-l/n)U2/2!+(l-l/n)(2-1/n)U3/3!+...), 
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but this series converges too slowly to be practical. We could however exploit the fact that ewE 
is uniform whenever E is an exponential variate. Thus, 

1 - U”” = I- emNn = (E/n) - (E/n)*/2! + (E/n)3/3! - . . . , (1) 

which converges quickly for large n. If we break off the series after r terms, then the error will 
not exceed (E/n)“‘/(r + I)!. When E/n is small, the overall answer is close to E/n, which makes 
the relative error smaller than (E/n)‘/(r + l)!. Thus, rather than to generate 1 - U”“, we propose 
the following: 

(1) Generate an exponential variate E. 
(2) Compute the series (I), and stop after the rth term if (E/n)‘< (rf l)!d where d is the 

maximum relative error allowed (e.g. d = IO-’ in single precision arithmetic on an IBM 360 
computer), or if (E/n)‘+’ <(r + I)!d* where d* is the smallest number that can be stored. 

The number of terms from (1) that are included is a random variable N We have 

P(N > k) = exp( - n((k + I)!d)“? 

For d = 10-‘p(N > &) is smaller than e-*‘( c lo-‘) for n > 10t’ (k = I), n 2 25820 (k = 2), n 2 
1494 (k = 3), n 2 340 (k = 4), n 1135 (k = 5), n I 18 (k = lo), n 2 5 (k = 20). Since N decreases 
as n increases, the average running time of the inversion method does not increase with n when 
the average time needed for F-’ or G-’ is uniformly bounded from above on (0,l). 

Since uniform spacings are distributed as independent exponential variates proportional to 
their sum (see, e.g. Pyke[ l]), we can avoid the series computation in (1) altogether by replacing 

1 - U”” by E/(E+ E,) where E is an exponential variate and E,, is an independent gamma 
variate with parameter n. Fast methods for obtaining E, in average time O(1) as n -+a~ are 
described by Marsaglia[2], Ahrens and Dieter[3], Vaduva[4], Tadikamalla[5], Cheng[6]. For the 
exponential variate E, see Ahrens and Dieter[7], Marsaglia[8] or Sibuya[9]. For a more detailed 
bibliography, we refer to Sowey[lO]. 

Example. (The normal density.) Among the favorite methods for the inversion of the normal 
density figures Hasting’s approximation[ 1 I] used by Cunningham[ 121 and Milton and 
Hotchkiss[l3], and refined by Odeh and Evans[l4]. Algorithm AS70 of Odeh and Evans is 
accurate to seven decimal places when its argument lies between 10e20 and 1 - 1Oe2O. For higher 
accuracy, one can use one of many iterative algorithms that are based upon consecutive 
evaluations of the normal integral. 

3. BRUTEFORCEMETHOD 

The algorithm that first produces all the Xi’s and then takes the maximum has several 
drawbacks in the present context. First, its average complexity increases as kn where the 
constant k depends upon how hard it is to obtain one variate Xi. For n greater than a small 
threshold no, it will require more time on the average than with any of the other methods listed 
in the introduction. There is also a potential accuracy problem because standard random 
number generators are often not designed to deliver variates with great precision from the tails 
of the distribution. 

4. LOGN/N-TAILMETHOD 

We propose a new method here that is based on the assumption that a simple family of 
generators for the tail densities of f exists. It uses the principle of rejection, and does not 
require a computation of F or F-’ for each variate. 

We define the tail density f. by 

1 

f(x)/~ ,x > a, 
fo(x) = 

0 ,x 5 a, 

where p = 1 -F(a). The threshold a and the corresponding tail probability p are carefully 
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picked before application of the algorithm. The number of Xi’s that exceed a is binomially 
distributed with parameters n and p. Rather than to generate nX;‘s, one could just as well 
generate a binomial (n,p) variate B, obtain B variates from the tail density fa and find the 
maximum. 

