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Abstract: Let f, be the L, cross-validated kernel estimate of a univariate density f. We show that 

1iminfE If,-fl >,l 
n-m / 

when K is a symmetric bounded unimodal density, f is a monotone density on [0, 00) and x3/4f(x) + 00 as x JO. 
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1. Introduction 

When a certain density estimate forms part of a software package, it is usually there because of some 
desirable features. The kernel density estimate 

(where X,,..., X, are i.i.d. observations drawn from an unknown density f, K is a fixed density called the 
kernel, and h > 0 is the smoothing factor; see Parzen, 1962, or Rosenblatt, 1956) is thus eligible for 

inclusion if we can find acceptable ways of selecting both K and h. The criteria used in such selections are 
related to the closeness of f, to f in some general sense, where it is often assumed that f belongs to a 
certain class of “nice” densities. Many choices guarantee good or even optimal asymptotic behavior with 
respect to some measure of closeness of f, to f. Although the choice of K seems vitally important, 
especially if we allow functions K with negative values (while still jK = l), most methods fix K 

beforehand, and specify h as a function of the data. Partial surveys can be found in Devroye and GyGrfi 
(1985, Chapter 6) and Silverman (1986). 

Any method for choosing h is necessarily non-consistent (i.e., / 1 f, -f 1 does not tend to zero in 
probability for some f) if either h does not tend to zero in probability or nh does not tend to zero in 
probability (Devroye, 1987; Broniatowski, Devroye and Deheuvels, 1989). And indeed, some methods are 
easily seen to be non-consistent via this device. Of course, one could always guard against such mishaps by 
defining two deterministic sequences OL, and & with na, + CO, & +OandO<(~,<&<cc,andtruncate 
the random variable h to the interval [(Y,, &I. But this is hardly acceptable in a universally applicable 
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piece of software, since we can not specify universal choices for (Y,, and &. Without the truncation 
safeguard, many methods of choosing h lead to non-consi$ency. We have e.g.: 

(A), The two-step methods, in which f is estimated by f m some manner, and j is used in the formula 

h&f, n), where hopt (f, n) is the asymptotically optimal choice for h for a given f and n. (See e.g. 
Nadaraya, 1974; Watson and Leadbetter, 1963; Woodroofe, 1970; Scott and Factor, 1981; Bretagnolle and 
Huber, 1979; and Hall and Wand, 1987.) Most are non-consistent for certain f. 

(B) The maximum likelihood cross-validation method, in which h is selected to maximize 

and fni( Xi) is the kernel estimate of f based upon Xi,. . . , X,_ i, X,, 1,. . . , X, (Duin, 1976; Habbema, 
Hermans and Vandenbroek, 1974). For consistency considerations, see Chow, Geman and Wu (1983). The 
maximum likelihood cross-validation method is non-consistent when the extreme values of the sample 

drawn from f are not stable, i.e. loosely speaking, when the tails off are at least as big as the tails of some 
Laplace density (Schuster and Gregory, 1981; Devroye and Gyorfi, 1985) and this condition is virtually 
necessary and sufficient (Broniatowski, Devroye and Deheuvels, 1989). 

(C) The L, minimum distance method (Devroye, 1987), in which h is selected so as to minimize 
/ 1 f, - g, [, where g, is the kernel estimate based upon the same data and with the same h as f,, and g, 
uses a higher order kernel K*. This method is always consistent. 

(D) The L, cross-validated choice, in which h is selected to minimize 

(Rudemo, 1982; Bowman, 1982, 1984; see also Hall, 1983; 
and Terrell, 1986). This method is asymptotically optimal 
support kernels K (Stone, 1984), i.e. 

j(r.-/I’ - i;f /( fnh -f )’ almost surely, 

Marron, 1987; Hall and Marron, 1987; Scott 
for all bounded f and all bounded compact 

where fnh is the kernel density estimate with deterministic h. Also, it seems to be consistent whenever 
/f2 < m, but this won’t be shown here. 

