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1. Introduction 

Let (Xl, Yd, . . . , (X,, Y,) be independent observations of an Rd x [-h&M]- 
valued random vector (X, Y). The regression function m(x) =E(Y 1X=x) can be 

estimated by the kernel estimate 

t?Z,(X)= i KKh(X-Xi) 

I 

5 Kh(X-Xj), 
i= I i=l 

where h > 0 is a smoothing factor depending upon II, K is an absolutely integrable 

function (the kernel), and Kh(x) = K(x/h) (Nadaraya (1964, 1970), Watson (1964)). 

For a survey of other estimates, see e.g. Collomb (1981) or Gyorfi (1981). 

We are concerned with the L, convergence of m, to m as measured by J,,k 
1 Im,(x) - m(x)l&dx) where P is the (unknown) probability measure for X. This 

quantity is particularly important in discrimination based on the kernel rule (see 

Devroye and Wagner (1980) or Stone (1977)). Stone (1977) first pointed out that 
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there exist estimators for which J,, -+O in probability for all distributions of (X, Y) 

with E(l Yl)< 00. This included the nearest neighbor and histogram estimates. In 

1980, Devroye and Wagner, and independently Spiegelman and Sacks, showed that 

this is also the case for the kernel estimate provided that Kis a bounded nonnegative 

function with compact support such that for a small fixed sphere S centered at the 

origin, inf,,, K(x)>O, and that 

lim h=O, lim nhd=m. (1) 
n-m n-c= 

Older proofs of the strong convergence of J,, to 0 proceed from pointwise con- 

vergence (i.e., m, -m+O almost surely at almost all x (p)), and move on to L, 

convergence via a result of Glick’s (1974) from which it is possible to conclude that 

J,, + 0 almost surely. This route is indirect and brings with it additional conditions 

on h (notably, nhd/log(n)+ m for complete convergence, and at least nhd/ 

loglog 4 00 for strong convergence) and K (Devroye and Wagner (1980), Devroye 

(1981), Krzyiak and Pawlak (1984), Greblicki, Krzyiak and Pawlak (1984) and 

Krzyiak (1986) discuss possible conditions on K). Greblicki et al. (1984) for example 

required that, in addition to the condition for weak convergence mentioned earlier, 

K(x)/H(llxll) E la, bl f or some 0< a5 b< 00, where H is a bounded nonincreasing 

Bore1 function with tdH(t)*O as f+a~. 

In 1983, Devroye showed that all modes of convergence in L, are equivalent for 

the kernel density estimate, which brings up the question whether a similar result 

is not valid for the kernel regression estimate. As shown in Chapter 10 of Devroye 

and Gyorfi (1985), this is indeed possible whenever X has a density and Y is bound- 

ed. Difficulties arise with the regression estimate when we no longer assume that the 

X-variable has a density. This follows from the fact that the estimate is a ratio and 

that the identification of a limit for the numerator or denominator is no longer ob- 

vious. The technical hurdles can be overcome without much trouble for the 

histogram regression estimate (Devroye and Gyorfi (1983) obtained the equivalence 

for all distributions of (X, Y) with 1 Y 1 IM< 03). In a personal communication, 

Gyorfi has pointed out that J,+O almost surely for all partitioning estimates 

whenever EJ Y I< w, provided that a bin width condition similar to (1) is satisfied. 

The purpose of the present paper is to explain a simple technique based upon ex- 

ponential martingale inequalities for proving the equivalence of all modes of con- 

vergence of J,, for the kernel estimate under no conditions on the distribution of 

(X, Y) other than the boundedness of Y. 

We will say that a kernel K is regular if K(x) 2 Bis7 for some positive constants 

B and r, where S, is the ball of radius r centered at the origin, and if 

s 
K(y)dx< 03. 

yEx+s, 

The latter condition is for example satisfied if K is merely Riemann integrable. 
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Theorem (The main result). Assume that K is a regular kernel. Let m, be the kernel 
regression estimate with kernel K, and let O/O be defined as 0. Then the folio wing 
statements are equivalent: 

(A) For every distribution of (X, Y) with 1 Y 1 IM< 03, andfor every e>O, there 
exist constants c and n, such that for all n 2 no, 

(B) For every distribution of (X, Y) with 1 Y ( <M< 03, 

J,, --t 0 almost surely as n + 00. 

(C) For every distribution of (X, Y) with 1 Y 1 <M< 00, 

J,+ 0 in probability as n+ 03. 

