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Abstract: Random variate generators are developed for the Poisson-Poisson (or generalized 
Poisson) distribution. The expected time per generated random variate is uniformly bounded over 
the parameter space. Random variate generation for related distributions is also discussed; these 
include the Abel and Ressel families, and a family introduced by Haight. 
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1. Introduction 

A discrete distribution that has received quite a bit of attention in 
years is the Poisson-Poisson (or Lagrange double Poisson; 
Borel-Tanner; or generalized Poisson) distribution defined by 

“_ie-(Xn+p) 
P, = 

Pe +P) 
n! 7 n 2 0, 

where h E [0, 11 and p > 0 are shape parameters. It was first 

the past fifteen 
or generalized 

(1) 

introduced by 
Consul and Jain (1973), and is only a special case of the large family of Lagrange 
distributions, of which a list of examples can be found in Consul and Shenton 
(1972), and whose properties are studied in Consul and Shenton (1973,1975) and 
Jain (1974). See also the surveys by Johnson and Kotz (1982) or Patil et al. (1984, 
p. 23). 

As (extreme) special cases we have: 

A. Case h = 0: the Poisson distribution with parameter p. 

B. Case h = 1: the Abel distribution with parameter p. Many distributions can 
be derived by Abel’s generalizations of certain expansions; for the binomial 
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C. 

expansion, see e.g. Consul (1974) or Consul and Mittal (1975). One such Abel 
distribution, which we will call “ the” Abel distribution (to keep the terminol- 
ogy simple), is defined by the the Poisson-Poisson distribution with parame- 
ter h = 1. Natural exponential families play an important role in mathemati- 
cal statistics (see Bamdorff-Nielsen (1978) or Morris (1982)). Recently, Letac 
and Seshadri (1987) identified four natural exponential subfamilies as the only 
ones on (0, cc) satisfying the property that E(l/X) = (a/E( X)) + b for some 
constants a, b. These are the gamma, inverse gaussian, Ressel and Abel 
families. These distributions are “primitive” in the sense that they are not 
originally defined in terms of standard operations such as convolution, 
compounding, contamination, or transformations. This could sometimes create 
problems when one wishes to generate random variables with such distribu- 
tions, since we can’t usually combine other random variables in a straightfor- 
ward manner. It is well-known that for the gamma family several very good 
methods are available, see e.g. Ahrens and Dieter (1974, 1982), Greenwood 
(1974), Cheng (1977), Marsaglia (1977), Vaduva (1977), .Kinderman and 
Monahan (1978, 1979), Cheng and Feast (1979, 1980), Schmeiser and La1 
(1980), Ahrens, Kohrt and Dieter (1983), Best (1983), Barbu (1987), or the 
surveys in Tadikamalla and Johnson (1981) and Devroye (1986). The same is 
true for the inverse gaussian family (Michael, Schucany and Haas (1976), 
Padgett (1978)). Unfortunately, the same cannot be said for the less known 
Ressel family studied by Letac and Mora (1987), and the Abel family studied 
by Mora (1978). 
Case X =p: we obtain a discrete distribution that defines the mixture of 
gamma densities into which Haight’s density can be decomposed. We will call 
this the Haight mixture distribution. Recently, Letac and Seshadri (1988) drew 
the attention to a family first proposed in Haight’s survey (Haight, 1961). In a 
form suitable for consumption by us, and without a superfluous scale parame- 
ter, Haight’s distribution can best be defined in terms of its density 

where a E (0, l] is a parameter. The case a = 1 was not considered by Haight 
in his entry 8.89 on p. 54, but it is easy to verify that even for a = 1, f is a 
density. The density can be considered as a mixture 

f (4 = ?I Pngve-"b)~ 
n=O 

where g,,oe-a is the gamma density 
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and pn, n 2 0, is a probability vector 
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( ae-“)n+l(n + ljn-l 
pn=‘ ‘.,, ’ 7 

called the Haight mixture distribution. Note that p,, is the Poisson-Poisson 
distribution with parameters A = p = a. Generation of a variate with density f 
proceeds best via the mixture method: first, we generate a random variate X 
having probability vector p,,, then generate a gamma random variate Y with 
parameter X+ 1, and finally return ae-“Y. 

Some properties of the Poisson-Poisson distribution, along with its genesis, 
can be found in section 2. It is immediately apparent that there is no straightfor- 
ward manner in which Poisson-Poisson random variates can be obtained by 
simple combinations of more primitive random variables such as Poisson, bi- 
nomial, uniform or normal random variables. The different possible approaches 
for generating such random variates are discussed in section 3. From a computa- 
tional perspective, we would prefer to have a method with expected time per 
variate uniformly bounded over the parameter space. Also, the algorithms should 
not be too lengthy. There are general methods for unimodal distributions with 
known mode, mean and variance, developed e.g. in Devroye (1986, pp. 493-495). 
These techniques have to be slightly adapted however when the location of the 
mode is unknown, and in any case do not yield uniformly bounded computation 
times (see section 4). We are thus led to consider algorithms that are specifically 
designed for the present family (section 5). These algorithms have uniformly 
bounded computation times over the entire parameter space. If E(N) is the 
expected number of iterations in the respective rejection algorithms, we will 
among other things obtain the following results for the important subfamilies 
identified above: 
A. 

B. 

C. 

The Poisson-Poisson generator of section 5.2 is uniformly fast for the Poisson 
(p) distribution when p 2 3; moreover, it is asymptotically optimal in the 
sense that E(N) ---f 1 as p --) cc). This implies that for large p, one Poisson 
random variate is obtained at the cost of about two uniform random variates 
and one normal random variate. However, the algorithm is not short, the 
number of constants that have no computed in a set-up is considerable, and 
the resulting code is not short. For shorter code, we refer to the method of 
section 4, for which E(N) + 2.34.. . as p -+ 00. For parameter p c 1, the 
rejection algorithm with polynomially decreasing bound of section 5.1 could 
be employed. 
For the Abel distribution, the algorithm of section 5.3 has uniformly bounded 
expected time for all p > 0. As p + CO, we have E(N) + 2.4811.. . 

