
Information Processing Letters 20 (1985) 255-257 12 June 1985 
North-Holland 

A NOTE ON THE EXPECTED TIME REQUIRED TO CONSTRUCT THE OUTER LAYER 
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The expected time E(T) of the standard divide-and-conquer algorithm for finding the outer layer of a set of points in the 
plane depends upon the distribution of the points. Under the mild assumption that the points are independent random vectors 
and have a common bounded density with compact support, it is shown that E(T) = O(n). 
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Introduction 

The outer layer of points (X 1, Y1) . . . . .  (Xn, Yn) 
in R 2 is the subset of points (X~, Y~) having the 
property that one of the four quadrants centered 
at (X i, Yi) contains no (Xj, Yj), j 4: i. Sometimes, 
these points are also called maximal  vectors, or 
admissible points. Algorithms for finding the outer 
layer include: 

(i) the naive algorithm: for each (Xi, Yi) ,  carry 
out n - 1 comparisons to determine whether it is 
on the outer layer or not. The time taken by this 
algorithm is 0(n2), i.e., there exist positive con- 
stants c o, c t, n o such that, for n >/n 0, the time is 
bounded from below by Co n2 and from above by 
Cl n2. 

(ii) one sort and one elimination pass: sort the 
points according to their y-coordinates. In an extra 
pass through the sorted array, eliminate unwanted 
points by keeping only partial extrema in the 
x-direction. The time is basically that of the one- 
dimensional sort. If a comparison-based sort is 
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used, the expected time is bounded from below by 
~2(n log n) if all permutations of (X 1, Y1) . . . . .  
(X n, Yn) are equally likely. 

(iii) divide-and-conquer (Bentley and Shamos 
[2]): start with n singleton outer layers, marry 
(merge) all outer layers pairwise, and keep repeat- 
ing the pairwise marriages until one outer layer is 
left. This requires about log2n rounds of merging. 
Note that outer layers of sizes k and m can be 
married in O(k + m) time if the y-coordinates are 
kept in order at all times. 

The divide-and-conquer algorithm throws away 
many unwanted points at an early stage. Because 
of this, there is reasonable hope of obtaining linear 
expected time. Unfortunately, the expected time 
depends very heavily on the distribution of the 
(X,, Yi)'s, considered here as independent random 
vectors. We know of course that the time is de- 
terministically bounded by O(n log n) (argue as in 
mergesort, see, e.g., Knuth [5]). If the (X i, Yi)'s are 
independent and uniformly distributed on the di- 
agonal of the unit square [0, 1] 2, we have time 
0(n log n) since no points are thrown away. In 
contrast, if the (Xi, Yi)'s are independent, identi- 
cally distributed, and the Xi's are independent of 
the Yi's (such as for the uniform distribution on 
[0, 1] 2, or the standard normal distribution in R2), 
the expected time is O(n) (see Bentley and Shamos 
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[2] or Devroye [3]). In this note, we would like to 
point out that the latter result holds for a much 
larger class of distributions. From here onward, T 
is the time taken by the divide-and-conquer al- 
gorithm, and can be considered as the number of 
coordinatewise comparisons. 

Theorem 1. Let (Xl, Y]), . . . ,  (X n, Y~) be inde- 
pendent R2-valued random vectors with common 
bounded density f of compact support (i.e., f ~ C 
for some finite C, and f = 0 outside a big square), 
then E(T)= O(n). 

Theorem 1 is based upon the following crucial 
inequality. 

Theorem 2. Let N ,  be the number of outer layer 
points for (X,,  Y,) . . . . .  ( X n ,  Y,), which is a collec- 
tion of independent random vectors with common 
density f bounded by a constant C and support 
contained in [x mi~, X max ]" [Ymin, Ymax ]" Then 

E(Nn ) 8v/nDC e 1 
e - 1  

n > 1 / ( D C ) ,  

and this is f~(n log n) whenever E ( N , ) =  ~2(v/-ff): 
this includes most uniform distributions on com- 
pact sets with very few exceptions. One notable 
exception is the class of uniform distributions on 
finite unions of rectangles because it is known that 
for a uniform distribution on one rectangle, E(N n ) 
- 4 log n (see, e.g., [1,3]). 

