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ON RANDOM VARIATE GENERATION WHEN ONLY MOMENTS 
OR FOURIER COEFFICIENTS ARE KNOWN * 

Luc DEVROYE 

School of Computer Science, McGill University, Montreal, Canada H3A 2K6 

We consider algorithms for generating random variates having a density, when only its Fourier coefficients or 
moments are known. We also study the expected time per random variate. 

1. Introduction 

As a result of some theoretical analysis, one sometimes ends up with distributions that are 
indirectly specified through a sequence of Fourier coefficients, or a characteristic function, or a 
sequence of moments, while neither the density nor the distribution function is explicitly known. 
In this paper we look at algorithms for generating random variates with a density f on the real 
line in just these situations. The generation problem when only the characteristic function can 
exactly be computed is dealt with in a series of papers by the present author [7,10,11,12]. When a 
sequence of moments is known, i.e., for each n, the nth moment is available at unit computa- 
tional cost, a solution is developed in [13] for integer-valued random variables. Unfortunately, 
this method cannot be generalized to the continuous case. So, we consider densities that are 
specified either through the sequence of Fourier coefficients or through the sequence of 
moments. It is known that under some conditions the density can be written as an infinite series 
involving these Fourier coefficients or moments, for example, by using Fourier series or 
smoothed Fourier series in the former case and Hermite (Gram-Charlier, Edgeworth), Laguerre, 
Jacobi or Legendre series in the latter case. Unfortunately, the evaluation of these series takes an 
infinite amount of computational effort when we assume that each computation of a Fourier 
coefficient or moment takes one unit of time. Hence, we cannot compute the density at all in the 
algorithms. Instead, we resort to algorithms that compute a random but finite number of 
coefficients or moments per generated random variate. The fact that we can do this and still 
insure theoretical exactness shows once again that random variate generation is ‘easier’ than 
computing quantities related to a distribution. Most methods discussed here boil down to the 
acceptance-rejection method combined with the series method developed in [8,11, pp. 151-1711. 
There is one interesting exception related to the Fourier coefficient problem. It is known that any 
Fourier cosine series with nonnegative decreasing convex coefficients is the Fourier series of a 
density modulo a constant [35, p. 1831. This characterization yields a rich source of distributions 
that are specified by their Fourier coefficients. The local structure in the sequence of coefficients 
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allows us to develop a universal inversion-based generator, i.e., one for which nothing else about 
the distribution is known. Other such shortcuts should be possible under various conditions on 
the local structure of the Fourier coefficients or moments. 

Throughout we assume that real numbers can be stored with infinite precision, that all 
standard arithmetic operations take one unit of time, and that we have a source capable of 
generating an infinite sequence of i.i.d. uniform [0, 11 random variates U,, U,, . . . . Some of these 
conditions are controversial (e.g., which operations are ‘standard’?), but they are consistent with 
those found in many recent articles and books on the subject (see, e.g., [ll]). 

2. The general strategy 

The problem dealt with here can in general be described as follows: the density f can be 
represented as 

fCx) = C a,Gj(x), 
j=o 

where { +,, j 2 0} is a given fixed family of functions, independent of f, and the aj are 
coefficients in the expansion and could be Fourier coefficients, linear combinations of Fourier 
coefficients, or linear combinations of finite numbers of moments. Some of these representations 
are universally valid, while others apply only to a limited class of densities. We assume that the 
aj are given. Assume furthermore that we have enough information at hand to be able to 
construct an integrable function g and a sequence of (error) estimates R, such that 

and 

f(x) <g(x) for all x 

) f(x) - i aj+,(x) 1 G R,(x) for all x and all n. 
j=O 

It is also assumed that, for almost all x, lim n ~ co R,( x) = 0. Then, the following algorithm halts 
with probability one and returns a random variate with density $: 

Incremental form of the algorithm 

repeat generate X with density proportional to g; 
generate a uniform [0, l] random variate U; 
set T+ Ug(X), n + 0, S + 0; 
repeat 

S+ S+ af#+(X), n+ n+ 1 
until IS- T 1 > R,_,(X) 

until T< S 
return X. 
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Dyadic form of the algorithm 

13 

repeat 
generate X with density proportional to g; 
generate a uniform [0, l] random variate U; 
set T+ Ug(X), n + 1; 
repeat 

St C~=~~f#+(X), fl+ 2fI 
until 1 S - T 1 > Rn,J X) 

until T-c S 
return X. 

It is easy to verify that these algorithms halt with probability one. Also, when we exit from the 
inner loop, we have T c S if and only if T <f( X), so that the algorithm is indeed equivalent to 
the acceptance-rejection algorithm. 

