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Abstract — Zusammenfassung

A Note on the Average Depth of Tries. Let 4, be the average root-to-leaf distance in a binary trie
formed by the binary fractional expansions of n independent random variables X, ..., X, with common
density f on [0,1). We show that either E(A4,)=oc0 for all n>2 or lxm E(A,)/log, n—l depending on
whether [ f?(x)dx= o0 or | f?(x)dx < o0.
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Eine Bemerkung iiber die mittlere Hohe von Biaumen. Sei 4, der mittlere Wurzel-zu-Blatt-Abstand in
einem bindren Baum, der durch die Dualbruchentwicklungen von n unabhingigen Zufallsverdnderlichen
X, ..., X, mit gemeinsamer Dichte f auf [0, 1) entsteht. Wir zeigen, dal entweder E(A,) = co fiir alle n > 2
oder lim E(4,)/log; n=1, je nachdem, ob ff2(x)dx=00 oder | f*(x)dx < .

1. Introduction

A trieis a kind of binary search tree originally introduced by Fredkin (1960). We are
given n countable strings of 0’s and 1’s, say X, ..., X, and we consider the infinite
binary tree formed by the paths that correspond to the X ’s (“0” stands for a left turn
down the tree, and “1” indicates a right turn). The trie formed by X, ..., X, is the
smallest subtree of this tree with the property that all n truncated paths are pairwise
different. The X;’s are then associated with the n leaves of this binary tree. For a fairly
comprehensive treatment of tries, with applications, see Knuth (1973b).

Let D, be the depth of X; (distance from the root) in the trie formed by X, ..., X,,.
The average successful search time for the given trie is equal to the average depth:

n= Z Dm

i=1

We would like to say something meaningful about the average depth of a trie, and it
is clear that this would require some knowledge about the distribution of Xy, ..., X,.
To make things rigorous, we assume that X, ..., X, are the binary ( fractional)
representations of independent random variables with common density fon[0.1). In
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that case, 4, too is a random variable, with expected value

Z (D,)=E(D,) (by symmetry).

:l»—-

A trie with nleaves has atleast 2 n — 1 nodes, and the average distance to the root (4 )

is at least equal to the average distance to the root of the leaves in a complete binary
tree with 2n—1 nodes, and thus,

A,=[log,(2n—1)]—1~log,n. (1)

The actual value of A, increases as the X,’s become more clustered. Smooth
distributions of the X’s lead to lower values of A,. In this note, we will see to what
extent the distribution of the X,’s influences E(4,).

Theorem 1: If f is the uniform distribution on [0, 1), then

1
0<E(4,)—log, (n—1)—l—o—yg731+m, n>2,

where y=0.5572156649 ... is Euler’s constant. Thus,
lim E(A,)/log,n=1.

Thus, the expected average depth of a trie varies as log, n for uniform distributions,
and in view of (1), this is the optimal asymptotic rate. The same result can also be
found in Knuth (1973b), but we include a new short proof anyway. The main result of
this note is Theorem 2, where Theorem 1 is generalized towards all densities on

[0, 1).

Theorem 2: Let f be a density on [0,1). Then either

E(A,)=cw forall n>2,
or
lim E(A4,)/log,n=1

according to whether | f*(x)dx=o0 or | f*(x)dx < c0.

Theorem 2 states that either tries are on the average asymptotically optimal
~(lim E(4,)/log,n=1) or they are bad for all n (inf E(4,)=c0). There are no
n nx=2

intermediate situations. The crucial condition is the square integrability of f (which
is a condition on the peak(s) of the density). Theorem 2 offers at the same time a nice
characterization of densmes that are square integrable: | /2 (x)dx < oo if and only if
E(A,)< oo (i.e.ifand only if the expected length of the largest common left substring
of X, and X, is finite).

We remark that the second statement of Theorem2 follows from (1) and the
inequality

E(A,,)Slogzn+1+<y+ )/1og2+192j; )X, (2)

2n
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valid for all n > 2. Inequality (2) is not tight, but suffices to prove the Theorem. Also,

notice that j f*(x)dx influences only the constant term, and not the coefficient of
log, n.

