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Abstract. Let H. be the height of a binary search tree with n nodes constructed by standard insertions 
from a random permutation of I, . . . , n. It is shown that HJog n + c = 4.3 I 107 . . . in probability as 
n + 00, where c is the unique solution of c log((2e)lc) = 1, c 2 2. Also, for all p > 0, lim,,E(H$)/ 
log% = cp. Finally, it is proved that &/log n --, c* = 0.3733 . . . , in probability, where c* is defined by 
c log((2e)lc) = 1, c 5 1, and .S, is the saturation level of the same tree, that is, the number of full levels 
in the tree. 

Categories and Subject Descriptors: E.1 [Data]: Data Structures--trees; F.2.2 [Analysis of Algorithms 
and Problem Complexity]: Nonnumerical Algorithms and Problems--sorting and searching 

General Terms: Algorithms, Theory, Verification 

Additional Key Words and Phrases: Analysis of algorithms, binary search tree, branching random walk, 
data structures, expected height of a tree 

1. Introduction 

The height of random binary trees (with various definitions of “randomness”) has 
been analyzed by a variety of authors (see, e.g., the recent work of Flajolet and 
Odlyzko [5] and the references found there). The following types of binary trees 
have received special attention: tries (digital search trees) [4, 9, 171, planted plane 
trees [3], planar trees [7], labeled nonplanar trees [ 121, and rooted free trees [ 161. 

In this note, we consider binary search trees with the usual randomization; that 
is, the binary search tree is constructed in the standard fashion (n consecutive 
insertions) from a random permutation of ( 1, . . . , n), where each permutation is 
equally likely. The tree has n nodes, and its height H,, is the number of nonempty 
levels minus one. We have HO = H1 = 0, and H,, 2 int(log,n) where int( .) is the 
integer part of (-). The random variable H,, has been studied by a variety of 
authors, but the first nontrivial result goes back to Robson [ 131 who proved that 

3.6 log n + o(log n) zs E(H,) 5 4.31107 . . . log n + o(log n). 

Robson also showed that the limit of E(H,,)/log n exists [14], and G. Gonnet 
(personal communication) indicated that this limit is the constant 4.31107 . . . . 
The purpose of this note is to prove this result and to indicate the power of some 
probability theoretical tools in the analysis of algorithms. 
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2. The Fundamental Inequalities 

LUC DEVROYE 

In this section, we establish a vital link, via not-too-crude probability inequalities, 
with trees of random variables and branching random walks. We consider in 
particular a complete binary tree Tk with k full levels of edges (the total number of 
edges is thus 2’ + 2’ + . . . + 2k = 2k+’ - 2). We use the symbol p for a path from 
root to leaf (there are 2k such paths). With each edge i we associate a random 
variable Xi in the following manner: Consider all edges levelwise and from left to 
right, and identify X1, X,, . . . , X2k+l-2 with U,, 1 - U,, Uz, 1 - U2, . . . , &k-, , 
1 - l.kl, where U,, . . . , UZkVl are independent uniform [0, I] random variables. 
Define 

I 1, k = 0, 
zk = max n Xi, 

1 
k > 0. 

P iEp 

LEMMA 2.1. Let n 2 1, k z 0 be integers. Then 

PROOF. We proceed by induction on k. For k = 0, we have equality in both the 
upper and the lower bound. We assume that the inequalities hold up to k - 1 and 
for all n. First, we show that the upper bound remains valid for k and all n 2 1. 

Let us introduce the following notation: U is a uniform [0, I] random variable, 
independent of all the other random variables that we shall mention. Let N, N* be 
the number of nodes in the left and right subtrees of the root (i.e., N + N* = 
n - 1 ), and let Zk- i, and Z,*_, be defined as above and independent of each other. 
These two random variables will be associated with the subtrees of the root. If HN 
and H$ are the heights of the left and right subtrees, respectively, we have 

P(H, 2 k) = P(HN 2 k - 1, or H$ z k - 1). 

But, by our induction hypothesis and various independencies, 

P(HNrk- 1 orH$rk- 1 IN)= 1 -P(HN<k- l,H$<k- 1 IN) 
= 1 -P(HN<k- 1 IN)P(H;.<k- 1 IN) 

= 1 - P(max(NZk-,, N*Z:-1)~ 1 ] N). 