The choice of the dominating curve g is often dictated by the circumstances; of course, we 
always have the possibility of choosing g(x) = a&,(x) + R,(x), g(x) = a&,(x) + a,+,(x) + 
R,(x), and so forth. This could be especially attractive when f is known to have support in a 
finite interval. In the case of Fourier coefficients, we shall use a uniform dominating curve g on 
the interval [ - TT, IT] and, in the case of the Legendre series for the moment problem, this strategy 
brings about a nonuniform dominating curve g on the interval [ - 1, 11. With Fourier coeffi- 
cients, it seems possible to derive g based upon information present in the sequence of 
coefficients. In the moment problem, however, additional smoothness assumptions are usually 
required to construct g. This should not surprise us, since it is not clear how to quickly decide, 
just by looking at the moment sequence, whether the underlying distribution is atomic, singular 
continuous, absolutely continuous, or a blend of two or three types. 

2.1. Example (Fourier series). A function f on an interval [ -T, T] has Fourier coefficients 

a, = ; j-- f(x) cos( nx) dx, b,, = 
71 

$1: f(x) sin( nx) dx. 
ll 

The Fourier coefficients uniquely determine f. Note that 

f(x) - & + E (a, cos(nx) + b, sin(nx)) 
n=l 

a,, = 1,‘~. We shall write 

to reflect the fact that f has the given Fourier coefficients and that, under certain conditions, the 
series on the right-hand side converges and is equal to f. We shall call the series on the 
right-hand-side the Fourier series for f. If it converges, its value is denoted by o(f) (which can 
but need not equal f). By assumption, the values of a, and b,, can be obtained with infinite 
precision in one unit of time. 

2.2. Example (Legendre series). Assume that f vanishes off [ - 1, 11. If we take for { c$~} the 
Legendre polynomials defined by 

Gjtx> = & sCx2 -l)“= 1 (-1) 2- 1’:: k j(i)i'i72kjxJ-2k 
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(the middle expression is known as Rodrigues’ formula), then we should use as coefficients in the 
expansion of f, 

a, = :(2j+ l)/;rf(+@(x) dx. 

This is but a linear combination of the first j moments pi of the distribution 

aj=:(2j+1) c (-1) 2- 1’1 k I( ikji 2j12kjpj_*k. 

Note that, for densities with compact support, all the moments taken together uniquely 
determine the distribution. So, not surprisingly, the Legendre coefficients uniquely determine f, 
but the series does not necessarily converge for all f. Both +, and a, can be computed at O(j) 
time cost. Luckily, there is a simple recursive formula that allows us to incrementally compute 
each $j at O(1) cost (see, e.g., [29, p. 1781): 

(j+ 1>~j+,(x)-(2j+1)x~,(x) +j+j-l(x)=o, 

with &, = 1 and I& = x. 
It should be noted that the Legendre series is but a special case of the Gegenbauer, Ferrer and 

Jacobi series [16,29,32]. 

2.3. Example (Gram-Charlier series of type A). The Legendre series of Example 2.2 is only 
applicable to functions ‘with compact support. If f has support on the real line, one can use a 
special form of the Her-mite series, the Gram-Charlier series of type A. The strategy followed in 
this paper is only applicable to those densities for which all the moments are finite. In addition, 
we have to require that the moment sequence uniquely determines the distribution, and that this 
distribution has a density. Classical references on the moment problem include [30,34]. For more 
references and a discussion pertinent to random variate generation, we refer to [ll, Section 14.21. 
Thus, the method proposed below comes with many limitations, which we shall deal with further 
on. The Hermite polynomials H, are defined by H,, = 1 and 

Hn(x) = e$$ e-“2= (_l)“‘n&)k ‘! 
k!( n - 2k)! 

(2X)“-2k. 
k=O 

The coefficients that go with this in the expansion are 

The Gram-Charlier type A series uses & = eeX ‘H,,. It should be noted that the series thus 
obtained, when truncated to four moments, has been a time-honoured method for introducing 
skewness and kurtosis in families of distributions. The type A series, when rearranged, leads to 
Edgeworth’s series (see, e.g., [29, p. 3681). 

As in example 2.2, there are recursions for +,, that can be used to save storage. In particular, 

H,,+,(x) + 2xH,,(x) + 2nH,_,(x) = 0, %+1(x) + 2-%(x) + 2WP,(X) = 0, 

with HO = 1 and H, = -2x. 
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2.4. Example (Laguerre series). The Laguerre series in many respects parallel the Hermite series, 
with the exception that it is geared towards functions with support on the positive halfline. The 
same remarks about the moment sequence mentioned in Example 2.3 apply. The Laguerre 
polynomials Lp’ are defined by L, (a) = 1, L?,’ = 0, and 

