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random variables with density f on [0, 11. Clearly, the countable string of 0’s 
and 1’s that we need for Xi is the binary fractional expansion of Xi. Under this 
assumption, the following is known: 

Theorem 1 (Devroye, 1982). Either 

E(A,)=  co for  all n 2 2  
or 

lim E(A,)/log, n = 1 
n-r co 

according to whether j f2(x)dx= co or sf”(.) dx < co. 

Theorem 2 (Yao, 1980). If f is the uniform density on [0,1], then there exist 
constants c,, c2 such that 

0 <cl sE(H,)/log, n 5 c 2  < co. 

Strictly speaking, Yao (1980) showed Theorem 2 only when the number of 
Xi’s is N ,  a Poisson random variable with mean n, but the “de-Poissonization” 
step is simple. Regnier (1982) improved Theorem 2, also under the Poisson 
model and for f uniform, and showed that E(Hn)-210g,n. Flajolet and 
Steyaert (1982) considered our model with f uniform, and obtained a few terms 
in the asymptotic expansion of E(H,) -2 log, n. 

Theorem 1 implies that only one of two possible situations can occur: 
either tries are asymptotically optimal (Le., E(A,)/log, n --+ 1 as n += co) or they 
are disastrous (i,e., E(A,)= co for all nz2) ,  according to whether the density f 
is in L,  or not. Implicitly, Theorem 1 characterizes the L ,  densities: f is in L,  
if and only if the expected length of the largest common left substring of X ,  
and X, is finite. Yao’s result about E(H,) for the uniform density is extendible 
to all densities in L,, as we will see below. In fact, we will show that for all 
densities in L,, E(H,) - 2 log,n; in other words, the average height is approxi- 
mately twice the average depth. The machinery used to obtain this result (a 
combination of a Poissonization argument and the Lebesgue density theorem) 
is strong enough to allow us to obtain much finer results such as the asymp- 
totic distribution of H,. All of these results are now stated. 

Theorem 3 [Asymptotic distribution of H,]. If Jf’(x)dx<co and a 
= n2 J f’(x) dx/2, then 

Iim JP(H, s log ,  a+x)  -exp( -a/2int(10gza+x) ) I = O ,  all XER; 
n-+ co 

(Here int(.) denotes the integer part of (.).) 

Theorem 4 [Expected height]. Let J f 2 ( x ) d x <  co, and let y be Euler’s constant. 
Then 

-1 s l i m  infE(H,)-(Ina+y)/ln2$limsupE(H,)-(lna+y)/ln2~ 1. 
n-r co n-r co 

If Jf2(x) dx = co, then E(H,) = co for all n 2. 
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?heorems 3 and 4 qualify how close H n  is to 2 log, n. In Theorem 3, we show 
that the distribution of H ,  -2 log, n - l o g , ( ~ ~ f 2 ( x )  dx) is close to a suitably 
discretized version of the extreme-value distribution exp( - exp( -x)) (Johnson 
and Kotz, 1970, pp. 272-295). One of the corollaries of Theorem 4 is that 

(1) E ( N n )  - 2 log, 

for all f in L,. The integral of f 2  influences the values of H n  only in the 
constant term. 

As a by-product of some of the Lemmas proved in Section2, we will 
analyze the complexity of triesort for all densities f on [0, 11 in Section 3. We 
use the terminology “trie search” for searching for an element in a trie, and 
“triesort” for sorting by first constructing a trie and then traversing the trie in 
preorder. Other terms have been used in the literature such as digital tree 
search and radix sort. 

2. Proofs 

Lemma 1 [A density theorem]. Let f be a nonnegative integrable function on’ 

[0, 11, and let Ani be the set of all x in [‘i’,:), - - 1 5 i S n .  m e n ,  

n 1 

Iim n ( J f ( x )  dx), = J f 2 ( x )  dx. 
n-rm i = i  A , ~  0 

ProoJ: By Jensen’s inequality, 

For the lower bound corresponding to (2), we will need the Lebesgue density 
theorem (Wheeden and Zygmund, 1977) in the following form: let 

then, if 0 sf, J f ( x )  dx c co, f: (x) +f(x) for almost all x as n-, co ; in particular, 
f(x)&f,*(x) for almost all x. We have for almost all XEA,,:  
( J f(x) dx), & f,*, (x) /n2 ,  and thus, by Fatou’s Lemma, 
Ani 

n n 

n - r a  i = l  Ani n - + a  i = l  A,,, 
lim infn c ( J f ( x )  dx), Zlim infn n-‘ J g 2 ( x )  dx 