(D) 
lim h = 0, lim nhd=03. 
n-03 n--*cc 

Remark 1 (A curiosity). It is interesting that we can find sequences h for which 

J, + 0 almost surely for all distributions of (X, Y) with bounded Y, yet m, does not 

tend to m in the almost sure pointwise sense (take hd= log log log(n)/n, and note 

that nhd/log log(n)+ 03 is necessary for the almost sure pointwise convergence of 

the kernel estimate whenever X has a density and m is twice continuously differen- 

tiable with m”f0). 

Remark 2 (Unbounded Y). The present proof needs to be generalized in order to 

replace the condition / Y 1 IM< 00 by the natural condition E(I Y I)< 03. In an un- 

published document, Gyorfi has obtained a result similar to the Theorem for the 

histogram estimate, with the relaxed condition on Y. The boundedness of Y can be 

relaxed to the condition El Y12+’ <a~. See the Appendix for the proof. 

Remark 3 (Necessity of the conditions). It is not true that when J,,-tO in probabili- 

ty for one distribution of (X, Y), the conditions (1) on h follow: just consider the 

case that Y=O with probability one. Of course, the implication is true for ‘most’ 

distributions of (X, Y). See for example the distribution used in the proof of the 

Theorem. 

2. Proof of the theorem 

Clearly, (A) implies (B), which implies (C). To see that (C) implies (D), we need 

only construct one prototype distribution for which the implication holds. One can 

for example consider a triple (X, U, Y) on [O, lldx [O, I] x (0, l} where X and U are 

independent and uniformly distributed on their supports, and Y=II,,,(,,l where 

m is an absolutely continuous [O, II-valued function on the real line, with an ab- 
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solutely continuous derivative m’, zero outside the hypercube, and 1 m(x) dx= +. 

The details of the proof are left as a simple exercise, but basically, the Xi’s with 

Y= 1 have density 2m(x) on the hypercube, so that estimating m consistently is 

equivalent to estimating a density consistently. One can then invoke Devroye (1983), 

where it is shown that estimating one (any!) density consistently implies (D). 

The novelty in this paper is the proof that condition (D) implies the exponential 

inequality (A). We begin with 

ImAx) - m(x)1 = 
c;=, (rY;:-m(x))Mx--;I 

CL &(x-X;) 

A U,(x) 
=L,(x). I I 

We will need several constants; so as to be able to optimize constants after the proof 

has been completed, it is to our advantage to give each constant a name. Small con- 

stants are called Ei’S with 

cc=: 
4’ 

Et = E El & &O&2 E2 

2’ 
e2=MP--, c3Z2=- 

16M’ 

E2 E E3 E2 E4 & 
E4=4--, y2=- 

32M ’ E6=T=16M* 
Clearly, 

(where A(x) = {I U,(x>l CEO, AL - 1 I <3)> 

IP P(~LI,(x)~~~,ID,,)+P(~~,(x)-l~~~~~~)>~ 
( > 

(since E - 2e0 = E 1 = Mel). 

Here X is a random variable distributed as XI and independent of the data 

Dn=(X,, Y,,..., Y,). We now apply Markov’s inequality to the last expression, and 

bound it from above by 

=P IU,(x)lp(dx)re3 +P 
> (S 

IL,(x)-l(p(dx)>.sq 
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We are now at a crucial junction in the proof, having bounded a probability of an 

event involving a ratio into a sum of probabilities of events involving no ratios at 

all. Each term in the last expression will now be treated separately. We need to 

rewrite U, and L, so that we can apply some Hoeffding-like inequalities for mar- 

tingale difference sequences. Define 

and 

5 Z;=E 
i=l 

where Do stands for ‘no data’, or the trivial sigma algebra. Observe that 

E(Z, ) Di_ 1) = 0, so that the Z;‘s form a martingale difference sequence. In order to 

be able to apply the exponential inequality used below, it is necessary that each Zi 

be bounded from above uniformly over all i. With the convenient notation 

I& c 
(~-m(X))Kh(X-xj) 

n rsjsk E&(x-X,) ' 

we have (see Devroye, 1988) 

I 
'E(IWji-EK,J). 

am? <- 
n ’ 

where Q is the finite constant of the covering lemma (Lemma 1) described in the next 
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section. We also have j lEV$; ) I 2A4@/n and 