LJpyx) = X-a ?I_ [ xn+a e-q 
d axfl 

=(-1)” I5 (-l)kk!(n_~~p,;,n=nl!,.,)..* 
k=O 

Here, (Y ( > - 1) is a parameter of the series. The coefficients that go with this in the expansion 

are 

an = c-l)” i (-l)k r(a + ,,l_ k + 1) ($ti-k3 
k=O 

and the series uses C&(X) = x*e-“L?‘(x). 
As in Example 2.2, there are recursions for & that can be used to save storage. In particular, 

nLY’(x) = (- x + 2n + (Y - l)LfiI(X) - (n f (Y - l)LZ,(x), n 2 2, 

?z&(x) = (-x + 2n + (Y - l)&_,(x) - (Pz + (Y - 1)$&x), n 2 2, 

with Lb*’ = 1, L’,“’ = -x + (Y + 1 and & = xaeCx, & = xZUx( -x + (Y + 1). 

The expected number of outer loop iterations is /g(x) dx, but this is hardly an appropriate 
measure of the complexity of the algorithm. In most of the examples that follow, the function 
value &( X) can be computed from a bounded number of values +,( X) ( j < n) in a constant 
amount of time, and a, is also available from the given coefficients or moments and possibly 
previous aj values in constant time. In Theorem 2.5 we obtain upper bounds for the expected 
number of evaluations of Fourier coefficients, provided that no coefficients are stored. These 
quantities should give us an appropriate idea of the dependence of the real time upon f. We 
should, however, issue a caveat: in some cases, the evaluation of +n costs an increasing number 
of time units as n grows large; a case in point is the Legendre series. Luckily, in most of these 
cases, we have at our disposal a simple recurrence relation that allows us to compute the next 
function value in a series in O(1) time. In fact, for all the methods dealt with in this paper, the 
thesis that +,, and a, can be computed in one universal time unit can be supported. 

The bounds relate performance to the rate of decrease of the error functions R,, and thus to 
the rate of decrease of the a,,. It is well known that, in all the cases handled here, the size of the 
coefficients a,, is roughly determined by the ‘smoothness’ of f. For example, in the Fourier 
series, analytic functions f give rise to exponentially decaying a,,, while densities with k - 1 
absolutely continuous derivatives yield coefficients that are 0( nmk). Thus, smoother densities 
result in faster generators. Via Theorem 2.5 we can use classical results from Fourier analysis to 
obtain performance guarantees for the algorithms. 

2.5. Theorem. Let N be the number of evaluations of functions &,, n > 0, before the algorithm halts. 
Then, for the incremental form of the algorithm, 

E(N) ./g+$R;. 
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For the dyadic form of the algorithm, assuming that R, is decreasing for all x, we have 

E(N)<2/g+4F/Ri 
i=l 

when, within one run of the outer loop, evaluations of C&(X) are saved. If evaluations of A(X) are 
not saved, then 

In all cases. we have 

Proof. First note that, by Wald’s equation (see [ll, p. 50]), 

where E, is a conditional expectation given that X = x, and N * is the number of evaluations of 
Fourier coefficients and +,, functions respectively in the first outer loop of the algorithm. Also, 

mWC(xL b+H <p (NU, i) ~ 2RA-d 
g(x) - x g(x) . 

Thus, using E,( N *) = CF?:,,I’,( N* > i), we have 

J dx)Ex(N*) dx R, 
E(N*) = 5 

J g(x) dx J g 

This proves the first part of the theorem and the lower bound. Consider now the dyadic form of 
the algorithm. First assume that computations of & and a,, can be stored within one run of an 
outer loop (i.e., for fixed X = x). Then, the monotonicity of the functions R, implies that N * is 
at least equal to and at most double the value obtained in the incremental algorithm. However, if 
values of G~,( X) are not stored, then we need a small additional argument. Indeed, assume that, 
given X, we exit after having evaluated a,, . . . , aM, where h4 = 2K is a power of 2. Then, the 
number of evaluations of functions & is 

2 i2K-i < M F i2-‘= 2M. 
i=l i=O 

Thus, once again, we at most double the expected number of evaluations. 0 
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3. Fourier series: First an unsophisticated algorithm 

The functions 

S,(x, j) = S,(f) = & + i (a, cos(ix) + bi sin(ix)) 
i=l 

are the partial sums of the ordinary trigonometric series. Clearly, 

1X(x, S)-f(x)1 2 f I ak cos(kx) + b, sin(kx) [ 5 

k=n+l k=n+l 

This rather trivial uniform bound allows us to use the algorithms of Section 2 with 

R,(x)=R,= E /m, 
k=n+l 

g(x) = Y& + R, (so X is uniform on [ -7, T]): 

“anI& (x)” = 
i 

a, cos(nx) + b, sin(nx), n > 0, 

1/(2T)? n = 0. 