The algorithm 
(1) Generate a binomial (n,p) variate B. 
(2) If B = 0, go to 4. 
(3) Generate B variates Y,, . . . , Ys from fO, and exit with Z.+max( Yr, . . . , YB). 
(4) Generate variates XI,Xz, . . . from f until exactly n of them satisfy Xi < a. Exit with 

Zn+maX{Xi:Xj < U}. 
In order to analyze the average complexity of this algorithm we assume the following; using the 
symbols Ci for complexities that are random variables, ci for constants, and E for expected 
value: 

-The average complexity E(C,) to get one variate from f0 satisfies lim sup E(C,) = c\ < m- 

cc, and thus sup E(CJ I cl <cc for some ao. 
ll>llg 

-The average complexity E(C,) to obtain B is bounded from above by cznp + cs. 
-The average complexity E(C,) to obtain one variate from f is c3 < w 

If c4 and.c5 are positive constants, then the overall average complexity E(C) satisfies 

E(C) 5 E(B)E(CJ + E(C2) + P(B = O)c,d(l -P) + c4 

5 (c, + c&l + c5 + c3n(l - py- 

5 (c, + cz)np + c5 + c3n e-(n-‘)p. (2) 

Here we used the fact that the average number of Xi’s generated in Step 4 is n/G-p), a 
property of the negative binomial distribution. Minimizing (2) with respect to p gives a solution 

PO = lOg(c3(n - l)/(cr + cd)/(n - 1) - log(n)/n as n +a. 

For large n, the optimal choice of p is independent of f and the relative costs cI,c~,c~. After 
resubstitution of either p = p. or p = log(n)/n into (2) we have 

E(C) = O(log(nN. (3) 

Also, P(B = O)n/(l -p) = O(l), that is, the average complexity due to Step 4 is uniformly 
bounded for all n. This shows that to reduce E(C) one has to carefully pick the methods to 
generate binomial variates and variates from fO. 

Note: Step 4 may be replaced by Step 4’ where ff is the central portion of f (thus, 
f=Pfc2+(1-Pm: 

(4’) Generate n variates X1,X2,. . . , X, from f$ and exit with Zn+max(X,, . . . , X,). 
The analysis of E(C) given above remains valid here if we replace the term P(B = 0)c3n/( 1 - p) 
by one of the form P(B = 0)~. Again, the best p satisfies p. - log(n)/n. 

Generation of B. Ahrens and Dieter[3] survey binomial random number generators such as 

(i) the count-ones method (cost is proportional to n); 
(ii) linear tree search (Knuth[lS], the cost is proportional to c +np but for large n the 

computation of factorials becomes cumbersone); 
(iii) the beta method (requires O(log(n)) computation on average for fixed p). 

Here we propose a simple generator with average complexity O( 1 + np) that uses the fact that if 
B is the first nonnegative integer for which 

l3+1 

c Vi>4 
i=l 
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where V,, Vz, . . , are independent geometrical (p) variates (that is, P{ V, = n} = p( I- p)“-‘, all 
n 2 l), then B is binomial (n,p). Clearly, the expected number of geometrical variates needed is 

E(B)+l=np+l. 

Thus, if p - log(n)/n, then this number is O(log(n)). 
To generate the K’s we put 

where El, E2, . . . are independent exponential variates. For the proof of this, see Knuth[lS]. 
Exponential generators are discussed by Marsaglia[8], Sibuya [9] and Ahrens and Dieter [7]. We 
are using the program REXP developed by Marsaglia at McGill University as part of the 
“super-duper” random number generator package. 

To obtain an accurate result for - log( 1 - p) where p is small, one can follow two courses: 
(1) Compute p + pz/2 + p3/3 + . . . and stop after k terms where pk”/(& + 1) < pd where d is 

the achievable accuracy. 
(2) Set r = 1-2/p and compute - (2/r)(l+ l/(3?) + 1/(5r4) + . . .). 

Thus, we summarize the procedure as follows: 
(1) Compute u = - log( 1 - p); Sto; B4. 
(2) Generate an exponential variate E; S-S + (uE[ 
(3) If S > n, exit with B. 
(4) BcB + 1; return to 2. 

Tail of the normal density. The principle of rejection (von Neumann[16]) can be used to 
obtain variates from the tail of f. When f is normal, rejection from the tail of the Rayleigh 
distribution is simple (MarsagIia[ 171). When f is gamma, a shifted exponential seems well suited 
for the purpose, and when f has a polynomial tail (such as the Cauchy density), rejection from 
Paretovariates is indicated. In all cases, it is wise to choose a density whose tail decreases at 
the same rate as that off. We will use the symbols g, for the auxiliary density, U for a uniform 
variate, V for a variate from g,,, X for a variate from f0 (thus, X is the answer), and p for the 
efficiency of the rejection technique, that is, the probability of accepting the first couple (U, V) 
that is generated. The average number of such couples needed is l/p. 