In this note, we point out that the L, cross-validation method is non-consistent for some densities not 
in L,, and that the non-consistency is due to the presence of one or more large infinite peaks, forcing h to 
be so small that nh + 0 in probability. However, we stop short of showing that the method is 
non-consistent when /f2 = co. Because the presence of big infinite peaks can not be checked beforehand, 
it seems necessary to modify the L, cross-validation method before its inclusion in a software package. For 
finite sample size, the L, cross-validated choice is probably much too small whenever the data show 

clustering around one or more points. 

Theorem. If K is a symmetric bounded unimodal density, f is a monotone density on [0, 00) and 
x314f(x) + 00 as x JO, then for the L, cross-validated kernel estimate, 

1iminfE 1 f,-f 131. 
“+oO / 

The L, cross-validation method is not designed to give good L, performance or even to assure L, 
consistency. Yet, it was considered as much more robust and reliable than most other methods, especially 
the maximum likelihood cross-validation method. The Theorem above shows that for a subclass of 
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densities not in L,, the method is not even consistent. For the class of counterexamples of the theorem, 
specially selected to provide some insight into the processes at work, we will show that h = l/n2, a 
ridiculously small smoothing parameter under any circumstances, yields a smaller value for the expression 
to be minimized than any h in any interval of the form [&/n, l/e] when n is large enough and E > 0 is held 
constant. The same statement can be made for h = l/nP for any real number p 2 2, provided that we 
suitably restrict the class of densities by requiring that xbf(x) -+ cc as x J 0, where b is a constant 

depending upon p only. Let us also note that the Theorem covers all modes of convergence, since 
convergence in the L, sense is equivalent to h + 0 and nh + cc, so that under the conditions of the 

theorem, we can’t have consistency in the LP sense for any p E (0, 001. 
The remainder of the note forms the proof of the theorem. We take the liberty of cutting the proof up 

into many sections and to divide the work ahead into many small manageable pieces. 

2. Two useful lemmas 

Lemma 1. Assume that K is an absolutely integrable function, and that fnh is the kernel estimate with kernel K 
and smoothing factor h. For every f, there exists a continuous function o >, 0 with w(O) = 0, such that, 

deterministically, 

Lemma 2. Assume that K is a symmetric unimodal density, and that fnh is the kernel estimate with kernel K 

and smoothing factor h. For every f, there exists a continuous function w >, 0 with w(O) = 0, such that, 
deterministically, 

inf/]f,,-f]21-o(i). 
h>u 

In both lemmas, the functions w depend both upon the (fixed) kernel K and the density f. 

Proof of Lemma 1. Take e>O arbitrary. Find 6~0 such that jlrlrs]K] GE. Let A=U~=,[X,-Sh, 

Xi + ah]. We have 

jl fnh -f I a LcI fnh -f I 2 /,:‘- Lcl fnh I a J,;f- ‘. 

Since /,dx < 2n6h < 262.4 for nh 6 u, we know that IA f < E for 2Su small enough. For such u, we conclude 

that /]f,h-f 1 >1-2E. 0 

Proof of Lemma 2. Let 6 > 0 be arbitrary, and choose cw > 0 such that /Em f > 1 - 6, and find M so large 
that j?,yMK G 6. For h > M, we then have 

$ a Kh(x - X,) dx < sqJYteK,(x) dx = 1” K(x) dx = /+ K(x) dx 
--a Y Y-a -0 -a/h 

< 
/ 

a’M K(x) dx < S. 
-Cl/M 

Thus, jTafnh G 6, and thus / I fnh -f I >, 1 - 3. 0 
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3. The criterion that is minimized 

We choose h such as to minimize 

STATISTICS & PROBABILITY LETTERS October 1989 

It is useful to rewrite this criterion in different ways, in order to identify its active components. First, we 
begin by defining a kernel obtained from K by splicing (see Stuetzle and Mittal, 1979), 

L(z)=2K(z)+(u)K(z-u)du=2K(z)-K*K(z). 