We note that (N, N*) is distributed as (int(nU), int(n( 1 - U))), and that, with this 
embedding, N 5 nU, N* 5 n( 1 - U). Thus, 

max(Nzkwl, N*zk*-,) 5 n max( uzk-, , (1 - u)z,*_ I) = nzk. 

We conclude that P(H,, 2 k) 5 P(& 2 l/n). 
For the lower bound, we obtain, as before, the intermediate result 

P(H,, r k) 2 E(l - P(max(NZk-1, N*Z:+) < 1 + (k - 1) ] N)). 

Applying the same embedding procedure, we observe that N 2 nU - 1, and that 
N* 2 n( 1 - U) - 1. Thus, 

max(Nzk-I, N*Zk*-,) 2 max(nuzk-, - zk-,, n(l - u)z,*_, - z2-l) 
2 max(nUzk-I, n(1 - U)Zk*-,) - 1 
= nzk - 1. 
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Clearly, 

P(H,rk)rE(l -P(nZk- 1 <klN))=P(nZkz 1 +k), 

and we are done. Cl 
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Remark. What we have done in the proof of Lemma 2.1 amounts to an 
association between the sizes of the subtree of a node and the spacings defined by 
a uniform splitting of [0, 11. Thus, (U, 1 - U) are the sizes of the intervals after 
splitting, and they contain, roughly speaking, nU and n( 1 - U) “nodes.” Each of 
the subintervals is further subdivided, giving rise to a tree of a product of uniform 
random variables. Each of the intervals after several iterations “represents” a tree 
with approximately y1 times the length of the interval number of nodes. Lemma 
2.1 now connects the height of a tree with n nodes with the size of the largest 
uniform spacing after k iterations of splitting. 

3. An Upper Bound 
The purpose of this section is to establish a firm upper bound for P(H, 2 k), in 
preparation of our main theorem in Section 5. 

LEMMA 3.1. For integer k 2 max( 1, log n), we have 

Forc>Oandcr2, wehave 

p(H,, 2 (c + t)log n) 5 n(c+r)‘og(2e/(c+~))-‘. 

In particular, the right-hand side of this inequality tends to 0 for all c > 0 when c is 
the solution of 

2e 
clog; =I, 0 c I 2. 

Finally, note that for all p 2 1, X,, = H$/(log n)P is uniformly integrable, that is, 

PROOF. We repeatedly use the fact that a uniform [0, I] random variable is 
distributed as e-‘, where Y is an exponential random variable (i.e., Y has density 
eey, y > 0), and that the sum of k independent exponential random variables has 
a gamma (k) density, yk-‘e-J’/(k - l)!. 

Now, 

(Lemma 2.1) 

= 2kP(rze-Gt 2 1) 

5 2kE(n’e-‘Gk) 
= 2kn’(t + 1)-k 

(by Bonferroni’s inequality; here U,, . . . , Uk are 
independent uniform [0, l] random variables) 

(where Gk is a gamma (k) random variable) 

(by Chebyshev’s inequality, t > 0) 

(upon taking t + 1 = k/log n, a choice that 
minimizes the bound). 
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This concludes the proof of the first inequality of Lemma 3.1. For the second 
inequality, we note first that ((2e log n)/k)k decreases in k for k L 2 log IZ. Thus, 
since P(H,, 1 (c + t)log n) = P(H,, r ceil((c + t)log n)) where ceil( .) is the ceiling 
function, it is allowed to replace k in the first inequality by (c + e)log n, which 
gives us our second inequality. 

For the last statement, we rewrite the upper bound in the second inequality as 
follows: 

~(c+r)log(2e/(c+r))-clog(2e/c) 

Now, the function u log(2e/u) has derivative log(2e/u) - 1 = log(2/u), which 
decreases from 0 (at u = 2) to log(2/c) (at u = c) to --co (as u + m), and this in a 
monotone manner. Therefore, (c + c)log(2e/(c + E) - c log(2e/c) I E log(2/c), and 

P(H, r (c + c)log n) 5 nr’og(2’c). 

The uniform integrability is quickly verified. 0 

4. A Lower Bound 
The upper bound of Section 3 required very little in terms of technical machinery. 
In this section, we prove Lemma 4.1, and rely very heavily upon profound results 
from the theory of branching random walks. 