If p = 1 - F(a), then 

and 
fJx) = (llpV(2n)) e-‘*“,x > a, 

g=(x) = x e(0*-x2)‘2,x > a, 

in the normal case. Since g,, has distribution function 1 - e(0*-x*)‘2, x > a, the random variable 
V = l!(u* - 21og( Vi)) has density g, whenever U, is uniform (Marsaglia[ 171). Equivalently, 
V = q(u* + 2E) has density g, whenever E is exponential. The multiplication constant in the 
rejection step 

P = inf g&)/f,(x) = pn/f(u). X>Ll 

From Gordon’s inequality[ 18, 191, 

we deduce that p 2 a*/(1 + a*) which quickly tends to 1 as a +a. Thus, the average complexity 
of this procedure tends to a constant as a +m. We summarize: 

(1) Generate a uniform variate U and an exponential variate E. 
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(2) Set Vtd(a’+ 2E). 
(3) If UV> a, go back to 1. 
(4) Exit with X+V. 

In the case B > 0, the square root in Step 2 can be avoided most of the time. Replace Steps 
l-4 by 

(1’) Generate a uniform variate U and an independent exponential variate E. 
(2’) V+a* + 2E. 
(3’) Zf U* V > a*, return to 1’. 
(4’) Exit with X+V. 

The variates Y’, . . . , Ya so obtained give us 2, through the formula 2, = (max(Y’, . . . , Yd)“‘. 
In other words, instead of log(n) square root operations per variate, we need only one square 
root operation. 

Tail of the gamma density. We recall that the gamma density is defined by 

f(x) = x7-l e-“/T(y), x > 0, y > 0. 

We will discuss rejection from the density 

g,(x) = b ebcovx), x > a, 

(see also Ahrens and Dieter[3] and Vaduva[4]) as opposed to rejection from densities with a 
polynomial tail (Cheng[6]). The parameter b is a function of y and a. It is easy to see that 
a + E/b has density g, where E is an exponential variate. We will now consider the cases y < 1 
and y > 1 separately. 

If p = I- F(a) and y is defined as in the previous section, then for the case y < 1 we have, 
with b = 1. 

p = infg,(x)/f&) = pIly)/a7-’ e-” = p/f(a) 
X>II 

= 

I 
;do)l-’ en-’ dx = I=( 1 + ~/a)~-’ e-’ dx 

0 
a 

2 
I 

eX((V-‘)/O-” dx 

=(L(y- 1)/a)-’ 
+l as a+m. 

Once again, the asymptotic efficiency is established. Incorporating the value of p in the 
rejection step pfo( V) < Ug,( V) gives for all a > 0: 

( 1) Generate a uniform variate U and an exponential variate E. 
(2) V+a +E. 
(3) If V/a 2 1/17”“-~ go back to 1. 
(4) Exit with XcV. 

The squeeze principle can be used to avoid logarithmic/exponential computations in Step 3 
most of the time (see for instance Marsaglia[2] and Cheng[6]) for discussions and examples). 

In the case y > 1, the inequality 

(xluY 5 exp((y - 1)(x/a - 1)) 

suggests the choice of b = 1 -(y - 1)/a. With this choice we have 

p = inig,(x)lf.(x) = b 
I 

m uy-’ emu du/aY-’ e-” 
(1 

CAUWA Vol. 6. No. 3--c 
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where we used the fact that for x 2 a, the function x evx10 is maximal at x = a. Thus, 

p = b -(I +x/a)+ 
I 

e-“dx+l as a+=. 
0 

Having established the uniform efficiency for all a large enough, we can summarize the 
algorithm as follows: 

(1) Generate two exponential variates, E and E,. 
(2) Compute Vta + E/b(where b = 1 -(y - 1)/a). 
(3) If V/a - If log(a/ V) 2 E,/(r - I), go back to 1. 
(4) Exit with X+V. 

A squeeze-type of improvement is possible if we notice that log( V/a) = log(1 + (V - a)/~) L 
2( V - a)/( V + a) = 2E/( b( V + a)). Here we used the inequality log( 1 + y) 2 2y/(y + 2) [ 191. Thus, 
between Step 2 and Step 3, we may put, 

(2’) If l?/(b*a( V + a)) 5 E,/(y - I), exit with X+V. 
All that is said here is only true when a > y - 1. 

Computation of a and p. To compute a, one can rely on a = G-‘(po) after estimation of 
cJ(cr + c2), or one can use a = G-‘(log(n)/n). Notice that for fixed n, the time spent on the 
inversion is well spent, because once a is found, the same a can be used to generate a sequence 
of 2”‘s. Clearly, if only one or two variates 2, are needed, one could just as well employ 
straightforward inversion. 