Even though no information is required besides accessibility to a program that computes each a, 
or b,,, it is not clear that we always have access to the tail sums needed in the formula for R,(x). 
An important group of problems in which we do know R,(x) include those in which a,, and b,, 
are explicitly known and the tail sums of the coefficients can be evaluated in constant time. And, 
in any case, if the tail sums are awkward, it is always possible to replace R, by upper bounds. 

The algorithm halts with probability one if and only if the coefficients are absolutely 
summable: 

Note that the absolute summability of the Fourier coefficients implies that the trigonometric 
series is absolutely and uniformly convergent to f for all x, and that the function f is necessarily 
continuous on [ -7, IT] (see, e.g., [35, pp. 232-2451 or [2, p. 3311). Sufficient conditions for the 
absolute summability of the coefficients include (i) f is Lipschitz of order (Y > 5; (ii) f is of 
bounded variation and Lipschitz of order (Y > 0, and (iii) f is absolutely continuous and 
/f ‘log+ I f’ I -C cc (see [35]). It is easy to see that not many interesting continuous densities are 
excluded. For the incremental form of the series method we have, by Theorem 2.5, 

E(N)sl+4$ E /m 
n=O k=n+l 

= 1-t 4n E Iq/m I 1 + 47~ E k( I ak I + (b, I)), 
k=l k=l 
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where N is the number of (a,, b,) pairs that are evaluated before halting. To make this finite, it 
suffices to have coefficients that are 0( n -*-‘) for some E > 0. It is also known that 
CT=;=,< 1 uk ) + 1 b, I)) = 0(1/n) implies that f has bounded variation (see [35, p. 2111). Thus, it is 
almost true that the bounded variation of f is a necessary condition for E(N) < co. 

4. Fourier cosine series with convex coefficients 

This section is a digression from the main stream of throughts. We include it here to show that 
if additional structure is assumed in the sequence of Fourier coefficients, then some special 
algorithms may be available that do not require the use of the series method or any other 
acceptance-rejection method. We shall make this point with the aid of the Fourier cosine series 
for symmetric functions f on [-T, 71, 

m 

where 

a, = +/; f(x) cos(nx) dx. 
71 

If a,, J,O and the sequence a,, a,,. . . is convex, then the Fourier series converges, except possibly 
at x = 0, to a nonnegative integrable function f, and is the Fourier series of f (see [35,p. 1831). 
The limit, for x # 0, is 

f(x) = E ~(n + l)A’u.K,(x), 
n=O 

where A*u, = u,,+~ - 2u,,i + a, is the second-order difference, and K, is the Fejer kernel (or 
Fejer density) 

sin( +( n + 1)x) * 

sin( $x) 
3 (xl la, 

1x1 )-Tr. 

If the function f is a density, then from the fact that K, is a density for each n, we deduce that f 
is a mixture of Fejer densities with mixture weights given by 

~~=.i,r(n+l)A*u~, n>O. 

A random variate with density f can thus simply be generated by first generating a discrete 
random variate 2 with probability vector { p,, n 2 0}, and then exiting with a random variate X 
having the Fejer density K,. A random variate with density K, can be generated in expected 
time essentially independent of n (see below), and a random variate with probability vector pn 
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in a myriad of ways. The first one that should be considered is the inversion 

Inversion method for convex Fourier cosine series 

Generate a uniform [0, l] random variate U; 
Z+ 0, S+ TA2a,; 
while U> S do 

Z+Z+l 
St S+ IT(Z+ l)A’a,; 

generate a random variate X with Fejer density K,; 
return X. 

The observation leading to the above algorithm can be considered as the discrete analog of a 
similar observation we made for generating continuous random variates with a Polya characteris- 
tics function [lo]. The number of steps in the inversion method, i.e., comparisons U > S, is 
2 f 1. We have the following theorem. 

4.1. Theorem. For the inversion algorithm shown above, 

E(Z+l)=l+27:Ea,, 
n=l 

and, for k > 0, 

Proof. 

E(Z+ 1) = 1 + 7 E n(n + l)(a,+, - 2a,+* + a,) = 1 - 2~ f n(a,+, - a,) 
n=O n=l 

=1+2nga,, 
fl=l 

where we twice applied Abel’s transformation for summation by parts. Furthermore, for k > 0, 
with Aa, = a,,, - a,, 

P(Z+ 1 > k) = E T(n + l)A2an = 5 IT i (Aa,,, - Aa,) 
n=k n=k J=o 

=z : (bl+l -Aan)= --n(k+l)Aa,+T f (-Aa,) 
;=O n=k j=k+l 

=T(k+ l)(ak-ak+I) +Tak+,. 0 

Theorem 4.1 shows that the average time behaviour of the inversion method is directly related 
to the rate of decrease to zero of the Fourier coefficients. It is instructive to compare the 
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performance with that of the ‘unsophisticated’ version of the series method applied to Fourier 
series in the previous section. In the notation of that section, we had E(N) 5 p A 1 + 47rC7=ikak. 
From the proof of Theorem 2.5 we recall that often E(N) = p while, in most cases, E(N) 2 cp 
for a positive constant c. Assuming that N and Z + 1 roughly measure comparable units of 
computation, the improvement in expected performance is truly remarkable. Not only is 
E(Z+l)~t(p+l),butitispossibletohaveE(Z+l)<oowhilep=oo. 