Since the Haight mixture distribution is nonincreasing (Lemma Pl), random 
variate generation can proceed by rejection from the polynomial bound 
described in section 5. In Theorem Cl, we will show that 

E(N) =e-P+pe2-P a . $ 
This is maximal at p = 1 - ee2m, and the maximal value is 2.569795364.. . 
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Finally, in section 6, a family of densities coined Ressel densities by Letac and 
Seshadri (1987) is considered. These densities are in form similar to the discrete 
Abel distributions. We develop a generator which with probability tending to one 
as the parameter tends to cc requires only one normal and two uniform random 
variates per generated Ressel variate. Our notation includes 1.1, I.1 (rounding to 
the nearest larger and smaller integers), A (definition), := (definition), (.)+ (maxi- 
mum of . and 0), 7, 1 (monotone convergence upwards and downwards). 

2. Properties of the distribution 

A discrete distribution is log-concave on an interval of indices if pn_ Ip,,+1 I p,’ 
for all the indices n in this interval. Equivalently, pn+Jpn is 1 for n in the 
interval. 

Lemma PI. Log-concavity. If h = 0, the distribution is log-concave. If X > 0, the 
distribution is log-concave on 0,. . . , n, where n + 1 I p( p - A)/(2h2). 

Lemma P2. Moments. (Consul and Shenton, 1972). When h < 1, all moments 
exist, and, in particular, the mean is p/(1 - h), and the variance is p/(1 - X)3. 

Lemma P3. Unimodality and monotonicity. For p I 1 + X, the distribution is 
monotone J. For p 2 max(1 + X, X/(1 - X)), A E [0, l), the distribution is uni- 

modal. In the latter case, at least one peak located between ]( p - l)/(l - X)1 and 

I( P - d)/(l - h)l, w h ere d = (1 + X2)/(1 - A). Also, forp 2 max(1 + X, 2X/(1 - 

X)), the distribution is log-concave on [0, ]( p - l)/(l - X)]]. 

Lemma P4. Genesis and representation. (Consul and Shenton, 1972, 1974). A 
Poisson-Poisson random variable X is distributed as Cfl=,Z;, where 

N, Z,, . . . , Z,,, . . . are independent random variables; N is a Poisson random 
variable with parameter p; and the Zi’s are iid random variables with moment 
generating functions s(u) = E( uzl) given by the solution of the equation u = 
s/exp(X(s - 1)). Furthermore, EZ, = l/(1 - h). 

From the previous representation, it follows that the sum of a Poisson-Poisson 
(h, p) and an independent Poisson-Poisson (X, q) random Poisson-Poisson 

(k p+q)* 
From Stirling’s approximation for r( n + l), we have 

Lemma P5. General factorial-less bound. 

p, I POn + P)“-’ en+‘-Xn-p g ep, 

G(n + l)n+1’2 
9 n 20, 

where p,, = 1 -p + log(p) - (1/2)log(2r) + (n - l)(log( An + p) - log( n + 1)) - 
(3/2)log(n + 1) + (1 - h)n. 
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Lemma P6. Polynomial bound. For all A, p, pO = eep. For all n > 0, we have 

PrlI 
Pe 2(1-h)+[2(X-p)/(n+l)l 2 2(1-h)+[2(h-P)/(n+l)l _ 1 

JZ-;;(n + 1)3’2 
Ipe 

Ci r J;;-z% I 

3. Design of a generator 

The representation of Lemma P4 is of little practical value. Even if we could 
generate the individual 2;‘s at unit cost, the total expected cost would be p, and 
is therefore not uniformly bounded over the parameter space. However, the 
representation is useful when we try to visualize the parameter space. For 
example, when p is large with respect to l/(1 - h), the influence of the random 
Poisson number of terms dominates the influence of the distribution of 2,. When 
p is small with respect to l/(1 - X), the distribution of 2, becomes dominant. 

For families of distributions, truly efficient generators can normally be desig- 
ned by the rejection method with as dominating density a suitably modified limit 
density. This is bound to cause problems here, since, as is shown by Consul and 
Shenton (1973), for h fixed and p * w, the limit law is normal, and for X - 1 in 
such a way that p(1 - X) + c as p + 00, the limit law is inverse gaussian with 
parameter c. At the very least, this means that a normal dominating curve is not 
efficient in all cases. 

For simple one-parameter families, the design of a generator is usually not too 
testing. For more complex families, it is sometimes helpful to borrow from the 
general algorithms that are available in the literature. For discrete log-concave 
distributions for example, the algorithms of Devroye (1987) have uniformly 
bounded times; they do require however that the mode be known. If the mode is 
not known, a small adaptation can be implemented that works roughly as 
follows: find four integers, two close to but at opposite sides of the mode, and 
two close to the mode plus and minus about a standard deviation. At these 
points, geometric dominating densities can be found that agree with the original 
density at two neighboring points (by log-concavity). Rejection can now proceed 
based upon a mixture of four pieces of geometric dominating densities. Such a 
strategy would work here with one proviso: for the extreme right tail of the 
distribution, a fifth dominating curve is required, because the Poisson-Poisson 
family is not log-concave in its right tail. At this point, we are staring at a rather 
complicated endeavour. 

Another general strategy was proposed in Devroye (1986, pp. 493-495) for 
unimodal densities with known mode, mean and variance. The algorithm is 
shown there to yield uniform speeds for the binomial and Poisson families, and 
should thus be useful here. Interestingly, it can be modified to make up for the 
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fact that we do not know the location of the mode. Unfortunately, the algorithm 
is not uniformly fast over our parameter space. 

The approach followed below for the main portion of the parameter space 
consists simply of obtaining a good normal dominating curve with special 
treatment for the tails. Slightly different strategies are followed for two extreme 
regions of the parameter space. 

4. A universal rejection method 

The situation is the following: a unimodal discrete probability distribution with 
probabilities p, is given with known mean p, variance u 2 and mode m. 
Furthermore, it is known that sup, p,, I M. A general algorithm for this situation 
is presented in Devroye (1986, pp. 493-495) (in the algorithm on p. 495, the 
constant p/(3p + M) should be replaced by 3p/(3p + M) however). The ex- 
pected number of iterations is 

M + 3(3( e2 + (p - rt~)~))~‘~M~/‘. 