Also, we define 

U,(h) 2 n(n’l) ~MX& 

K(h) 4 n(nY1) C,(EL,(x,-x,)-L,(x,-~)), 
l+J 

and 

W,(h) h/K*/(nh) + n(n’ l,i xJKh(X - X,)Kdx - x,> dx. 
1 #.I 

We are now ready for: 

Lemma 3. We have the following representations, when K is a symmetric square 

C,(h) = W,(h) - U,(h) = W,(h) + V,,(h) -E&(X, -X2). 

When K > 0, we have 

0~ W,(h) < /K*/(nh); 

also, I U,(h) I d II L II ,/A. 

Proof. We note that 

integrable kernel: 

$b-/,(x--T) 
r=l 

- n(n2_1) pwi-4) 
J+l 

= W,(h) - U,(h) = W,(h) + F/,(h) -E&,(X, -X2). 
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The upper bound for U,(h) is rather obvious. The upper bound for W,(h) for nonnegative K is also 
trivial. Finally, 

-W,(h) < - / 
K2/(nh) + 

~lK*/(nh)+~supKhlKh(Z)$ -JK*/(nh)+~j(K/J*=o. 
Z 

Here we used the Cauchy-Schwarz inequality in the observation that for an arbitrary density g, 

sup, g*g(z) 6 /g’. 0 

4. Proof of the theorem 

For fixed S > 0, we can find E > 0 such that 

inf 
h2l/eorh<e/n J If,/7-fl ‘l-6 

(use Lemmas 1 and 2). Let h* be h truncated to the interval A k [c/n, l/e]. Then, 

J ILh-fl ~(l-ml..+ / IL/I*-fl~hEA. 

Thus, 

E 
s 

If,,,-fl >,(l-6)P(h4A). 

The proof is complete if we can show that 

P(hEA)-,O, 

which in turn follows if we can show that 

+(1/n*) >, i&C,(h)) +o. 

But, by Lemma 3, 

inf C,(h)> -211LI],n/e. 
h=A 

Also, W,(l/n*) < n/K* (Lemma 3). Thus, 

Cn(l/n2) - kf, C,(h) <n (Wm+ SK*)/&+ v,(l/n2)-EL,,,2(X,-X2). 

Hence, the Theorem is proved if we can shown: 
(i) fiEL,(X,-X2)-+00 as h.JO. 

(ii) For all 8 > 0, and h = l/n*, P( V,(h) > BEL,( X, - X2)) + 0. 
Assume for the sake of the argument that there exists a function G such that fiG( u) + cc as u J 0, and 
that there are finite positive constants c1 and c2 such that 

c,G(h)<EL,(X,-X,)<EIL,(X,-X,)I<c,G(h). 
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Then, obviously, condition (i) is fulfilled. To verify condition (ii), we apply Chebyshev’s inequality: 

P(K(h) >~J%(X, -X2>> dE((V,(h))3/(e2E2L,(X, -X2>> 

~E((~(h))2j/(82c:G2(h)). 

We note that 

where yI, = Lh( X, - Xj) - EL,( Xl - X2). Thus, since E(TjYk,) = 0 when {i, j} fl {k, l} is empty, we 
have 

E((K(h))2) G 0(n-4>(O(n2)EY:, + 0(n3)EI r,, I I r,, I> 

< O(l/n)EY:, < O(l/n)E((L,(X, - X2))‘) 

~O(L’(~h))E~~,(X, -X2>/ ~%'(~h)b,G(h)~ 

In summary, 

P&(h) > e&,(X, -X2>) < o(l/(nh))c,/(e2c:G(h)), 

which tends to zero when h = l/n2 and fiG(h) --, co as h JO. This concludes the verification of condition 
(ii). The proof of the theorem thus requires the verification of the existence of such a growth function G. 

This is accomplished in the next section. q 

5. Some properties of the class of counterexamples 

The existence of a suitable growth function G for our class of counterexamples is established in a series of 

lemmas. 

Lemma 4. Assume the Xl has a monotone J density f on [0, oo), and that x3/4f (x) -+ 00 as x JO. Then the 
density g of X, - X2 is symmetric, unimodal at the origin and fig< h) -+ 00 as h + 0. 