This leaves us with the problem of generating a random variate with density K,,. It is easy to 
show that 

K,(x) I min{ $(n + 1), a/[2(n + 1)x2]}. 

A random variate with density proportional to the dominating curve can easily be obtained by 
the rejection method described in [ll, p. 3151. Interestingly, the rejection constant is 6, 
independent of n. 

Rejection algorithm for the Fejer density 

repeat 
generate a uniform [0, I] random variate V and an independent uniform 

[ - 1, l] random variate U; 
set Y+ :(n+ 1)V2, X+- UJ7/[2(n+ l)Y] ; 
[(X, Y) is uniformly distributed under the dominating 

until Y-c K,(X) 
return X 

curve] 

5. Legendre series 

The relationship between the moments and the coefficients a, used in the series is given in 
Example 2.2. The dyadic form of the algorithm is recommended. Theorem 2.5 is relevant since 
the n th partial sum of the Legendre series can be obtained at cost n. 

Not surprisingly, we need to restrict the densities somewhat in order to obtain useful error 
estimates R,(x). Assume, for example, that f is absolutely continuous on [ - 1, l] and that f’ is 
of bounded variation in [ - 1, 11. Then, by a theorem due to Jackson [19], in a form explicitly 
computed by Sansone [29], we can use 

u4 = 
16~(supy,~-l,ll If ‘b> I +Vafiation(f 7) A c = 

(1 - X2)1’4nn (1 - X2)1’4n . 

The real problem here is that the quantities appearing in the upper bound are usually not directly 
available. Since a, = i and a, = %p, we can take the following dominating curve: 

g(x) = max{O, 4 + $PiX} + 
C 

(1_x’)1/4’ Ix] <‘* 

A random variate with density proportional to (1 - x2)-l14 can be obtained by Ulrich’s [33] 

polar method for symmetric beta random variates as sin(2TV)m, where U, I’ are indepen- 
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dent uniform [0, l] random variables. It is not difficult to verify that the following mixture 
algorithm can be used to generate a random variate with density proportional to g: 

Generator for density proportional to g 

[SET-UP] 
compute the weights p + 1, CJ +- mr2($)C [NOTE: q = 2.396280467.. . C]; 
if Ip,(>&,setp + 1 + (1 - 3 I Pl l>2/(1 2 I Pi I>; 
[GENERATOR] 
generate a uniform [0, l] random variate W; 

if WI p/(p + 4) 
then if 1 ,u, 1 I 5 

then 
generate X uniform on [ - 1, I] and U uniform on [0, 11; 
if $ + $p,X- &U<O then X+ -X 

else 
generate i.i.d. uniform [0, 11 random variates U, V; set Y+ 

min{U, V}; 

else 
X+ - W(3k) + (1 - W signk) 

generate i.i.d. uniform [0, I] random variates U, V; 

X + sin(271V)KTF 
return X. 

For other bounds, see [28] or [29, pp. 203-2051. It is worthwhile mentioning, however, that if f 
has r derivatives, and f (r) is absolutely continuous on [ - 1, 11, we have 

R,(x) 2 C/-r] f”+“(y) ) dy]/n’-112, 
i 

n 2 r, 

where r is a positive integer, and C is a universal constant dependent upon r only [19, p. 761. 

6. Gram-Charlier and Laguerre series 

Conditions under which the Gram-Charlier series of type A converges are given in [6] and [31] 
(see also [32] and [21, p. 1731). Most of the known results are collected or simplified in [27]. For 
example, assume that 

J m(f(x) +f(-x)) ex”2x-5’3 dx=o(l/n) 
n 

and that /f log+f < CO. Then, the Gram-Charlier type A series converges at almost all 
(combine [32, p. 2471 with [27, Section 41). Basically, the density should drop off faster 
normal density. Stronger conditions are needed to obtain useful error estimates. 

x tof 
than a 

The Laguerre series suggested in this paper converges under similar conditions. Again, assume 
that If log+f < cc. Then, if 

/ 

1 
x-a/2-‘/4f(x) dx < 00 and m~-a/2-13/12 e”/2f(x) dx = o(n-‘I*), 

0 I n 
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then the Laguerre series converges all almost all x (combine arguments from Szego [32] and 

t271). 

7. Fourier series with theta factors 

The advantages and disadvantages of the trigonometric series are captured in the following 
lemma. 