LEMMA 4.1. Let E > 0 be arbitrary, and let c = 4.31107 . . . be the unique 
solution of c log(2e/c) = 1. Then 

lim P(H,, < (c - c)log n) = 0. 
n-em 

PROOF. Lemma 4.1 follows directly from Example 4.1 and Lemma 4.2, which 
are stated below. 

Consider once again a complete binary tree Tk with edge-associated random 
variables Xi, 1 5 i I 2k+’ - 2, where now the Xi’s are independent and identically 
distributed (and not necessarily uniformly distributed on [0, 11). We define the 
quantity 

Xk = max C. Xi, 
P iEp 

where the maximum is taken over all 2k paths p in Tk. 

THEOREM 4.1. ([ 1, 21; for special cases, see [6] and [8]). Assume that 

m(0) = 2E(exp(BX,)) < 00 for some 13 > 0. 

Define 

Then 

p(t) = inf(exp(-te)m(e):f3 > 0), 
y = inf(t:p(t) > 1). 

- 
xk 
---,Y k 

almost surely as k --, 03. 

Theorem 4.1 is in fact only a special form, adapted for our cause, of the powerful 
Biggins-Kingman-Hammersley theorem. We illustrate its use in Example 4.1. 
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Example 4.1. Let Xi be minus an exponential random variable. Then, in the 
notation of Theorem 4.1, 

S 
m 

m(0) = 2E(exp(BXI)) = 2 
2 

o exp(-8x)exp(-x) dx = - 
e+ 1’ 

e > 0. 

Also, 

p(t) = inf 
( 
exp(-t6) . -& : e>o. 

) 

For t < - 1, the infimum is reached at 0 = 0 and equals 2. For t > 0, the inlimum 
is obviously zero, and for - 1 I t 5 0, the infimum is reached for 0 = - 1 - (l/t), 
and its value there is 

p(t) = -2t exp(t + 1). 

Thus, y is well defined (it always is) and can be found by solving the equation 

-2t exp(t + 1) = 1, -1 rtso. 

We note here that y = l/c, where c is the constant of Lemmas 3.1 and 4.1. This 
concludes the example. Cl 

Let us return now to our binary search tree, and in particular to the random 
variable Zk defined in Section 2. The only problem that bothers us in the definition 
of Zk is the awkward dependence between the Xi’s (consecutive Xi’s are distributed 
as (U, 1 - U) where U is a uniform [0, l] random variable). To be able to apply 
Theorem 4.1, we need at the very least a tree of independent random variables. 
For example, it would be nice if we could show that Zk is close to Z,*, where Z,* is 
formally defined as Zk, except that the defining Xi sequence consists of independent 
uniform [0, I] random variables. In Lemma 4.2, we show that Zk is stochastically 
greater than Z,*. 

LEMMA 4.2. For all real y, and all integers k, 

P(Zk I y) 2 P(Zk* 2 y). 

PROOF. Once again, we proceed by induction on k. For k = 1, we must prove 
that max( U, 1 - U) is stochastically greater than max( U,, UZ) where U, U1 , Uz are 
independent uniform [0, I] random variables. But this follows from the fact that 
fort5 y5 1, 

P(max(U, 1 - U) L y) = 2( 1 - y) 2 1 - y2 = P(max(U,, Uz) 2 y). 

We assume next that our Lemma is true up to k - 1 for fixed k 2 2. The proof is 
complete if we can show that for all y, 

P(max(UZk-1 (I), (1 - U)Zk-l(2)) < y) 5 P(max(Ui Zk*-i ( I), UZZC-i (2)) < y), 

where Zk- 1 (l), Zk-, (2) are independent copies of Zk-, , and Zk*- 1 (l), Z,*_, (2) are 
independent copies of Z,*_, , and all random variables involved are independent of 
each other. First, we have by our induction hypothesis, 

P(max(UZk-I(l), (1 - U)Zk-l(2)) < y) 
5 P(max(UZ,*_,(l), (1 - U)Z~ml(2)) < y), y E R. 
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If Fk- I is the o-algebra generated by Zk*- I ( 1 ), Z,*_ I (2), then 

P(max(UZk*-I(l), (1 - u)zk*-1(2)) < ~1 Fk-1) 

= p(u,-&(l) < Y, &&(2) < YI F/c-,). 

In the inequality, we used the fact that U is independent of Fk-, and uniformly 
distributed on [0, 11. 