Another possibility is to choose a good estimate a to the solution of G(a) = p. from 
theoretical considerations, and then compute p = G(a) using a numerical integration sub- 

program. For example, when F is normal, then G(x) - f(x)/x as x +oo(Feller [20]). If q = l/p,, a 
first approximate solution of f(x)/x = l/q is a = (2 log(q)) . “* This is unsatisfactory because 
E(C) = O(n) in that case. A second approximation is 

a = (2 log(qp - 
log(4lr) + bdlog(q)) 

22 log(q))“* 

(Cramer[471), and in that case E(C) = O(log(n)) as claimed. For the gamma density one can use 
the fact that G(x) -f(x) as x +QJ because of the inequalities 

f(x) 5 G(x) 5 f(x)l(l -(Y - 1)/x) 

when y>l andx>y-1. 
The computation of G(u) is relatively easy for most distribution functions. For example, for 

the normal density, we refer to a sequence of papers that start with a modified version of a 
method described in Kendall and Stuart[21] (see Cooper[22], Hi11[23], Hitchin[24]), the paper 
by Adams [25] and an improved version of it (Hill [26]). The latter method, algorithm AS66, is 
highly recommended because of its speed and accuracy. For the gamma density, a continued 
fraction expansion method (see Abramowitz and Stegun[27]) is efficiently programmed by 
Bhattacharjee [28] under the name: algorithm AS32. 

5. THE RECORDTIME ALGORITHM 

In some process simulations one needs a sequence (Zn,, Z,, . . . , Z,,) of maxima that 
correspond to one realization of the experiment, where n, < n2 < . . . < nk. The inversion method 
will require k inversions. The method given below will, on average, require the generation of 
log(~) exponential variates and the computation of log(nk) values of the distribution function. 
Clearly, for log(n& < ck (some constant c), its average complexity will be smaller. 

The record times L,, L2,. . . and the record values YI,Y2,. . . corresponding to a sequence 
x,x*,. . . are defined by: 

L, = 1, 
L *+I =info:Xj>XL,, j>L,), n>O, 
Y, = XL., n B 1. 
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In the record time algorithm one essentially replaces the problem of the production of the Xi’s 
by that of the generation of (L,,Y,), n = 1,2,. . . . 
The algorithm 

(1) Generate Y from f, set L+l and compute p+G(Y). 
(2) Compute u = - l/log(l - p) using a method that is accurate for small p. 
(3) Set LcL + IuEl where E is an exponential variate. 
(4) If L > n, exit with Z,+Y. 
(5) Generate a new Y from the tail density fv, set ptG( Y), go back to 2. 

Record times have a few noteworthy properties which explain why the algorithm produces 
variates with the correct density, and what efficiency we can expect. First of all, given Yi, the 
random variables Li+, - L; and Yi+i are independent with the followiing distributions: L;+, -L; 
(the waiting time for the next record) is geometrically distributed with parameter p = G( Yi): 

P(L;+l- Li = k)=p(l -p)k-‘* k 2 1. 

Also, Yi+l has the tail density fyi. When F is continuous, the joint distribution of L,, Lz, . . . , is 
independent of F. In particular, if N, is the number of record times in the sequence Xi, 
x,, * . . ,X,, then as n +m, 

(i) N,, - log n with probability one (Renyi[29]), 
(ii) (N,, - log(n))/- tends in distribution to the normal law (Renyi [29]), 

and 

(iii) E(N,,)=1+1/2+1/3+... + l/n = log(n) + e* +0(1/n) where e* is Euler’s constant 
(0.5772. . .). 

These and other results are surveyed by Resnick[30]. All of them contain information about 
how long-tailed the distribution of the record times is. It is also known that log(L,) - n with 
probability one, and that E(L,+, -L,,) = 00 for all n. The latter somewhat surprising property is 
very easy to prove. 

Step 5 almost solely determines the speed of the procedure. One needs a good but fast 
method for evaluating the integral G (see Section 4), unless G is easy to invert. In that case, 
Step 5 can be replaced by 

(5’) Generate a uniform variate U, set p+Up, and Y+G-‘(p). Go back to 2. 