=lim infJ f ,* , (x)  d x z  JIim inff;,(x) d x =  Jf2(x)  dx. 
1 1 1 

n - c o  0 0 n-rco  0 

Lemma 2 [Poissonization inequalities]. Let n be an integer, and let nl, n ,  be 
real numbers such that 0 < n1 c n c n,  < 00. Let Ai = [(i - 1)/2‘, i/2’) where 1 is an 
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integer and 1 s i s 2 ' .  Let p i =  J f ( x )  dx .  I f  N(A)  is a Poisson random variable 
with parameter A7 then Ai 

Proof. For integer k,  we let B,(k)  be the event that none of the sets Ai, 1 5i52[ 
have more than one of the points X I ,  ... , X,.  It is clear that the events B,(n) 
and [H,51] are equivalent. We thus have the following implications between 
events: 

This concludes the proof of Lemma 2. 

Lemma 3 [Exponential inequalities]. For all x 2 0, 
e -x2 '2_<(1+x)e  --x = < e - x 2 / 2 ( 1 + x )  - 

Proof. Note that 
1 x2 x2 

( l+x)( log(l+x)-x)-  -2+- --< -- 0555x ,  - (  1 + 5 ) 2 =  2 '  
and that 

1 x2 x2 , O ~ ~ ~ x .  log(l+x)-x= - - > -- 
(1+t)2 2 = 2 

Lemma 4 [Tail of the Poisson distribution]. Let EE(O,  i), n1 = n(1  - E ) ,  n2 = 
n(1 + E ) .  Then, i f  N(A) is a Poisson random variable with parameter A, 

and 
P(N(n2)  5 n) 5 e -  n e 2 / 4  

P ( N ( ~ , )  2 n) 5 e-ns2/2,  

ProoL If X is gamma (n)  distributed, then, by inequalities for the tail of the 
gamma distribution (Devroye, 1981) 

P ( N ( ~ , )  ~ ~ ) = P ( X Z ~ ~ ) = P ( X  - n 2 n ~ ) 1 e - ~ ~ ~ ( ~ - ~ ) 1 ~  - - 
and 

P(N(n , )  2 n) = P ( X  5 n,) = P ( X  -n 5 -n E )  5 e-  ne212 . 
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proof of Theorem 3. Let E ,  n1 and n2 be as in Lemma 4. Combining Lemmas 2, 
3 and 4 gives for integer I ,  

2' 

P ( H ,  6 I )  2 n exp( - ( n 2  pJ2/2) -exp( -n ~ ~ / 4 )  

z e x p  - i n :  2- 'Jf2(x)dx -exp( -nc2/4) (by (2)) 

=exp( - a ( I+~)~ /2 ' ) - exp(  - n c 2 / 4 ) .  

P ( H ,  slog,  a + x) = P ( H ,  5 int (log, a + x)) 

i =  1 

1 1 

( 0 

Now, 

1 - o m  Zexp( - a ( l  + E )  2 / 2int(logza+x) 

and the right hand side of (3) is arbitrarily close to exp( -a/2int(10gza+X) ) by the 
choice of E. 

Next. 

where I is the indicator function of an event. By Lemma 1, 

2'  1 

Thus, 

We can argue as for (3), and thus make P ( H ,  slog, a +x) arbitrarily close to 
exp( - a/2int(logza+x) ) for all n large enough by choice of E ,  if we can show that 
for all E > 0, 

2' 

1 ('1 Pi12 '[nlp,>e]=0(1). ( 5 )  
i =  1 

I f f *  is the maximal function corresponding to f (Wheeden and Zygmund, 
1977, pp. 105), then n ,  p i  s 2 n  f* (x ) /2 '  for all x € A i .  Thus, 

2' 

( n  1 Pi12 '[nlpi > E ]  
i =  1 

2' 

s c 2 ' s  (2nf*/2 ' )2 '~2nf*/2 '>&l 
i = l  A ,  

=o( l )  (6) 
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when l=int(log,a+x). Here we used the fact that n2/2' remains bounded, that 
2'/n-+co and that s f * 2  < co when s f 2  < co. This concludes the proof of Theo- 
rem 3. 