In order to be able to apply the said algorithm, it is necessary to compute m and 
M (or a good upper bound for M) in a preprocessing step, since closed analytical 
expressions for these quantities are not known, except in special cases. Also, for 
X = 1, both p, and u are infinite, which confirms that the expected number of 
iterations is not uniformly bounded over the entire parameter space; actually, the 
performance deteriorates with decreasing values for p(1 - A). However, the 
method is applicable for some important special cases. Consider for example the 
Poisson distribution with parameter p. We have p = u2 = p, m = 1 p 1 and M = p,,, 

I l/G (for the last inequality, see Devroye (1986, p. 506)). Here, no 
preprocessing is necessary, and the expected number of iterations is bounded by 

M + 3(3( p + 1))1’3M2’3. 

As p-+00, the upper bound is o(1) + (81/2~r)‘/~, and the constant is about 
2.344771925.. . The expected time is uniformly bounded for p 2 1, and the 
computer code is shorter than for most other uniformly fast Poisson generators. 
For longer and sometimes more efficient methods, consult Ahrens and Dieter 
(1980, 1982), Ahrens, Kohrt and Dieter (1983), Atkinson (1979), Devroye (1981, 
1986), Kachitvichyanukul(1982), and Schmeiser and Kachitvichyanukul (1981). 

5. The Poisson-Poisson family 

We consider three regions in the parameter space: 

A. The region of monotonicity: p s 1 + A. The algorithm developed below is 
applicable however in all situations, and has uniformly bounded times 
whenever p s c for some constant c. 
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B. The Poisson side of the parameter space: p 2 max(3, 2A/(l - h)). The distri- 
bution is unimodal, and includes the Poisson distribution for X = 0, p 2 1. 

C. The Abel side of the parameter space: p 2 1 + A, p 5 2X/(1 - X). 

5.1. The region of monotonicity 

We can use rejection based upon the inequalities 
and for n > 0, 

2 1 
P,sPe 

2-A-min(h,p) _ 

$i 77 i;;-+ i 

The upper bound is in a form convenient for the inversion method. Indeed, the 
random variate X + [l/U2 ] where U is uniform on [0, l] satisfies P( X 2 n) = 

given in Lemma P6: p. = emp 

P(l>nU’)=Jl/n for nkl. Hence, P(X=n)=Jl/n-{m as re- 
quired. The details are all provided in the algorithm below. The algorithm is 
theoretically applicable in the entire parameter space, but only recommended 
when p<l+A. 

Rejection algorithm with polynomial bound 

[SET-UP] 
p,, t e-J’, b c pe2-x-min(x~J’)~. 

[GENERATOR] 
Generate a uniform [0, l] random variate U. 
REPEAT 

IFUsPo 
PO + b 

THEN X * 0 and Accept + True. 
ELSE 

Generate iid uniform [0, l] random variates V, IV. 

Set X+ [l/W’]. 

UNTIL Accept. 
RETURN X. 

The notation px is used for p,, at n = X (see (1)). The evaluation of px can be 
done efficiently (i.e., without having to evaluate log( n!) or without having to 
worry about cancelation errors in (An + l)“- ‘/n !) by making use of squeeze 
steps obtained by bounds for the gamma function similar to those employed in 
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Lemma P5. For more on the avoidance of factorials, see chapter X of Devroye 
(1986). 

Theorem Cl. Complexity. Assume that the above algorithm based upon pohnomial 
rejection is used. Then 

E(N) = e-P +pe2--h-~n(LP) 

$ 

; . 

We also have 

sup E(N) = l/e + e2J2/7z, 
p<l+X 

where the supremum is reached for p = 1, h = 0. Finally, E(N) I 1 + Ce2J2/?r 
whenever p I C. 

5.2. The Poisson side of the parameter space 

The probabilities p,, will be bounded by some function g(x) uniformly on 
n I x I n + 1. This will allow us to develop rejection algorithms from continuous 
univariate distributions. The prime candidate for bounding is the normal density, 
with exponential tails added on both ends. If Y is a random variate with density 
proportional to g and U is a uniform [0, l] random variable, then it suffices to 
generate pairs (Y, U) until for the first time Ug( Y) up, where X = ]Y]. The 
random variable X has the sought discrete distribution p,,. The main body of the 
dominating curve is the normal part. The bound, given below in Lemma C2, is 
such that the area under the global dominating curve tends to 1 as p + 00, while 
X > 1 is held fixed. 

Lemma C2. Let n 2 0 be integer, and assume that p > h, and (p - X)/(1 - X + 
s)<n+l<(p-h)/(l-h-e), h w ere 0 < E < 1 - A, p - 1 > S > 0. Then, for 

aNn<x~n+l, wehave 

p, I g(x) A G(~u)-' exp - ( (y--J2). 
where 

q& 

and 

p6(2 + 8 - 2X) + (1 + 6)(1 -A)‘- X(1 - x + q2 

2(p-1-S) 
7 

P-A 26 (1+9(P-V 
l_X’O - 

(1 - h - e)(l - A)” ’ 

GA 
/ p= 

P(1 - x - e)= e(+/(l+“)) 

(p-h)(l-h)(l-e)’ . 
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Lemma C3. Assume that n, x, p, 6 and 8 are as in Lemma C2. For n + 1 2 ( p 

- A)/(1 - A - E), andn<x<n+l, wehave 

A p(1 -A-r)3’2 
P, 5 h,(x) = 

fi(p - x)3’2 

e-(l-2(l-X-c)/(p-h))(r/2)(1-h)(-p)+2(1-X) 

Define t, = [(p - X)/(1 - X - E) - 11. Then 

H, 0 l,=hr = [2p(l - h - c)3’2 e”‘+] 

2(1-h-r) 

i 1 
-1 

x 

P-X 
E(1 - X) 

x e-(1 -20 -A-c)/(p-A))(r/2)(1 -h)(t,-P) 

For n + 1 I ( p - X)/(1 - X + 6), and n I x 5 n + 1, we have 

P, s h,(x) k &- 
els(l-h)1/[2(1+6)Wx+1-Ir) 

Define t, = [(p - X)/(1 - X + 8) - 11. Then 

HI k 
J 

” h = 2p(l+s) e[6(1-X)1/[2(1+6)Kf,+1-~) 
--oo * &5&5(1-h) 

From Lemmas C2 and C3, we can construct a global bound as follows: assume 
that p > A, 1 - X > E > 0 and that 0 < 6 < p - 1; then 

i 

h,(x) n < t, 

PnS &w t, I n < t,, nlxcn+l, 

h,(x) t, I n 

where h,, h, and g are defined in the two Lemmata. The rejection method can 
now be implemented as follows: 

Poisson-Poisson generator 

[INITIALIZATION] 
The algorithm below should be used only when 0 < e < 1 - X and p - 1> 6 
> 0, where 6 and 6 are parameters chosen by the user. E.g., with the choices 
proposed in Theorem C2, it is additionally required that i 2 max(3,2X/(l - 

Al). 
Compute $, (I, p and G as 
Lemma C3. Let g be as in 
c3. 