We notice finally that no continuity conditions are imposed on fin Theorem 2. This
will force us to use some advanced measure theoretical tools in the proof.

2. Proofs

Partition [0, 1) into sets

i—1 i
Ak:={x: o SX<—2~,;},131'32".

If x, ye A,,, then the first k bits in the binary fractions of x and y are identical. We let
A, (x) be the set 4,; to which x belongs, and define the function g, by

9= | fdy.

Then, o
E(4,)=E(D,)= ), P(D, >k
k=0
=Y [f(x) P(U [first k bits of X; and x are identical]) dx (3)
k=0 j=2

]
s

176 (1= (L =gy (") dx.

k=

|
<

Formula (3) will be our starting point.

Proof of Theorem I:
(3) 1s equal to

o}

> (1—(1=27")

k=0

for the uniform distribution. This quantity in turn lies between a, and a,+ 1 where
a,= | (1—(1=27*y""Ydx.
0

By the transformation

1-2""=y(2*=(1—y)"!; x=—log, (1 —); dx=dy/(1 - y)log2)
we see that

1 1— n-1 1
a,={ (log2)™t —2
0

-y 0

. n—1 1
=(log2)™* ¥ —
i=1
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By using inequalities for the harmonic series (Knuth, 1973a, pp. 74, 111) we see that

a,log?2 lies between y+log(n—1)and y+log(n—1)+

,n=>2. This completes

the proof of Theorem 1.

Proof of Theorem 2:
For n>2, we have from (3)

E(4,)2 }_: [0 (1= 1+g,()dx= ¥, [f(X)ge()dx.

k=0

But by Fatou’s lemma,

liminf 2% { f(x) g, (x)dx > f(x) liminf 2* g, (x) dx 3

=[f*(x)dx
where we also used the fact that for almost all x, lim 2¥ g, (x)=f (x) (Lebesgue density

theorem (see Wheeden and Zygmund, 1977); also derivable from the martingale
convergence theorem (see Breiman, 1968)). Thus,

inf E(A4,)> Z 27%([ A (x)dx+o(1)=
n>2 k=0
when | f?(x)dx=co. Theorem2 now follows if we can show (2).

We introduce the Hardy-Littlewood maximal function (see Wheeden and Zygmund,
1977, pp. 155)

f*x)=sup2@n)~ [ f()dy.

r>0 ly—x|<r

It 1s clear that

1 1
2"gk(X)SsupmaX<— [ fdy, — | f(y)dy>

r>0 O<y—x<r -r>y—x<0

<sup2 <(2r)“1 § f(y)dy>=2f* (x).

From (3), 7 s
E(A)<Y | f(=(1—=f*C247 ") dx
k=0 fr(x)<27t
! @
+3 | f(x)dx.
k=0 f*(x)22¢!

The last term in (4) does not exceed

i §f)f* ()2 dx < Z [f*2(x)/2¢ " dx

=4 {f*?(x)dx <192 | f*(x)dx
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yvhere we first used Chebyshev’s inequality, and then used an inequality between the
integrals of f*? and f? (see Wheeden and Zygmund, 1977, pp. 156, and derive the

constants by carefully analyzing Vitali’s lemma (pp. 102) and the Hardy-Littlewood
inequality (pp. 105)).

Consider now the first term on the right-hand-side of (4), and note that

Y (I=(1=f*o2 )

25 ey
<1+ | (1=(1=2/*)/2 Ydy
27> 2. *(x)

=1+a,

where g, is defined as in the proof of Theorem 1 (the last step follows from the
transformation z=1-2 f*(x)/2’. dy=dz/(1 - z)log 2). Since 1 + a, does not depend
upon x, we see that (4) is bounded from above by 1 +a,+ 192 | /2 (x) dx. Inequality
(2) follows from the inequalities for a, derived in the proof of Theorem 1.
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