One also needs efficient generators for the tail densities of f (that is, methods whose average 
complexity remains bounded as the tail gets smaller). Some of these are discussed in the 
previous section for well-known densities. The algorithm given above for the normal tail cannot 
be used when the cut-off point is near 0. One may then define a mixed strategy. Let c be a real 
number and define the following method to generate a variate from fQ: 

(1) If a<c,goto3. 
(2) Generate a variate from fa using a specific tail method (Section 4) and stop. 
(3) Generate variates from f, and stop when one of them exceeds a. 

The generation of normal variaties is treated in a series of papers with increasing sophis- 
tication[7,16,17,32-381. See the survey papers by Atkinson and Pearce[39] and Payne[40]. 
Gamma variates are discussed by Ahrens and Dieter[3], Chen[6] Marsaglia[2], Tadikamalla[5] 
and Vaduva[4], Dagpunar [41], Atkinson[U], and Fishman[43]. In each case, the point c has to 
be determined by the user because it depends upon the relative efficiencies of the generators for 
f and fo. 

We have no control in the record time algorithm over the number of times the loop 5-2-3-4 is 
executed: it is independent off. Since all the operations in the different steps can be carried out 
with constant average complexity for most densities, the overall average complexity of the 
record time algorithm is O(log(n)). Because of the repeated computation of pcG( Y) (Step 5) it 
is not competitive with the log(n)ln-tail method in most raw simulations. It may have the edge 
in some continued simulations. 
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6.APPROXIMATEMETHODS 

The limiting distribution function of 2. is often of the form exp( - eeX), in the sense that for 
large classes of distribution functions F, one can find sequences a, and b, such that 

lim P(a,(Z, - b,) Ix) = e-‘-‘. 
II- (4) 

To this class belong all the gamma distributions and normal distributions. For the sake of 
completeness, we recall von Mises’ theorem (von Mises [44]): if F(x) < 1 for all x, if F is twice 
differentiable for all x greater than some x0, and if 

-j-(T)+O as x+30, (5) 

then (4) is true with a. = nf(b,), and 1 - F(b,) = I/ n. see also David [45]). Condition (5) holds in ( 
essence for all densities with an exponential tail. For example, if 1 - F(x) = exp( - R(x)), then 
(5) reduces to 

R”(X)/(R’(x))2 + 0 as x + co. (6) 

(DeHaan[46]). For the exponential density, (4) holds with a. = 1, b, = log(n). For the normal 
density, in view of G(x)/f(x) - l/x, (4) holds with a, = 6, = (2 log(n))“*. A strictly better choice 
is 

a, = b, = V/(2 log(n)) - lPit(4~) + hdlogt~)) 
2d(2 log(n)) 

(Cramer [47]). Fisher and Tipett [48], Dronkers [49], Gumbel[50] and Haldame and Jayakar [5 I] 
have results on the rather slow rate of convergence in (4) for normal densities. For normal 
densities, it is known that 2, - ~‘(2 log n)+O almost surely so that, oddly enough, ~‘(2 log n) 
can be used as a first approximation to 2,. 

Gnedenko[59] has shown that 

lim P(u,(Z, - b,) I x) = e+, x > 0, 
“- (7) 

for some a > 0, and some sequences a, and b,, if and only if for every y > 0, 

(1- F(x))l(l- F(yx))+y” as x-m 

(see also Barndorl%Neilsen[52] and David[45]). This holds in general when f has a tail that 
decreases at a polynomial rather than exponential rate. 

The main use of approximate methods here is the rough analysis of the behavior of Z, for 
large n. Indeed, 

h - ai’ log(log(l/U)) or b. - a;’ log(E) 

is approximately distributed as Z, for large n, when U is uniform and (4) holds. 

7,EXPERIMENTALRESULTS 

Throughout the experiments we are using single precision arithmetic on an IBM 370/158 
computer. The language is standard FORTRAN, and the random number generators needed are 
those from McGill University’s “Super-Dupe? package. To give the reader an idea of the 
relative speeds with which several functions are performed, we timed some basic functions (in 
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Table 1. 

Function 

Generate uni- 

form variate 
Generate expo- 

nential variale 
Generate normal 
variate 

Square root 

Logarithm 

Accurate loga- 
rithm: log(l -x) 

x very small 
Integrate tail of 

of normal 

density 
Inverse of the 
normal integral 

Time (ps) Program 

26 UN1 (Super-Duper Package) 

48 REXP (Super-Duper Package) 

46 RNOR (Super-Duper Package) 

71 SQRT 
113 ALCKi 

133 ACLOG (available from author) 

163 ALNORM (see[SI]) 

330 GAUINV (see@]) 

microseconds) over a broad range of values for their arguments. The figures in Table 1 are 
averages over 10,000 runs. 