[GENERATOR] 
REPEAT 

in Lemma C2. Compute t,, t,, H, and H, as in 
Lemma C2, and let h, and h, be as in Lemma 

Generate a uniform [0, l] random variate U. 

IF UC 
G 

G-H,+H, 
THEN 
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Generate a normal random variate N, and set Y + p + UN. 

IF Y>t, or Y<t, 
THEN Accept + False 
ELSE 

Generate a uniform [0, l] random variate V. 
X+ ]Y]. 

Accept +- [S(Y) Wx]* 

G + H, 
ELSEIFU< G+H+H THEN 

I r 

Generate an exponential random variate E, 

and set Y+ t,- 
2q1+ 6) 

6(1-h) . 

IF Y -C 0 THEN Accept + False 
ELSE 

Generate a uniform [0, l] random variate V. 
X+ ]YJ. 

Accept + [I%(Y) axI- 
ELSE 

Generate an exponential random variate E, and set 

2E 

Generate a uniform [0, l] random variate V. 
X* ]Y]. 

Accept + [m,(Y) ~Px]. 

UNTIL Accept 
RETURN X. 

The complexity of the algorithm can to some extent be measured by the 
expected number of iterations, G + H, + Hr. This assumes that evaluations of g, 
h, and h, can be done at unit cost (see remarks elsewhere about the evaluation of 
factorials in constant expected time). The expected number of iterations should 
be minimized with respect to 6 and 6. Unfortunately, this seems to be impossible 
to achieve in a closed analytical form. Basically, we want to find c and 6 such 
that two goals are achieved: 



A. 

B. 
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For each fixed h E [0, l), as p t CO, the expected number of iterations tends to 
one, i.e. the algorithm has an asymptotically optimal dominating curve. As 
pointed out earlier, this implies that the dominating curve defines the limit 
law. 
Uniformly over the Poisson side of the parameter space, the expected number 
of iterations remains bounded. 

Theorem C2. Complexity. If in the algorithm described above, we take 6 and E 

such that for each fixed X E [0, l), as p t 00, 6 -+ 0, S/x + 00, e --, 0, and 

~6 -+ m, then G + 1, Hr + 0 and H, + 0. In particular, property A hohls. 

For the algorithm given above, when employed with p 2 3, ( p - A)(1 - h) 2 X 
(i.e. p 2 2X/(1 - X)), properties A and B hold if we take 

1-A 
C= 6= 

(1 - h)2’5 

(2 f (p - X)(1 - h))“3 ’ (2 + (p - X)(1 - A))“’ * 

5.3. The Abel side of the parameter space 

This brings us finally to the Abel side of the parameter space, on which the 
universal rejection algorithm of section 4 or the algorithm of the previous section 
is either invalid, or not applicable, or not recommended. For example, the 
universal bounding function alluded to in section 4 has tails that decrease as xe3; 
yet, we know that the Abel distribution (occurring at X = 1) has a right tail that 
decreases as n- 3/2. Also, its mean is infinite. Thus, there is no hope of applying 
the universal rejection method in the entire parameter space. Observe that p,, is 
not log-concave, so that the universal algorithms for discrete log-concave distribu- 
tions given in Devroye (1987) can not be applied. Fortunately, p, is log-concave 
for all n smaller than some threshold value. This opens the door for an algorithm 
with an exponential dominating curve to the left and perhaps a polynomially 
decreasing dominating curve to the right. 

The strategy followed by us came about as follows. First we designed a 
uniformly fast generator for the Abel distribution and optimized the parameter 
settings. This design called for a two-tier rejection algorithm, with the polynomial 
bound of Lemma P6 used on the right tail, and a geometrically increasing 
dominating function used on the left portion. The best threshold point was about 
equal to a constant times p2. The geometrically increasing left portion gives a 
good fit since to the left of the threshold point the probability vector is 
log-concave. The region of space with p 2 1 + X, p( 1 - A) I 2X looks a bit like a 
spiky infinite wedge. It is convenient to consider asymptotics within the peak by 
letting p + CQ such that p(1 -A) --, c, where c E [0, 21 is a constant. We then 
repeated the design with optimal parameter settings that depend upon c. The 
parameter setting that is optimal for the Abel distribution (case X = 0, c = 0) 
turns out to be acceptable throughout this side of the parameter space. In 
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Theorem C3, we will show that the resulting algorithm has uniformly bounded 
expected time. We begin with the necessary upper bounds: 

Lemma C4. We have p0 = e-r. Also, for all n > 0, 

2 1 
p, Qe 

2-A-min(h,p) _ 

$i 77 J;;-&- 1 

The sequence p,, (defined in Lemma P5) is not concave on the real line for any pair 
(p, X) with X > 0. Assume that p 2 1 + h. Then, for real u, p,, is concave for 

u I v 4 2( p2 - Xp - 3A2)/(3h2). The constant v is nonnegative whenp 2 (1/2)(X + 

;Izx), h’ h w IC in turn holds when p 2 3. If v > 0 and n I u I v, where n is 
integer, then p,, I epu+(n-u)p:. 