7.1. Lemma. (a) For all fE L,[ -71, 711, Smk( f) +f I a most everywhere for some subsequence mk. 
Furthermore, S,(f) = O(log n) for almost all x, and / 1 S,,(f) 1 = O(log n). 

(b) Lff c LJ - 7, 71 for some p > 1, then S,,( f ) -+ f for almost all x. 
(c) There exists an f E L,[ -IT, T] with the property that lim sup ) S,(f) ]/log log n = cc for all 

X. 

(d) For all sequences mk t co, there exists an f E L,[ - IT, IT] such that lim sup S,,J f) = 00 for 
almost all x. 

Part (a) has been proved in all standard texts (see, e.g., [35, Section 7.31 or [15, pp. 167, 1801). 
For p = 2, property (b) is known as Carleson’s theorem [5]. The general statement for p > 1 was 
proved by Hunt in [18] and is now known as the Carleson-Hunt Theorem (see also [26] or [20] 
for proofs). Part (c) strengthens Kolmogorov’s counterexample [22] (see [35, Section 8.4]), and is 
due to Korner [23] who also proved part (d) based on ideas of Kahane and Stein. 

Part (a) tells us that there exists an almost everywhere convergent subsequence for every f: 
thus, there is hope of obtaining a universally applicable algorithm. Unfortunately, we need to 
have bounds on the error. In view of the negative results in parts (c) and (d), this is an ambitious 
exercise. For certain subclasses of densities (such as the densities that are in LP[ - 7~, IT] for some 
p > l), there is hope of obtaining just such a method. There exist smoothed versions of the 
trigonometric series that have better consistency properties and lead to better error estimates: 
these are based on a sequence of m( n)th degree trigonometric polynomials of the following 
form: 

S,(f) = & + mz’t3ti(k)(a, cos(kx) + b, sin(kx)), 
k=l 

where m(n) increases with n and is such that t9,( k) = 0 for ) k ) > m(n). Butzer and Nessel[4, p. 
471 call the S,(k) row-finite theta factors. The theta factors control the degree of smoothing (see 
Table 1). These examples are all discussed in more detail in [4]. For all these theta factors, except 
the Dir-i&let factor, we know that S,(f) + f a most everywhere and, in the L, sense, for all f. 1 
For all continuous f (continuity is defined for the periodically continued f on the real line), in 
all cases, the Dirichlet factor excepted, the convergence is uniform. Thus, for continuous f, we 
can realistically expect to obtain uniform error bounds. We call these bounds R,( f ): 

Note that the R,(f)‘s are uniform in x but not in f. Typically, they depend upon n and some 
smoothness property of f, such as a Lipschitz constant or a uniform bound on some derivative of 
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Table 1 

Name m(n) 4,(k) 

Dirichlet factor 
Fejer factor 

n 1 
n l-k/n+1 

De la Vallee-Poussin factor 2n - 1 
i 

:‘_ kIn, 
l<k<n 
n+lrkr2n-I 

Rogosinski factor 

Fejer-Korovkin factor 

n cos( kq/( 2 n + 1)) 

n 
(n-k+3)sin((k+l)/(n+2)a)-(n-k+l)sin((k-l)/(n+2)a) 

2( n + 2) sin( 7r/( n + 2)) 

f. The fact that the R,( f)‘s or upper bounds for them have to be known explicitly is perhaps the 
greatest drawback in the algorithm. At this point, we do not see how this is possible to avoid in 
one form 
following 

or another. The dyadic form of the algorithm of Section 2 could be used with the 
substitutions: 

R,(x) = R, (f ), the bounds given in this section, 

g(x) = & + R, (so X is uniform on [-T, VT]), 

ak cos( kx) + b, sin( kx)). 

It should be noted that, in most cases, 8,(k) depends upon both n and k. Therefore, every 
evaluation of S,,(f) in the inner loop takes time at least proportional to m(n) (which is usually 
equal to n). Also, the computations cannot be saved from one iteration to the next for most theta 
factors. Nevertheless, the results of Theorem 2.5 remain relevant. 

7.1. Uniform error bounds 

It is helpful to recall some results from Fourier analysis about just how good Fourier series 
can be. 

Let f be the periodic continuation of a density on [ - 7, a], and let f be continuous with 
modulus of continuity 

Q(h f) = xU~~~,~slf(“+h)-fix)l. 

The generalized modulus of continuity [4, p. 671 is 

o*(& f) = ,o~~~,~~/f(X+~)+f(x-~)-2f(x)I. 