Remark 2. For uniform distributions on a set 
A _c [Xmin, Xmax]. [Ymin, Yma×], we  have DC = (Xma x 

- -  X r a i n  ) ( Y m a x  - -  Ymi~)/fA dx. This can be recognized 
as a measure of the degree of concentration of the 
set A in its enclosing rectangle. 

Remark 3. No attempt is made to obtain an in- 
equality in Theorem 2 that is 'best possible'. It 
should be stressed though that the inequality is 
uniform over the class of distributions given in the 
theorem. Also, the exact behavior of E(N~) for 
uniform distributions on compact sets A with 
fA dx > 0 is derived by the author elsewhere: for 
example, E(Nn)~  cl/-ff, where c >/0 is a constant 
depending upon A only. Thus, at least the order 
(in n) in the inequality of Theorem 2 cannot be 
improved upon. 

where 

D - - - ~  (Xrnax- Xmin)(Yma x - -  Ymin)" 

By a general theorem for the expected time 
analysis of divide-and-conquer algorithms [3], we 
have E(T)= O(n) if 

O0 
}-2 E(N,  ) / n  2 < oo. 

n=l 

Thus, Theorem 1 follows from Theorem 2 without 
work. 

Remark 1. We should note here that if we had 
married the outer layers by the naive algorithm (i), 
then 

j = l  

Remark 4. The number of points on the convex 
hull of (X 1, Y]) . . . . .  (Xn, Yn) also satisfies the 
inequality of Theorem 2. Hence, Theorem 1 also 
holds for thedivide-and-conquer  algorithm for 
convex hulls given in [2] (linear time merging of 
two convex hulls is possible if points are always 
stored in clockwise order). 

Remark 5. For the distributions of Theorem 1, the 
convex hull can be obtained from the outer layer 
in expected time bounded by a constant times 

E(N n log N , )  ~< E(Nn) log  n = O(vrff log n), 

at least if one of the standard 'n  log n' convex hull 
algorithms is used (see, e.g,, [7,6,4]). This time is 
o(n), i.e., it is asymptotically negligible compared 
with the time needed to find the outer layer. For 
the suggestion to use two-step algorithms for find- 
ing convex hulls, see [1]. 
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Proof of Theorem 2 

Let c, be a sequence of integers to be de- 
2 termined later, and consider the grid of c n rectan- 

gles A~ formed by partitioning each side of 
[X min' X max ]" [Ymin, Ymax ] into c, equal intervals. Let 
Z~ denote the number of points (X j, Yj) in rectan- 
gle A ,, and let p~ denote fA. f" We will now obtain 
a collection of indices, B, by marking certain rect- 
angles. Find the leftmost nonempty column of 
rectangles, and mark the northernmost occupied 
rectangle in this column. Let its row number be j 
(row numbers increase if we go north). Having 
marked one or more cells in column i, we mark 
one or more cells in column i + 1 as follows: 

(i) mark the rectangle at row number j (the 
highest row number marked up to that point); 

(ii) mark all rectangles between row number j 
and the northernmost occupied rectangle in col- 
umn i + 1 provided that its row number is at least 
j + l .  

By this process, we note that at most 2c n rectan- 
gles are marked. Also, any point that is a maximal 
vector for the north-west quadrant must be in a 
marked rectangle. We repeat this procedure for the 
tree other quadrants, so that ultimately at most 8% 
cells are marked. Observe that 

N n ~ < ~  Z i, 
i~B 

and that Z~ is stochastically smaller than W~, 
where W i is a binomial (n, Pi) random variable 
conditioned on W~ > 1. Thus, 

E(N,)~< • E ( W i ) =  E npi (1) 
i~B i~B 1 --(1 - p i )  n" 

Since each term on the fight-hand side of (1) is 

increasing in Pi, and Pi ~ C D / c ,  2, we have 

E(Nn) ~< 8c . (nDC/c~  )(1 - ( 1  - DC/c~  )")- '  

1 
~ 8DCn c . ( 1 -  e x p { -  DCn/c2  } ) .  (2) 

We take c n = [ ~ ]  where a > 0 is a constant, 
and [.l  denotes the floor function. Thus, by sub- 
stituting ~/-D-C-/a - 1 for c., 

1 
E ( N . )  < 8DCn 

Cn(1 -- exp{--a})  

~ < 8 ~ D C a  1 1 
1 - exp{ - a} 1 -  ~/a/(DCn) ' 

valid for nDC > a. Theorem 2 follows if we take 
a = l .  
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