Taking expectations on left- and right-hand sides to get rid of the conditioning 
gives us our lemma. Cl 

But now we are ready to apply the Biggins-Kingman-Hammersley theorem, 
because, by the connection between uniform and exponential random variables, 
Z: is distributed as exp(xk) where & is the random variable of Theorem 4.1 with 
as underlying distribution the flipped exponential distribution discussed in Example 
4.1. Therefore, we know that 

1 
; ~~g(zk*) c +-- almost surely. 

Via Lemma 4.2, we can now argue directly-for example, Lemma 4.1 follows 
from the following chain of inequalities: 

P(Hn 2 (c - E)log n) = P(H, Z k)(k = ceil((c - E)log n)) 

r2 

IP zk*z ( 1 + (c - c)log n 

n ) 

(Lemma 2.1) 

(Lemma 4.2) 

= P 
( 
~log(z~)+og 

( 

1 +(c- c)logn 
n )) 

The last line follows from the fact that 

0 ( i log 
1 +(c--)logn 

1 

1 1 NV-<-- 
n C-E C’ 

5. The Main Result 

THEOREM 5.1. Let c = 4.31107 . . . be the unique solution of the equation 

2e 
clog ; 0 =I, cr2. 

Then: 

A. H,,/log n + c in probability as n -+ m. 
B. For all p > 0, E(H{) - E”(H,) - (c log n)P. 
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Before we give the technical details we should observe that in many a situation, 
a statement of type A is more valuable than one of type B. Both A and B confirm 
in our case that H,, is indeed very close to c log n. Robson [ 151 has in fact obtained 
evidence that E( 1 H,, - E(H,) I ) is uniformly bounded in n. From work related to 
Theorem 4.1, one can infer that H, - c log n - c* log log n tends to a limit 
distribution for some constant c*. The arguments given in this short note are not 
line enough to compute the coefficient of the log log n term. 

Mahmoud and Pittel [lo] have shown that lim sup H,,/log n 5 c almost surely, 
and Pittel [ 1 I] has shown that H,/log n + LY almost surely for some constant LY. In 
view of Theorem 5.1, this constant is a! = c. 

PROOF. Statement A follows by combining Lemmas 3.1 and 4.1. Furthermore, 
WW(log n Y’) + cp by part A and the uniform integrability of (H{/(log n)P) 
(Lemma 3.1). This concludes the proof of part B. Cl 

6. The Saturation Level 
We now illustrate the power of Theorem 4.1 on a second (albeit less important) 
characteristic of the random binary search tree: the saturation level S,,, that is, the 
number of full levels of nodes in the tree. Thus, S,, = j if and only if levels 1 (root 
level) through j are full, and level j + 1 is not full (it has less than 2’ nodes). By 
convention, we set So = 0. Note that for n L 1, S,, 2 1. The development parallels 
the development for the height, and we proceed with fewer explanations. 

LEMMA 6.1 (FUNDAMENTAL INEQUALITIES FOR SJ. For alln 2 1, k > 1, 

P Z&, > l + (k - l) 
n 5P(S,,zk)lP 

where 

1 1, k = 0, 
zk = min n Xi, 

I 
k > 0, 

P iEp 

and {Xi, 1 5 i 5 2k+’ - 2) are random variables defined as in Section 2. The 
minimum is taken over all paths p in the tree Tk of Section 2. 

PROOF. We inherit the notation from the proof of Lemma 2.1. Note that the 
inequalities are valid for k = 1. We mimic the induction proof of Lemma 2.1, and 
note that for k > 1, 

P(S,<k)=P(&<k- 1 orSE*<k- 1) 
= 1 -P(&rk- l,S;.rk- 1) 
=l-E(P(&zk-lIN)P(S;.zk-1IN)) 

= 1 - P(min(NZk-2, N*Zk*-2) > 1) 

2 1 -P(nz&, > 1). 

(by our induction 
hypothesis) 

(by independence) 

I 
(since 

I 
min(NZk-I) N*Zk*_,) 
5 nzkml). 

This proves the upper bound of Lemma 6.1. The lower bound is obtained as 
in Lemma 2.1, and is based on the observation that min(NZk-2, N*Zk*-2) 2 
ytzk-, - 1, k> 1. 0 
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LEMMA 6.2 (A LOWER BOUND). For k L 1, log n > k + log(k + I), 

I’(& < k + 1) 5 (y)($log(&))*. 