The generator we propose below uses rejection from two different dominating 
curves, one valid on (0,. . . , t}, and one on { t + 1,. . . }, where the integer t is a 
threshold value. It is advantageous to choose t = [a max( v, O)J, where (Y E (0, l] is 
a constant possibly depending upon the product p(1 - X), and v is the value 
defined in Lemma C4. The parameter (Y will be picked so as to minimize the total 
area under the dominating curves. For the leftmost piece, we use 

P, 5 e 
P,+(n-rb; = ql(l _ q)qf-“, nit, 

where q, = e”/(l - q) and q = e- p;. We note that p 2 1 + X is needed for this 
inequality to hold. For smaller values of p, we simply omit the left hand part (see 
algorithm below). The area under the left dominating curve is 

i 
ePt+(i-r)P; = q, & (1 - q)qi, 

i=o i=O 

where q = emP;. If we extend the geometric distribution to infinity, then the area 
under the geometric dominating curve is simply q,. This is the area that should be 
counted if we use rejection from the un-truncated geometric distribution. 

For the right tail, we employ rejection from a polynomially decreasing distribu- 
tion, based on the polynomial inequality given in Lemma C4. The upper bound is 
in a form convenient for the inversion method. Indeed, the random variate 
X+ ]( t + l)/U2] where U is uniform on [0, l] satisfies P( X r n) = P( t + 1 2 
nU2) = {(t + 1)/n for n 2 t + 1. Hence, P( X = n) = /(t + 1)/n 

- (t + l)/ (n + 1) as required. Also, the area under the upper bound (i.e., the 
sum of the individual elements for all n 2 t + 1) telescopes easily to 

4, Ge 
max(l -p,O) 

J 

2 
r(t+ 1) * 

Before turning to the choice of (Y and the analysis of E(N), it is helpful to give 
the algorithm in its entirety: 
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Poisson-Poisson generator 

[SET-UP] 

We assume that p L 1 + X and that p(1 - A) I 2h. let a E (0,3/7) be a 
constant (the value 0.2746244084.. . is recommended in Theorem C3 below). 
Compute u 6 (2/3)( p2 - Ap - 3h*)/A*. Set t + ]a max( u, O)]. If p < 1 + X 
or p(1 - A) > 2h, set t + 0. Compute b =pe2-h-min(x* p)dp. Compute 
q, = b/4x. If t > 0 then compute q = eWp: (see proof of Lemma C4 for 
expression), and q, = e”‘/(l - q) (see Lemma PS for definition). If t = 0 
define q, = e-p. 

[GENERATOR] 
Generate a uniform [0, l] random variate U. 
REPEAT 

IFUI~ 
41 + 4, 

THENIFt=O 
THEN X + 0 and Accept 6 True. 
ELSE 

Generate an exponential random variate E. 

Set X-t- I-E/log(l -q)]. 

IFX>O 

ELSE 

THEN Set Accept + False. 
ELSE Generate a uniform [0, l] random variate V. 
Set Accept + [Vq,qfex(l - q) I px]. 

Generate iid uniform [0, l] random variates I’, IV. 

Set X+ [(t+ 1)/W’]. 

UNTIL Accept. 
RETURN X. 

Theorem C3. Complexity. Let a E (0,3/7) and c E [0, 21 be constants. Ijp ---) 00 
in such a way thatp(1 - A) I 2h andp(1 - A) + c, then the algorithm given above 
satisfies 

;\%E(N) = E + /$ e-(1-2uc’3’2’(4~‘3) 

1 - a - 2ac/3 - +(l - 2ac/3)* * 
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For c = 0, this limit is minimal for (Y = 0.2746244084.. . and takes the value 

2.4811500082.. . in that case. Finally, for any a E (0,3/7), 

sup E(N) < 00. 
(p,X):prl+h,p(l-h)~2x 

In Theorem C3, we have shown that the design is robust, since the expected 
time of the rejection algorithm is uniformly bounded over all p, A on the Abel 
side of the parameter space. The parameter optimization was done for the Abel 
distribution (case h = 0) only. The asymptotic performance of the algorithm can 
be improved by making cy a function of c; for finite p, one then replaces a(c) by 
a( p(1 - A)). We will not pursue this any further. The asymptotic value of E(N) 
shows that there is room for improvement even for the Abel distribution, perhaps 
by adding in a third dominating curve, or by basing rejection on the inverse 
gaussian limit law. We have opted here for an algorithm that requires little work. 

6. Ressel’s class of densities 

The Ressel density is defined 

where p > 0 is the parameter. 

6.1. Inequalities for the Ressel density 

by 

x > 0, 

We must first replace the gamma function in the definition of the density by a 
good estimate. This is done by a form of Stirling’s formula, found e.g. in 
Whittaker and Watson (1927, p. 253), which states that for all u > 0, 

r(u) = (.!!)“g e(e/12u), 

where 8 E [O, l] is a number possibly depending upon u. Using this, we obtain 
without work 

Lemma RI. In all cases, 

P+X 

f(x)rh(x)A 
1 

x/m . 

Lemma R2. In all cases, 

h(x) I P 

XJZ+TTTi 

e-[(P+l~*/2xl+l(P+~)/~l+[(P+~~~P/2~~l 
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Theorem RI. Let g be the density of the random variable Z = ( p + 1)2/(2X), 
where X has density f. Then 

where 

A(z, p) A -&Cq -?A_. + 
i 

2pz2 
p+l (p+l)2 

In particular, 
A. For every fixed z > 0, as p + 00, we have g(z) + e-‘/G. Also, / 1 g(z) - 

e-‘/ J7zz 1 -+ 0 as p --, 00. In other words, Z is asymptotically gamma with 

parameter l/2. 
B. For all z I c( p + l), we have 

For values of p near zero, the following inequality will be useful: 