Proof. For x > 0, we have 

g(x) = i”r (y)f (x +y) dy, 

which is obviously monotone I in x. Furthermore, 

&g(x)=~mhf(y)f(x+y)dy>~2XJ;;f2(2x)dy>x3’2f2(2x)+m 

as xJ0. 0 

Lemma 5. Let K be a symmetric unimodal density, and define L A 2 K - K *K, where “ * ” is the convolution 
operator. Then, for all u > 0, 

jbl(2K(x) - K*K(x)) dx> JblK(x) dx. 
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Proof. Let X, X’ be i.i.d. random variables with density K. Then, we need to show that for all u > 0, 
1:~ 2 J~K *K, or, in other words, P(0 < X < u) >, P(0 < X + X’ < u). This is easily seen to be the case by 
a geometric argument in the plane, by considering the joint (product) density of (X, X’). We have 

P(XE [o, U]) =P((X, x’) E [o, u] x [ - ~9 ~1) + ju’l%y) dy K(x) dx 

U 
+ 

jj 
-k(y) dy K(x) dx 

2 j;U;;;c(x) dx K(y) dy + im j;;‘K(x) dx K(y) dy 

--u 
+ 

j j 
‘-‘K(X) dx K(y) dy 

-cc -y 

=P(X+X’E [o, U]). 

The minorization is done on a termwise basis. The second and third terms are minorized after observing 
that for fixed 1 y 1 a u, jzK(x) dx > j!!TYK(x) d x, with equality occurring if and only if y = U. The first 
term is minorized by noting that 

’ 1s u K(y) dy K(x) dx 
0 --u 

=~UjU-xK-(y)dyK(x)dx+~Uj-xK(y)dyK(x)dx+J,UjU K(y)dyK(x)dx 

= /,U /I1.K( y) dy K(x) dx + j:Uy!JC(y) dy K(x) dx + ~‘;~+C(y) dy K(x) dx 

u 

=J / -K(x) dx K(y) dy. q 
--1( -y 

Lemma 6. Assume that X, has a monotone J density f on [0, co), and that x3’4f(x) -+ co as x J 0. Let K be 
a bounded symmetric unimodal density, and define the function L = 2K - K *K. Then there exists a function 

G such that &G(u) + 00 as u JO, and there are finite positive constants c1 and c2 such that 

clG(h)<EL,(X,-X,)<ElL,(X,--x,)I,<c,G(h), aZlhE(O,l]. 

It suffices to take G(u) A (l/u)/,uS(x) dx, where g is the density of X1 - X,. 

Proof. From Lemma 4, we recall that the density g of X1 - X2 is symmetric, unimodal at the origin, and 
that fig(h) + 00 as h + 0. By monotonicity, we have G(u) >, g(u) and G(u) t 00 as u JO. 

The Lemma follows from these facts and the following inequalities that will be obtained below: 

where b is selected such that K(b) > 0. The four inequalities in this chain will be called I, II, III and IV. 
Of these, III is trivial. Inequality I is seen to hold as follows: 

jrn K,(x)g(x) dx>K,(bh)jbh g(x) dx=2K,(bh)bhG(bh)=2K(b)bG(bh). 
--m -bh 
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Inequality IV is obtained easily: 

STATISTICS & PROBABILITY LETTERS October 1989 

Jrn ILh(x) Is(x) dx< j--h+g(x) dx + &#hflLh(x) 1 dx 
--Q) bh 

= 2bhW4 IILII co 

h +2dWJbmlLI ~2G(~h)(~llLll,+JbeaILl). 

To obtain inequality II, we use Lemma 5. 2g is the density of ( X, - X2 ( on [0, co). By Khinchine’s 
theorem for unimodal densities, 2g is also the density of a random variable UZ, where U has the uniform 
[0, 11 density, and Z 2 0 is independent of U. Exploiting the symmetry and unimodality, we thus have 

2imLh(x)g(x) dx = 2imL(z)g(rh) dz = +fL(r)(2hg(zh)) dz 
0 

=E(fL(UZ)) =Ej$L(uZ) du+E;i=L(u) du 

> Efi=K(a) du = 2 ,-kJ,(x)g(x) dx, 
JO 

which was to be shown. 0 
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