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that case, A ,  too is a random variable, with expected value 

1 ”  

n i = l  
E ( A , ) = -  1 E ( D n i ) = E ( D n l )  (by symmetry). 

A trie with n leaves has at least 2 n - 1 nodes, and the average distance to the root (A,) 
is at least equal to the average distance to the root of the leaves in a complete binary 
tree with 2 n -  1 nodes, and thus, 

A ,  2 [log, (2 n - l)] - 1 - log, n. 

The actual value of A ,  increases as the Xi’s become more clustered. Smooth 
distributions of the Xi’s lead to lower values of A,. In this note, we will see to what 
extent the distribution of the Xi’s influences E(A, ) .  

(1) 

Theorem 1:  Iff is the uniform distribution on [0, l), then 

1 
(2 n -2) log 2 

0 I E (A,) -log, (n  - 1) -- 11+ , n 2 2 ,  log 2 

where y = 0.5572156649 . . . is Euler’s constant. Thus, 

lim E (A,)/log, n = 1. 
n 

Thus, the expected average depth of a trie varies as log, n for uniform distributions, 
and in view of (l), this is the optimal asymptotic rate. The same result can also be 
found in Knuth (1973 b), but we include a new short proof anyway. The main result of 
this note is Theorem2, where Theorem 1 is generalized towards all densities on 
ro, 1). 

Theorem 2: Let f be a density on [0, 1). Then either 

or 
E(A , )=  co for all n 2 2 ,  

lim E (A,)/log, n = 1 
n 

according to whether J f ( x )  d x  = co or J f 2  ( x )  d x  < co. 
Theorem 2 states that either tries are on the average asymptotically optimal 
(lim E(A,)/log, n= 1) or they are bad for all n (inf E(A,)=  00). There are no 

intermediate situations. The crucial condition is the square integrability off (which 
is a condition on the peak(s) of the density). Theorem 2 offers at the same time a nice 
characterization of densities that are square integrable: jf2 ( x )  d x  < co if and only if 
E (A, )  < co (i.e. if and only if the expected length of the largest common left substring 
of XI and X ,  is finite). 

We remark that the second statement of Theorem2 follows from (1) and the 
inequality 

fl n 2 2  

E ( A , ) ~ l o g ,  n+ 1 + ( y +  nl- 2 ) / l ~ g  2 + 192 i f 2  ( s )  t l s ,  
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valid for all y12 2. Inequality ( 2 )  is not tight, but suffices to prove the Theorem. Also, 
notice that I f2  (x) clx influences only the constant term, and not the coefficient of 
log, n .  

We notice finally that no continuity conditions are imposed on f in  Theorem 2. This 
will force us to use some advanced measure theoretical tools in the proof. 

2. Proofs 

Partition [0, 1) into sets 

If x, y E &, then the first k bits in the binary fractions of x and y are identical. We let 
Ak(x) be the set & to which x belongs, and define the function gk by 

(3) 
to 

k = O  j = 2  

Formula (3) will be our starting point. 

Proof of Theorem I :  
(3) is equal to 

a2 

(1 -(1-2-k)”-l) 
k = O  

for the uniform distribution. This quantity in turn lies between a, and a, + 1 where 
to 

a,= J (1 -(I -2-”)”-’)dx 
0 

By the transformation 

1 -2-”=y(2“=(1 -y) - l ;  x= -log,(l -y); dx=dy/(l -y)log2) 
we see that 

1 1 -y”- l  1 

0 1.- y 0 
a,= j (lOg2)-1 d y =  J (10g2)-’(1 + y +  ... + y f l a 2 ) d y  

=(lOg2)-’ 4. 
26 Computing 28/4 
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By using inequalities for the harmonic series (Knuth, 1973a, pp. 74, 11 1) we see that 

an log 2 lies between y + log (n - 1) and y + log (n - 1) + , y2 2 2. This completes 

the proof of Theorem 1. 

1 
2n-2 

Proof of Theorem 2: 
For n 2 2 ,  we have from (3) 

Q Q 

E ( A n )  1 Sf<.) ( - + gk (x)) d x  1 gk (x) d x *  
k = O  k = O  

But by Fatou's lemma, 

lim inf Zk Jf(x) gk (x) d x  2 Jf(x) lim inf 2k gk (x) dx 

= j f 2  (x) d x  

L 
k k 

where we also used the fact that for almost all x, lim 2k gk (x) = f ( x )  (Lebesgue density 

theorem (see Wheeden and Zygmund, 1977); also derivable from the martingale 
convergence theorem (see Breiman, 1968)). Thus, 

k 

03 

inf E ( A , ) 2  2-k(Jf2(x)dx+o(1))=co 
n 2 2  k = O  

when If2 (x) d x  = co. Theorem 2 now follows if we can show (2). 

We introduce the Hardy-Littlewood maximal function (see Wheeden and Zygmund, 
1977, pp. 155) 

f*(x)=sup (2rI-l j f ( Y ) d Y *  
r>O l u - x l < r  

It is clear that 

From (3), 

The last term in (4) does not exceed 

(4) 
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where we first used Chebyshev’s inequality, and then used an inequality between the 
integrals of f * 2  and f 2  (see Wheeden and Zygmund, 1977, pp. 156, and derive the 
constants by carefully analyzing Vitali’s lemma (pp. 102) and the Hardy-Littlewood 
inequality (pp. 105)). 

Consider now the first term on the right-hand-side of (4), and note that 

(1 -(1 - f * ( X ) / 2 k - y )  
k = O  

2x-’ >I*@) 

5 1 + J (1 - (1 - 2f* (x)/~Y)”- d y  
2 Y > 2 f ’ ( x )  

=1+a, 

where a, is defined as in the proof of Theorem 1 (the last step follows from the 
transformation z = 1 - 2.f” ( x ) / 2 ’ ,  djq = dz/(l - z )  log 2). Since 1 + a, does not depend 
upon x, we see that (4) is bounded from above by 1 + a, + 192 jf2 (x) dx. Inequality 
(2) follows from the inequalities for a, derived in the proof of Theorem 1. 
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