Lemma R3. For all x, we have 

h(x)<e 1+tW2(P+l)l 
xP-l e-x 

eo(x.P) 
T(P) ’ 

where $(x, p) = x + x log(x) + p log( p + 1) - ( p + x) log( p + 1 + x). The func- 
tion C@ is convex in x, and does not exceed y = c(1 + log(c) - log( c + 1)) = 
1.045316653509.. . for all x I c( p + l), where c = 1.8442990383.. . is the solution 
ofc+clog(c)-(c+l)log(c+l)=O. Thus, forx<c(p+l), 

h(x) < (1 + c) e1+[1/12(P+1)1 
xP-l e-x 

T(P) * 

Lemma R3 tells us that for small values of x, the Ressel density is roughly 
bounded by the gamma density with parameter p. Unfortunately, much more is 
needed before we can begin thinking about an algorithm, because when Lemma 
R3 is used for x 5 p, and Lemma R2 for x > p, the integral under the bounding 
curve tends to co as p + 00. Also, the general uniformly fast algorithm for 
log-concave densities (Devroye, 1984) is not applicable here since h is not 
log-concave. Nevertheless, we will get real help from the structural properties of 
the Ressel densities, or rather, its close approximations h(x). The properties 
needed further on are collected in Lemma R4: 
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Lemma R4. Define $J( x) = log( h( x)) ( h w ere h(x) is defined in Lemma Rl). 
Then $I is twice continuously differentiable on (0, oo), q”(x) < 0 for x I ( p* - 1)/2, 
and G’(x) > 0 for x s ( p* - 1)/4. Furthermore, for x s t I ( p* - 1)/4, we have 

f(x) I h(x) I h(t) e(x-r)G’(r). 

The integral over [0, t] of the upper bound with respect to Lebesgue measure is not 

larger than h(t)/+‘(t). 

6.2. A generator when p > I. 

We can now describe a rejection algorithm for the Ressel distribution. The 
algorithm has one design parameter c > 0, and uses rejection from different 
dominating curves according to whether x I c( p + 1) or x > c( p + 1). The 
threshold values will be called t = c( p + 1). Since for technical reasons, we need 
t5(p2- 1)/4, it is necessary to restrict c by c 5 ( p - 1)/4. For x I t 5 ( p* - 
1)/4, we recall the bound of Lemma R4: 

f(x) I h(r) e’“-‘)$“‘). 

The integral over [0, t] of the upper bound with respect to Lebesgue measure is 
not larger than the integral over all x I t, i.e. qr g h(t)/+‘(t). For x > t, we 
employ part B of Theorem Rl, after transforming f(x) to g(z) via the transfor- 
mation t := (p + 1)*/(2x). Note that x > c( p + 1) if and only if z < (p + 1)/(2c). 
The density of the transformed random variable is bounded as follows for such z: 

valid for z I c( p + 1). The bound shows the integration constant explicitly: the 
integral over the positive halfline of the upper bound is 

4, o 
pe(‘/‘) 

(l+Pj/y$yyy * 

The algorithm can now be summarized as follows in raw form: 

Ressel density generator 

[SET-UP] 
Choose c E (0, ( p - 1)/4), and set t + c( p + 1). For a choice of c, see 
Theorem R2 below. Compute X + G’(t) (see proof of Lemma R4). Compute 
q, = h ( t )/A (see Lemma Rl) and 



L. Devroye / Random variate generators for the Poisson - Poisson 263 

[GENERATOR] 
REPEAT 

Generate a uniform [0, l] random variate U. 

THEN 
Generate an exponential random variate E. 
Set X+t-E/h. 
If x20 

THEN 

ELSE 

Generate a uniform [0, 11 random variate V. 
Define Accept + [ Vq,he(x-‘)h I f( X)] (or, equivalently, 
Accept + [ Vq,XemE I f( X)]). 
ELSE Set Accept + False. 

Generate a normal random variable N. 

Set X+ (p + l)2/(22). 

IFX<t 
THEN Set Accept + False. 
ELSE 
Generate a uniform [0, l] random variable I’. 

Define Accept + 

(The last condition can be simplified to Accept 

+ ‘vq,I N I e [ -N2’2/G I Xf( x)] .) 
UNTIL Accept. 
RETURN X. 

In the algorithm, the left dominating curve is picked with probability q,/( q, + q,), 
and the right dominating curve with probability q,/( ql + 4,). Our choice of c will 
guarantee that for large values of p, q,/qr is negligible and that the expected 
number of iterations before halting, q, + q,, is close to one. It is thus approxi- 
mately correct that for large p, one Ressel variate is obtained at the expense of 
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about two uniform random variates (U and V) and one normal random variate. 
For additional savings, the “unused portion” of U can be used to construct V. 

The interesting reader will have no difficulty with the details of the algorithm. 
He should note that we have used the fact that g( 2) = Xf( X)/Z. Some compu- 
tational difficulties may arise in the evaluation of T and f(X). It is recom- 
mended to compute log(T) and log(f( X)) instead. The log-gamma function is 
typically available in built-in mathematical libraries. Should it not be available, 
one may be forced to apply the alternating series method based upon a conver- 
gent series expansion for the log-gamma function, see e.g. Lemma X.1.2 in 
Devroye (1986). 

Further time savings can result if one makes good use of the squeeze principle; 
Stirling’s formula for the gamma function should provide a good starting point. 

This brings us, finally, to the choice of c. We first offer general guidelines in 
Theorem R2 that are related to the asymptotic behavior of c as a function of p. 
The fact that qr + q, + 1 as p + 00 means that the algorithm effectively incorpo- 
rates the limit law of Theorem Rl. Within the conditions of Theorem R2, the 
freedom should be exploited to get good performance (small ql + q,) for mod- 
erate and small values of p. Technically speaking, the algorithm is valid for any 
p > 1. In practice, we recommend the above algorithm only for p 2 2, with the 
choice of c given in Theorem R2. 

Theorem R2. Complexity. If c is chosen as a function of p such that 

lim c=cc; lim 2~0; P-l Cl - 
4 

forall p>l, 
P-+W P-m P 

then the expected number of iterations of the algorithm (q, + q,) tends to one as 

p ---) 00. Furthermore, q,/q, + 0 as p + 00. 
If we choose 

then q/+(4,-1)-(3 log p)/p asp+ 00. 

6.3. A generator for small values of the parameter 

For p < 1, the previous bounding technique is not valid. It can’t even be adapted 
for the situation at hand, since f has an infinite peak at the origin (it varies as 
xp-’ as x JO). For x 2 c( p + l), where c is as in Lemma R3, we will use the 
bound of Lemma R3 in terms of a gamma function. For x 2 c( p + l), we can still 
use the transformation z := (p + 1)‘/(2x), and apply, for z I (1 +p)/(2c), 



L. Devroye / Random variate generators for the Poisson -Poisson 265 

The area under the bound of Lemma R3 is q, = (1 + c) exp(l/l2( p + 1)) while 
the area under the rightmost piece is 

qr= (1 +p)$k . 
As p J 0, q, + 0. Hence the main contribution comes from the left part now, 
which covers the infinite peak at the origin. It is noteworthy that uniformly over 
all p, we have 

q, + q, I (1 + c) e’/12 + 
ewc) 

= 5.6333127710.. . . 