If c* = 0.3733 . . . is the unique solution of c log((2e)lc) = 1, c < 1, then 
P(S, < (c* - c)log n) = o(l), all c > 0. 

PROOF. The following chain of inequalities is valid for 0 < t < 1: 

P(S,<k+ l)SP 
( F) 
Zk< 

= 2kp(n eXp(--Gk) < k + 1) 

(Lemma6.1,kr 1) 

(notation of Lemma 3.1) 

(Chebyshev’s inequality) 

= (k$)($log(&))* (upon taking& = i log(&), 

a choice that minimizes the 
bound). 

We now take k = int(s log n), where s < 1, s log((2e)ls) < 1. Then, by the previous 
inequality, 

P(S,,<k+ 1) I 
s log; + 1 (in;;Slog;n,)i”““““I 

= qs log y1 . nhmw~) 

= o(1). 

Lemma 6.2 is proved, since the conditions on s are satisfied by all s < c*: Indeed, 
the derivative of s log((2e)ls) is log(2/s), and this is positive for s < 2. Thus, 
s log((2e)ls) < 1 for all s < c*. Cl 

LEMMA 6.3 (A STOCHASTIC INEQUALITY). Let Zk be the random variable of 
Lemma 6.1, and let Z,* be formally defined in the same way but with independent 
X’s, all uniformly distributed on [0, I]. Then, for ally E R, 

P(z, 2 y) 5 P(z; 2 y), 

that is, Zk is stochastically smaller than Z,*. 
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PROOF. We proceed by induction on k. Let U, U, , U, be independent uniform 
[0, 1 ] random variables, and let 0 5 y 5 i. Then 

P(Z, 2 y) = P(min(U, 1 - U) 2: y) = 2 i - y 
( ) 

=I-2y 

5 (1 - YJ2 = P(min(Ui, U2) 2 y) = P(ZT 2 y), 

which proves the inequality for k = 1. Assume that we have shown the inequality 
for all i up to k - 1, where k 2 2 is fixed. Then, using self-evident notation as in 
the proof of Lemma 4.2, 

P(Zk 2 y) = P(min(UZk-r(l), (I - U)Zk-i(2)) I y) 

5 P(min(UZk*-r(l), (1 - U)Zz-r(2)) 2 y) (induction hypothesis) 

=p ( Y 
zk*_,(1) 5 u= 1 -- Z&2) ) 

5 P(U,Zk*-,(I) 2 y, u*z:-,(2) r y) 

= P(Z,* L y). 

(as in Lemma 4.2) 

This concludes the proof of Lemma 6.3. Cl 

THEOREM 6.1, Let c* = 0.3733 . . . be the unique solution of 

clog: =I, 
0 

o<c< 1. 

Then &/log n + c* in probability as n + 00. 

PROOF. For E > 0, we know that P(S, < (c* - t)log n) = o(1) (Lemma 6.2). 
Also, writing k for ceil((c* + t)log n), we have 

P(S,, 2 (c* + e)log n) = P(S, L k) 

(Lemma 6.1) 

(Lemma 6.3) 

log(Z- I ) > - 
log n 
k-1 

= o(l), 

if the in probability limit of (l/k)log(Zz) is less than - l/(c* + t). 
Thus, we are done if we can show that 

0 
i log(Zk*) + - -$ in probability as k --, a. 

Let us take & as in Theorem 4.1, where in the definition of &, the Xi’s are 
independent exponential random variables. It is clear that we can write 

Zk* = exp(-&), 
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so that it suffices to show that X,Jk + l/c* in probability. This follows with a little 
work from the Biggins-Kingman-Hammersley theorem: Indeed, in the notation 
of Theorem 4.1, we have 

m 
m(6) = 2E(exp(BXI)) = 2 s exp(ox)exp(-x) dx = & , 018<1. 

0 

Also, 

p(t) = inf ( exp(-0t) . A: 0 513 < 1 I{ = 2te’-‘, tz 1, 
2 , tc 1. 

Finally, y = inf(t:p(t) > 1) is obtainable as the solution of 2te’-’ = 1, t L 1. It is 
easy to see that y = l/c*. This concludes the proof of Theorem 4.1. 0 
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