It is also helpful to define a few classes of densities on [-IT, ~1. When r is a natural number, 
we define 

and 

W, = { f : f is r times differentiable, and the r th derivative is continuous} 

Lip(C, a) = {f: ~(6, f) 5 CSa}, Lip*(C, a) = {f: w*(6, f) I CSa}. 
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Finally, we define W,( C, a) to be the subset of W, consisting of all densities which have Y - 1 
absolutely continuous derivatives and for which f”’ E Lip( C, a). Similarly, we define W,* (C, a) 
to be the subset of IV, consisting of all densities which have Y - 1 absolutely continuous 
derivatives and for which f”” E Lip* (C, a). Without loss of generality we may restrict the order 
(Y in these definitions to 0 < (Y < 1 for Lip( C, a), and to 0 < (Y I 2 for Lip* (C, a). By controlling 
Y and (Y, we now have a continuum of classes of ever smoother densities. 

7.2. Lemma. Let T, denote any trigonometric polynomial of order not higher than n (i.e., any linear 
function of 1, sin( ix), and cos( ix) for 1 I i I n), and define 

E,(f ] = $fm;xIf(x] - T,(x) I. 
n 

Then, the sequence E,(f) decreases monotonically to 0 ( Weierstrass's theorem-see [2, p. 351). 
Furthermore, 

E,(f > 5 120(1/n, f > and E,(f) < 18w*(l/n, f) 

(Jackson’s first theorem-see [2, p. 5331 and [4, p. 971). Also, for all f E W,, 

E,(f > 5 (36/n)‘II f”’ II m and E,(f) 4 1297(36/n)ro*(l/n, f”‘) 

(Jackson’s second theorem-see [4, pp. 97-981). Also, for f E W,, 

E,(f > s (4C/n)[/l f”’ IIAn + I)‘, 

where C = C, t 0( - l)k”-“(2k + l)- (+‘) is the best possible constant in the inequality [17]. 

Lemma 7.2 establishes the connection between the best possible supremum error with order n 
polynomials and the smoothness of f. Note that E,(f) measures the uniform error. Some errors 
R,(f) for theta factors given in the previous section can be directly related to E,( f ). 

7.3. Lemma. (a) For the Dirichlet factor, we have Lebesgue’s inequality, 

R,(f > I(3 + (4/n2) 1% n)E,(f >. 

(b) For the Rogosinski factor, 

R,(f) I (2~ + l)E,(f) + 2w*(l/n, f >. 

(c) For the De la Vallee-Poussin factor, R,(f) 5 4E,,( f ). 

Proof. For part (a), combine [4, p. 1051 with an estimate of [14, p. 2971. Part (b) is shown in [4, p. 

1061. For part (c), see [4, p. 1081. q 

The Dirichlet factor, which leads to the ordinary trigonometric series, has a performance 
bound at most log n times E,( f ). It is thus possible that the bound given in Lemma 7.3 does not 
tend to 0 even though E,(f) tends to 0. This, of course, is tied to the nonconsistency of the 
trigonometric series estimate exposed in Lemma 7.1. The main advantage of the trigonometric 
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series is that computations of a,, b, can be saved between iterations: S,+,(f) can be computed 

from $,(f), a,+,, and &+i. This property is not shared with the other series. 
Let us next look at the Rogosinski and Fejer-Korovkin factors. For both, the bounds on 

R,(f) depend on o*(l/n, f ). From [4, p. 761, it is perhaps worthy to recall that, for f E W, we 
have 

Note that the same bound remains valid for all f E W, regardless of how large r is. Thus, the 
bounds of Lemma 7.3 do not allow us to obtain a rate which is better than l/n2. In fact, there is 
no hope of obtaining a better rate because the error is bounded from below by a constant times 
n -2 for all densities. We note in passing that the Fejer factor has a disappointing l/n lower 
bound for all densities. 

There exist factors without built-in limitations, such as the De la Vallee-Poussin factor. The 
bound on R,(f) is at most a constant (in this case 4) times the best possible bound (E,(f)). 
Note that E,,(f) can decrease to 0 at any possible rate, so the smoother f, the smaller E,,( f ), and 
the smaller the error bound for the Fourier series. 

7.2. The Fejer-Korovkin factor 

Combining some computations of [4, pp. 70, 801, and using 1 - cos x I ix’ yield the bound 

R,(f) I (ifi + ;?r)‘o*(+d?/(n + 2) f) 

when the Fejer-Korovkin factor is employed. On W,, this can further be bounded by 

($62 + :71)2[1d/(n + 2,]‘I( f” II 00 = D II f” II ,/(n + q’, 

where the constant D equals 35.194114087.. . . With the given choice for R,(f), we see from 
Theorem 2.5 that the expected time taken by the algorithm is bounded by a constant times 

1+4lTD,If",l, E 1 
n=O (n+2)2 

= 1+ 4?T(&n2 - 1)D I( f” 11 oo. 