However, for p 2 2, and especially for very large p, the algorithm of the previous 
section is faster. The algorithm given below requires a good gamma generator for 
all parameter values. For shape parameters less than one, see e.g. Vaduva (1977), 
Ahrens and Dieter (1974), Best (1983), Johnk (1964), Berman (1971), or Devroye 
(1986, pp. 419-420). The details are as follows: 

Ressel density generator 

[SET-UP] 

Let c = 1.8442990383.. . be as in Lemma R3, and set t + c( p + 1). Com- 
pute 

q, = (1 + c) e’/w(P+l)) mdqr= (l+p)$?--& * 
[GENERATOR] 
REPEAT 

Generate a uniform [0, l] random variate U. 

IFUI~ 
4/+ 4, 

THEN 
Generate a gamma random variate X with parameter p. 

IFX<t 
THEN 
Generate a uniform [0, l] random variate v. 

Define Accept + Vq, 
p-1 ,-x 

F(P) 
sf(x) . 

I 

ELSE Set Accept + False. 
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ELSE 
Generate a normal random variable N. 

Set X+ (p + 1)‘/(2Z). 

IFX<t 
THEN Set Accept + False. 
ELSE 
Generate a uniform [0, 11 random variable K 

Define Accept + 

i 

The last condition can be simplified to Accept 

UNTIL Accept. 
RETURN X. 

7. Appendix 

Proof of Lemma PI. We start with 

Replace n by a real number x, and note that 

$log(r(x)) = log 1 + - 
ii 

h 
xx+p 11 

A2+Ap -- 
+ (xx+p)(X(x+l)+p) x:1 

A-P 
s (Ax +p)(x + 1) + 

A2+Xp 

(Ax +p)tA(x + 1) -tP) 

2A2(x + 1) + xp -p2 
= (x + l)(hx +p)(X(x + 1) +p) ’ 

where we used the inequality log( 1 + u) I u. The numerator in the upper bound is 
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non-positive if x + 1 I p( p - X)/(2X2). Thus, r(x) is log-concave for such values 
of x. Furthermore, if we consider the same range on n, we see that 

P?l > Pn+l -- 

Pn-1 - Pn . 

This concludes the proof of Lemma Pl. 

Proof of Lemma P3. We recall the definition of T(X) from the proof of Lemma 
Pl . Clearly, 

log( r( x)) = x log 1 + - 
i 

h 
Ax+p i 

+ log(Xx +p) -A - log(x + 1) 

AX 

s Ax+p 

xx+p 
- -A + log x+l 

i i 

XX 
=--h+log1+ 

i 

(A-l)x+(p-1) 

xx+p x+1 1 

XX 

s xx+p 
_A+ (A-l)x+(p-1) 

x+1 

= 4Px-P-A22)+(P2-P-P9 

(Xx +p)(x + 1) * 

The right side is I 0 when x 2 ( p2 -p -pX)/( p + A2 -pi!). This happens for 
all x when p I 1 + X (in which case the distribution is monotone J). Assume 
thus that p > 1 + A. By property Pl, unimodality follows if 

P2-P-PA 

p+A2-px 

~ p2 - 2x2 -ph 

2x2 * 

This leads to the inequality 

p3(1 - A) -p2h + 3px3 - 2x4 2 0, 

which is satisfied if p 2 h/(1 - A). Finally, for x = ( p - l)/(l - A), we have 

log(r(x)) = Glog 1+ h;I;)) + log(G) -x - log(G) 
i 

A2 - x 
s- 

p-X’ 

This shows that the mode is s I( p - l)/(l - A)]. To obtain a lower bound for 
the mode, take d I p/X (later on, it will be set equal to (1 + X2)/(1 - X)). Then, 
using the inequality log(1 + U) 2 u/( 1 + u), valid for u 2 0, we see that 

= (l-X)(-d&X2) 

p-Xd+A-A2 

_log l+ l-A-d+Xd 

i p--Ad i 

> _(l_X)(Sh+A2)(p-hd)+(1-d)(p-hd+h+A2) 
- 

(p-Ad)(p-hd+X-X2) ’ 
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which is 2 0 if the numerator is I 0. Now replace the value of d by (1 + A2)/(1 
- A). The numerator then simplifies to 

A3 - h +p(l + A’) - d(l - A)) = A3 - A I 0. 

Hence, a mode occurs at a value at least equal to ]( p - d)/(l - A)]. Note finally 
that if the requirement that d 5 p/X does not hold, then it is certainly true that 
the mode occurs to the right of ]( p - d)/(l - A)], a nonpositive integer. 

The last statement follows from Lemma Pl if we can show that 

P-l 

I 1 1-X 
I p2-p&2X2 

2A2 * 

This is satisfied if p2( 1 - A) - p( A + X2) - 2X2 + 4X3 2 0. The left-hand-side, 
being quadratic in p, is nonnegative except possibly between its two roots (if they 
exist). The rightmost of these roots occurs exactly at 

h ( 2(1 -A) 
1+ x + /17x2 - 22x + 9 ) I 2(l~A)(1+X+3-h)= & 

This concludes the proof of Lemma P3. 

Proof of Lemma P6. Start from Lemma P5. We use the inequality log(1 + U) I u 
(valid for all u > - 1) to bound log(1 + ((A - 1)n + p - l)/( n + 1)). This gives 
with a little work the first inequality. The second inequality is obtained by noting 
that 

2 A( 2&) = 2(n:l)ri;; 2 2(A)‘/‘. 

Proof of Theorem Cl. The value of E(N) is immediate from the form of the 
upper bound. For p E [0, 11, this is maximal when X = 0, and for 1 I p I 1 + A, it 
is maximal at A = p - 1. In the former case, we obtain E(N) = eep + pe2m, 
and in the latter E(N) = e -p + e4-2p 2 P In both cases, the maximum occurs p \I/. 
at p=l andis l/e+e’m. 