We have 

where e5 = &. We have used an exponential martingale inequality due to Azuma 

(1967) (see e.g. Stout (1974)) which states that for Zi’s as defined here, 

where IlZijl, is the essential supremum of IZi I. The probability P({ IL, - 1 1 > Q) 

can be treated similarly. The only difference is that we have to define 

l Kh(x-xi) _ 1 
Fq;=- ( n E&(x-X,) > 

and note that EIT$ =O. By the covering argument used above, we have j I H$il I 

(Q + 1)/n, and thus, if in the definition of Zi, we replace U,, by L, - 1, IZi 1 5 

2(~ + 1)/n 4 C*/n. Again, applying the exponential martingale inequality, we 

obtain, with &g = +Eq, 

P IL,-lI>Eq 
(i > 

We can conclude that 

P 
(1 

Im,(x) - m(x)] p(dx)>& 
> 

I 4e-“mi”2(ES’“E6’C*), 

when ES IUnls~4 and ES lL,-ll~~~. The latter condition holds for all n large 

enough because E 1 I U,l+ 0 and E { IL, - 1 I + 0 as n -+ 00 (see Lemma 2 below). 0 
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3. A covering lemma 

Lemma 1. Let K be a regular kernel, and let ,a be an arbitrary probability measure 

on the Bore1 sets of Rd. Then there exists a finite constant Q = Q(K) only depending 

upon K such that 

- &AX--Y) 
sup ! EK,(x-X) 

p(dx) 5 e. 
yERd,h>O 

Also, for any 6, E > 0, there exists ho > 0 such that 

sup 
i 

&(x--Y)~II+YII~ pu(dx) I E 

EK,(X-x) ycRd,h<ho 

Proof. First we find a bounded overlap cover of Rd with translates of S,,,. This 

cover has an infinite number of member balls, but every x gets covered at most kl 
times where kl depends upon d only. The centers of the balls are called Xi, 

i=l,2,.... The integral condition on K implies that 

E sup sup K(y) dx I k2 
i=l xEXi+S,/2 yexts, 

for another finite constant k2. Clearly, 

and 

&(x-Y)5 f sup Kh(X--Y)‘[,,y+hXi+~rh/2]’ 
i=l xcythx,+&,/2 

EKh(X-X) 1 B~(y+hXi+S,,,,) (XEy+hXi+Srh/2) 

so that combining both inequalities, 

” K&-Y) ! /4dX) 5 ; 
i 

sub E hx, + &,,2 &(d 

~ -=,(X-x) x~ythx;+S,,,,2 MY + hXi + &z/z) 
,u (dX) 

i=l 

l-2 zz- 

B i= 
sup K(z) 5 2. 

1 zGx,ts,/z 

To obtain the second inequality in Lemma 1, substitute Kh(z) above by Kh(z)l~~mr~) 

and notice that 

5 Kh(x--y)411~-Yl/w p(dx) _( f 
EKh(x-X) 

sup K(WII,~~ 26/h) 
i=l ZEX,+S~/Z 

-+O as hi0. 0 
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4. A technical lemma 

Lemma 2. Assume that K is a regular kernel, and that h is such that h + 0 and 
nhd -+ CO as n + 03. Let m, be the kernel regression estimate with kernel K, and let 
O/O be defined as 0. Then, for every distribution of (X, Y) with IY 1 s&f< 03, 

lim E 
n-m (! 

’ IU,(x)Ip(dx)+ 
i 

IL,(x)-llp(dx) 
> 

=O, 

where U,, and L, are as defined in the proof of the theorem. 

Proof. The proof is rather standard, combining a covering argument and exploiting 

the fact that continuous functions are dense in the space L,(n). Fix an arbitrary 

E > 0 and find a continuous function g E L,(u) with compact support such that 

l Im(x)-g(x)1 p(dx)<e. We will begin with a good look at El IU,l. Clearly, 

Cr,, V’--CWW-XX,) 
nEK,, (x - X1 ) 

0x) 

cE * Cy=, (Y-m(Xj))Kh(x-X;) 
- 

il nEK,(x - X,) 
u (dx) 

+E 

.il 

Cl=, (g(X;)-m(X;))Kh(x-Xi) a 

nEKh(x - X,) 

+E o C;z, kW;)-gW)Kdx--;I ~~dx) 

!I nEKh(x - X,) 

+E n CC=, (m(x)-g(x))Kh(x-XXi) I 

/1 Y nEK,(x- X,) 

: I + II + III + IV. 