Proof of Theorem 4 .  In this proof, we will repeatedly use the fact that a random 
variable with distribution function exp( -exp( -x)) has mean y (Johnson and 
Kotz, 1970), i.e. 

co 0 

J (1 -e-e-x) dx - j e-e-x dx = y. 
0 - w  

From the first chain of inequalities in the Proof of Theorem 3, we see that 

W 

r o ( I ) +  J ( l - exp( -a ( l+~)~exp( - t In2 ) ) )d t  
- 1  

du 
s In 2 

W 

(1 -e -e-") -  = o(1) + 
- In 2 - Ina( 1 + e)2 

This shows the limit supremum half of Theorem4, because E can be chosen 
arbitrarily small. 

For the other half of Theorem4, we use Fatou's lemma and a tail estimate. 
We have 

lim inf E(H,) -log2 a 

=lim inf J P ( H ,  -log, a > t )  d t  - J P ( H ,  -log, a < t )  d t  

2 - J lim inf P(H,  -log, a > t )  d t  -1im sup J P(H,  -log, a < t )  d t .  

n-. w 

I 0 

- w  

0 
n + w  [m 0 

W 

0 n-w n + w  - w  

Now, 
~ ( ~ ~ - - ~ o g ~ a > t ) ~  1 -exp(-a/2in'(10~~a+" )+o( l )  

W 

- 2 1 -exp( -2-')+o(l]N J (1 - e - e - " )  dulln2. 
0 

Also, as we will show, 
0 0- 

J P(H,--Iog, a< t )  d t s o ( I ) +  J exp( -+2-') dt  (1 +o(l))  

- ( JWe-"-"du+ J eve-"  d u )  /In 2 

5 & ( 

- w  - w  

0 In 2 

0 
0 

(7) 
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A combination of these bounds shows that 
lim inf(E(H,)-log, a)2----1. Y 

n-+co -1n 2 

We need show the first inequality in (7). Since H,<n, we see that the integra- 
tion interval can be taken as [ -a,  01 without loss of generality. Let /?=+ log, a. 
Let E be an arbitrary positive number smaller than 1. Then, clearly, by (4), 

1exp(-nE2/2)+exp - (-a (1 - E ) ,  2-'hza+t'(l-&)) 
1+E 

for all t 1 --$log2 a + A ,  where A is a positive number depending upon E and f 
only (this requires a careful verification of the o(1) terms in (4) and (6)). Thus, 

0 
j P(H,  -log, a < t) d t  

-aJ 

+ n P ( H ,  S'log, a -$log, a +A). 
The first term is o(l), the second term is not greater than 

0 
which, by our choice of E, is arbitrarily close to exp( -2-('+ ')) d t .  For the 

-aJ 

third term, we use, once again, bound (4) with l=$log, a + A :  

(by Jensen's inequality and the convexity of u2/(1 + 0) )  

3. Triesort 

Tries can be used to sort n elements as follows: 

(1) Construct the trie sequentially by inserting X , ,  ..., X, ,  one element at a 
time. This takes C, comparisons. 
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(2) Traverse the trie in preorder and note all the leaves (X i ' s )  as they are 

Since C, and Nn are appropriate measures of the complexity of this algorithm, 
we will not bother to analyze other quantities. It is clear that E(C,)=E(N,) 
= co for all n2_2 if If2((.) dx= co, so we will assume throughout that f is in 

Theorem 5. If s f2(x)  dx < co, then 

visited. This takes time proportional to the number of nodes N, in the trie. 

L2. 

and 
E (  C,) = n log, n + O(n> 

E(Nn)~n(1+1/18Jf2(x)dx) .  
ProoJ: Since 

we leave 
C,=D,, + ... +D,,, 

n n 

E(C,)= E ( D i i ) Z  (int(log2(2i-1)-l)=nlog,n+O(n) 
i =  1 i =  1 

and 

5 n log, n + O(n) 

where we used inequality (2) of Devroye (1982). 
Because an internal node indicates that an interval of the type 

[(i- 1)/2', i/2') has at least two elements, we have the following equality for 
03 2' 

Choose an integer LZO, and note that by (2) and the last inequality, 
L 03 2' 

E(N,)Sn+ C 2 ' +  n 2 z p ; i  
1=0 l = L . + l  i = l  

- I n + 2 L + 1 + n 2 J f 2 ( ~ ) d x  2 2-' 
t = L + l  

= n+ 2L+ + n2 S f2(x) d ~ / 2 ~ .  

If we take L = int (log, / n 2  J f 2  (x) dx/2), then trivial bounding techniques give 

E(Nn) 5 n + n {m (0 + 2 fi), 
which was to be shown. 
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