It is important to observe that the expected time is finite when the absolute value of the second 
derivative of f is bounded. In fact, the expected time grows in proportion to ]I f” (I m. For the 
users, we recall that in the algorithm one should use 

R,(f 1 m(n) %(k) 

Wlf” Ilm 
(n+2)2 n 

(n-k+3) sin((k+l)/(n+2)a)-(n-k+l) sin((k-l)/(n+2)7) 

2( n + 2) sin( 71/( n + 2)) 

7.3. The De la Vallee-Poussin factor 

If one wants to have very small error bounds for very smooth f, it is perhaps best to work with 
the De la Vallee-Poussin factor, or factors with similar optimality properties. For f E W,, we 
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have useful bounds from Lemma 7.2 combined with Lemma 7.3, part (c). By using estimates 
obtained in the previous section for the Fejer-Korovkin factor, and substituting the appropriate 
terms in the proof of Jackson’s second theorem [4, p. 981 we have, in fact, 

where B = ~fi($/fi + +T)’ = 20.373053357.. . . In conjunction with Theorem 2.5, this shows 
that the performance is not greater than a constant times 

when Y > 1. The bound deteriorates with increasing values of r, and when r L 1. Although we are 
not resolving the question of how large Y should be (this obviously depends upon f), the value 
Y = 2 certainly seems like a good compromise even if bounds on higher derivatives are available. 
For the users, we recall that in the algorithm one should use 

Rn(f 1 44 Uk) 

4( &Y II f”’ II a, 2n - 1 1, 
2-k/n, n+llkl2n-1 l<k<n 

7.4, Lipschitz densities 

For the important class Lip(C, (Y), all factors discussed so far are about equally good; that is, 
the error rate is either nea or log( n)nea. Just to illustrate the use of the recovery process for the 
ordinary trigonometric series, we proceed with the entire algorithm. Note that it is no longer 
necessary to double n in every iteration. We can use the inequality 

R,(f) I (4+ (4,‘~~) log n)?. 

Also by the Lipschitz condition, it is easy to bound the density from above; a trivial bound is 
1/(2a) + CT”. The expected time of the algorithm is cc for all choices of (Y E (0, 11, but the 
algorithm nevertheless halts with probability one. 

Trigonometric series method for Lipschitz densities 

repeat 
generate a uniform [ - TT, IT] random variate 
generate a uniform [0, l] random variate U; 
r-I+ 0; 
V+ U(1/(2Tr) + CITU); 
s + l(2n); 
repeat 

n+n+l; 
S 6 S + a, cos(nX) + b, sin(n)0 

until JV- S 1 2 (3 + (4/n*)log n)l2C/n” 
until V< S 
return X. 

x; 
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For the Fejer kernel, and f E Lip* (C, a), 

R,(f) I 

i 

Ca2/[2m((v - l)]) a E (1, 4, 

c(1 + $7 log(lTm))/n, ff =l, 

c(1 + a/(2(1 - cY>))/?z*, (Y E (0, 1) 

[4, p. 811. It is well known that the Fejer factor yields a series whose error cannot decrease faster 
than l/n, regardless of how smooth the density is. It should thus only be considered for classes 
IV, or Lip(C, (u): noting that Lip( C, CX) c Lip*(2C, (Y) we see that, for the simple Lipschitz class 
with (Y = 1, the best rate l/n is obtained. Also, observe that for f E WI we have f E 
LiP( II f’ II 03) (Y), so that once again we obtain the rate l/n. 

8. Improvements 

The algorithms’ expected time performance can be enhanced by starting from a nonuniform 
dominating density. Note that, in the general setting of Section 2, 

f(x) i i aj+j(x) + Rn(x) 
j=O 

for all n. The upper bound is either a polynomial of degree n (as in the case of Legendre or 
Hermite-related series), or a trigonometric polynomial of degree n (as in the trigonometric 
series), or a trigonometric polynomial of degree m(n) (as with the Fourier series when theta 
factors are used). If we can easily generate random variates with this nonuniform dominating 
density, then the following modification of the algorithm could be feasible: 

Series method with nonuniform dominating density 

[NOTE: n is a parameter of the algorithm] 
repeat 

generate a random variate X with density proportional to g(x) = 

CT= $j$(X>+ R,(x); 

generate a uniform [0, l] random variate U; 

V+ W(X); 
m+ n; 

repeat 
m+2m 
S+CG,aj$(X) 

until 1 V- S 1 2 R,(X) 
until V-c S 
return X. 

The only modification we made here to the original algorithm is in the choice of the 
dominating curve. Sampling from it can be done very efficiently by table-based methods (see, 
e.g., Marsaglia’s rectangle-wedge-tail method [25], the method of Ahrens and Kohrt [l], the 
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alias-rejection-mixture method [24], or one of the methods of [ll, Chapter VIII]). The investment 
in a table method will only pay benefits when many random variates from the same distribution 
are needed. 
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