Goodness-of-fir-test. We consider the Kolmogorov-Smirnov test with loo0 variates Z, for 
each value of n. If K,, is the Kolmogorov-Smirnov statistic, then the number 

is computed. For each n the whole procedure is repeated three times. As an example, we 
picked for f the normal density. The algorithms considered here are the inversion method, the 
log(n)/n-tail method and the brute force method. For practical reasons, the latter could only be 
tested for small n. The inversion method gives inaccurate results for n greater than lti unless 
1 - Uijn is replaced by the exponential series given in (1). The log(n)/n-tail method gave 
satisfactory results over the whole range of values of n. Typical values for J, are given for 
these algorithms when n varies from 102 to 108 (see Table 2). The inversion method without the 
series (1) is eliminated from consideration from now on in the experiments that follow, 

A technical problem develops when one applies the Kolmogorov-Smimov test: the com- 
putation of F”(Z,) is not very accurate itself when carried out as such. Rather, we used the 
numbers I - exp(n log(l - G(Z,))) by first computing logjl - G(Z,)) accurately through a spe- 
cial program. 

Timing. Again restricting ourselves to the normal case, most algorithms discussed above 
were timed using 1000 variates for each figure in Table 3. 

Method 

Inversion (with- 

out series (1)) 
inversion with 

series (I) 
Log( n)/n-tail 

method 

Table 2. 

tt= 102 lc? 104 Id 106 10’ 1oB 

0.05 0.49 0.97 0.65 1.00 1.00 1.00 

0.49 0.77 0.07 0.43 0.96 0.46 0.08 

0.95 0.21 0.28 0.75 0.61 0.18 0.55 

Table 3. All times milliseconds/sample 

Method 

Log(n)/n-tail 
method 

Inversion 
Brute force 

n=lO lo’ I@ 1~ Iti 106 10’ 10s 109 

0.45 0.85 1.25 I .32 I .70 2.03 2.38 2.72 3.00 

0.73 0.63 0.57 0.60 0.43 0.43 0.43 0.43 0.43 
= 0.06025 n ms. 
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The brute force method with its linear increase in complexity is only competitive for n smaller 
than 10. The inversion method has a constant complexity in the range shown in the table. The 
slight decrease in the timings for larger n is due to the faster convergence of the series (I). 
Omission of (1) for small n will not affect the accuracy and might be considered when speed is 
important. The log(n)/n-tail method clearly shows a logarithmically increasing complexity as n 
increases. It outperformed the brute force and the inversion methods in the range 8 < n < 60. 

The inversion was done by the algorithm AS70 of Odeh and Evans[14]. Without a fast 
inversion subprogram, the log(n)/n-tail method will be superior over a broader range of values 
for n when, as is often the case, good generators are available for the tail densities. 

The log(n)ln-tail method had p = log(0.22n)/n (the constant 0.22 was arrived at purely by 
guessing after consulting Table 1. No attempt was made to optimize this value). The constant 
a = G-‘(p) was computed through algorithm AS70. 

8. CONCLUDING REMARKS 

We have in more or less detail treated the normal case. The exponential density is easy to 
invert and poses no problem either. From these cases, we can generalize as follows: if X, is 
distributed as h(Y) where Y has a simple maxima-generation method associated with it, and 
where h is a strictly increasing and continuous function, then 

max( Xi, . . . ,X,)=h(max(Y,,...,Y,)) 

where the Yi’s are distributed as Y. Thus, without any effort we have obtained exact methods 
for random variables that are monotone functions of normal or exponential random variables. 
The maximum of chi-square variates can be obtained with some care from the log(n)/n-tail 
method for normal variates. 

This study was motivated by the need for obtaining exact methods for generating extrema 
when n is large. For one thing, the variates 2 might be used later on to study how quickly the 
convergence to the asymptotic distribution function exp(-exp(-x)) takes place. For the same 
reason, we also need exact methods for generating sample quantiles when n is large. For 
quantiles near the lower or upper end of the scale, the methods given in this paper can be 
extended without great difficulty. For the median and other mid-range quantiles, one first 
generates a beta variate and then applies an inversion method. The generation of an entire 
subset of the order statistics leads to yet different problems. See for instance[53], [54], [55], 

WI, [571, [5gl. 
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