We have for arbitrary 6 > 0, by our choice of g, 

IV 5 I&-m(x)1 ,ddx) < E, 

IS(X)-g(x)1 Ktz(x-Xi) 
nEK,(x - X,) 

lg(Xi)-g(x)\ Kh(x-Xi) 
nEKh(x - X,) 

IS(&)-g(X)1 K/z(X--Xi) 
nEK,,(x - X,) 

5 su,p ,,s,p& Ig(Y)-g(x)I 
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+2 sup Ig(x)l ; 
i 

E(K,(x-Xi)l(,,.~,,,,,,)) 

nEK,,(x - X,) 
ddx) 

i=l I 

<& 

for h small enough. Furthermore, 

II I E ” If=, k(4)-m(Xi)I Kh(x-&Xi) I I 
I 

nEK,,(x - X,) 

I ’ E(lgW,)-M&)1 &(x-X,)) = 
EK/&--X,1 

lu(dx) 
L 

5 sup 
’ &(X--Y) 
i EK,,(x-X) 

ddx) xE k(X) - m(X)] i ee 
y . 

where e is the constant of Lemma 1. To treat I, observe that it can be written as 

j y/(x),u(dx) for some function I+V taking values on [0,2M]. Thus, we can split the 

integral into an integral over a huge bounded cube Q, and its complement, so 

that 2Mp(Q”)<&. This leaves us with the task of bounding 1, w(x)p(dx). By the 

Cauchy-Schwarz inequality, 

Is&+ y/(x)/-ddx) 
Q 

SE+E 
Cl=, (F-~(Xi>>K~(X-Xi) ’ 

nEKh(x - X,) 
) 1x,,...,X+(W 

WY, -n~(&))~K,f(x-X~) 1 X,) 1’2 
=&t-E 

nE2Kh(x-XX) 1 
iu (W 

3 

“2 
ddx) 

hdEK,2(x - X) l/2 

SE+--- 
Q E’K,,(x-X) 

p (dx) 
1 

(Jensen’s inequality) 

where c is an upper bound on K (regularity of K implies that c is finite). The second 

term in the last expression tends to 0 as n + 03 because nhd-+ 03 and the integral in 

the term is uniformly bounded over all h 2 1. To see that, note that EK,(x - X) L 

Bp(x+ S,,), that Q can be covered by at most cl + c2hed translates of Srh,2 for some 

constants cl,c2 depending upon d only, and that the integral over one of these 

translates is not larger than chd/B. Therefore, the integral over Q does not exceed 

(c/B)(c, hd+c2). Collecting all this shows that 
1 

E IV,1 5&(3+@)+0(1). I c 
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We can use a similar argument for E j IL,- 1). Indeed, using the same large 

hypercube Q as before, chosen so as to insure that ~,u(Q~)<E, we have 

C;=l W&--xi)-E&(x-X,)) 

nEKh(x-X,) 
ddx) 

5 2p(QC) + E 
Ci”=, (Kh(X-Xi)-EKh(X-X1)) 

nEK,(x-X,) 
Lc (dx) 

I&+ 

(.i 

EC;=, K;(x-Xi) l/2 

n2E2Kh(x-X) 
p (dx) 

hd l/2 

EK,,(x-X) 

=&+0(l). 0 

5. Appendix: Proof of Remark 2 

We will use standard truncation techniques (see Devroye and Wagner (1980) or 

Krzyiak (1986)). Following the proof of the Theorem, we get 

where g(x) is defined as in the proof of Lemma 2, and 

Y = rr,,,, 5nl/(2+61), 

and 6 > 0. For n large enough, I = 0 almost surely. If e is the constant of Lemma 

1, then by Holder’s inequality, for n large enough, 

II 5 2en++6M2+6) 

And provided that 1 lg- m( <E, III<e@/n. Hence, 

s I@.( (_ (2+.$@,-(1+6)/(2+@ g cln-(1+sv(2+6) 

and, still in the notation of the Theorem, 
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It remains to show that E j 1 U,/ + 0 as n -+ 00. To do this, we will use a truncation 

technique, in which t denotes a positive constant. Let Y= Y’+ Y”, where Y’= 

YZcl~lst) and Y"= JQBt). By Lemma 1 and the proof of Lemma 2 we have 

E IU j % E IU’I +E IU;( sO(t/@?)+2@E IY” +c(2+@), 
sn in i 

where 

Ui = E (~‘-m’(X))K,(X-xi)/(nEK,(x-X,)), 
i=l 

U; = i (Yi”-m”(X))K,(X-Xi)/(nEKh(X-X,)), 
i=l 

m’(x) = E(Y’ 1 X=x) and m”(x) = E(Y” 1 X=x). First choose t large enough so that 

the second term on the r.h.s. of the above inequality becomes small, and then let 

n grow large to make the first term small. 
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