We require some standard bounds for the logarithm that are obtainable from 
Taylor’s series expansion with remainder. 

Lemma Cl. (Bounds for the logarithm.) For all u > - 1, we have 

log(1 + u) I u - 
U2 

2(1+ u,) ’ 

and for all u E (0, l), 

log(1 - u) 2 max - 
i 

&)’ -u- 
U2 

i 2(1 -u) . 
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Proof of Lemma C2. From Lemma P5, we have 

(2) 

where u=x(X-l)+(p-l)=(x+l)(h-l)+(p-A). For u/(n+l)~ 
( - 1, 01, we note that the exponent in the upper bound is bounded from above by 

-~(-&)‘-210g(l+*)=-2(~~1) -2log(l+-&). 

When u/( n + 1) 2 - e, this is further bounded from above by 

2 

2(n: 1) 
-2log(l-C). 

Next, for u 2 0, from (2), 

For u/( n + 1) I 6, we see that the exponent does not exceed - u2/(2( n + l)(l + 
8)). In conclusion, for all u/( n + 1) E [-e, S], we see that 

p, I ~(n + l;3,2c1 _ c)2 e-[“(‘+*)1[u2’2(n+1)1. 

For ncx~n+l, we have (n+1)-3/2~~- 3’2 Furthermore, if p = (p - A)/(1 . 

- A), we have 

2 

2(nU+ 1) - 
(1 - A)’ (x - jA)2 (n+l-I42 _ (V42 

2 X n+l X 

= (l-U2 b+1-d2 _ (X-d2 
2 i n+l X 

i 

= (1;A)2(n+l-x)(l- 
(rl::,, i 

> (1 -A)’ - 
2 

min 0, 1 - 
i i 

cL2 
ii n(n+l) - 

The last lower bound is minimal when n + 1 is replaced by ( p - A)/(1 - A + 8). 
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Doing so shows that 

u2 _ (1 -v’ b-d2 
2(n + 1) 2 X 

r- 
pS(2 + s - 2h) + (1+ 6)(1- X)‘- X(1 -x + a)2 = _~ 

2(p-l-6) 

Thus, for n < x I n + 1, u/( n + 1) E [ - 6, 61, i.e. for ( p - X)/(1 - X + 6) I n + 1 
s (p - X)/(1 - X - c), where 0 < z < 1 - A, 6 > 0, 

Now, replace n + 1 by its lower bound, and x in the denominator 
exponent by the upper bound for n + 1. 

of the 

Proof of Lemma C3. We let u be as in the proof of Lemma C2. Consider first 
the case u/( n + 1) I - e, 

P” 5 
P 

&( n + l)3’2 

noting that for any n, u/( n + 1) 2 - (1 - X). From (2), 

e-(“-lXo/(n+1)-log(l+o/(n+1)))-(2u/(n+1)) 

I 
P 

&(n + 1)“’ 

u 

&(n + 1)3’2 
P 

fi( n + 1)3’2 

e[( 
n-l)su/2(n+1)]+2(1-A) 

,(1-(2(1-h-c)/(p-h)))(tu/2)+2(1-h) 
3 

where we used the fact that (n - l)/( n + 1) is at least equal to (u - l)/( u + l), 
evaluated at u + 1 = (p - X)/(1 - X - E). The first inequality of Lemma C3 is 
obtained after noting that for n _< x I n + 1, u <p - A - (1 - X)x. 

Consider next the case n + 1 s ( p - X)/(1 - A + 6). Using n + 1 2 1, u/(n + 1 
+ u) 2 6/(1+ S), and n I x I n + 1, we conclude from a bound used in the 
proof of Lemma C2, 

pn I JT;;(np+ 113,2 e-(“2(‘+6))u 2 -&e (6(1-h)/2(1+6))(x+l-((p-h)/(l-A))) 

Proof of Theorem C2. Consider first the asymptotic optimality property A. Take 
6 and Q such that for each fixed X E [0, l), as p f a, 6 --, 0, G/x ---, 00, 
~‘0, and &-+co. Then, we easily verify that $J -+ 0, G + 1, H, + 0 and 
Hl + 0, as required. 

This brings us to the uniform boundedness question for G + Hl + H,. Our 
proof provides a rather loose uniform upper bound. The choices suggested for c 
and 6 are convenient for our purposes, but they are by no means optimal. We 
begin by noting that e < 1 - h, < < 2-r/3, 6 < 1 <p - 1, 6 5 (1 - h)92l’3, 
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S/(1 + 6) < l/2, p/(p -A) I 3/2, (p - X)(1 - A) 2 max(X, (3 - X)(1 - h)) = 
(5 - m)/2, 2 + (p - A)(1 - h) I (p - A)(1 - X)p3, and 6 2 (1 - A)‘/15/(j3( p 
- X)‘13), where p = (1 + 4/(5 - m))‘13. 

From this, it is easy to see that 

+ 
< 

26p+(l-A)2 

I 

2p+l 7 

- 1+6 - 2p - 4 2p-4 ’ 2. 

Also, 

P 
Gs p-jj 

e$./(1+6) m < 2 e7/2JZ:(1 _ 2-l/3)-2_ 

(1 - 6)” - 2 

To bound H,, we observe that t, - p 2 0, and that 1 - 2(1- X - E)/( p - A) 2 1 
- 2(1 - h)/( p - A) 2 l/3. Thus, 

H, s 
2pJi-X e2(lWh)(2 + (1 - A)( p - X))“3 

J21;( p - x)3’2(1 - X)/3 

I 9 e2(2 + (1 - X)( p - X))“3 9 e2(2 + (5 - m)/Z)“’ 

J27TJ(P--)(I-h) S Jz;;/m . 

Finally, when bounding H,, we need the fact that t, + 1 - p Q 1 - 6( p - A)/(1 - 
X)(1 - X + 8). Thus, we have 

4P 

fiS(l -X) 

e(l-_[6(p-h)/(l-XX1-h+6)]X6(1-h)/2(1+6)) 

4p e114 

&6(1 -X) 

e-(sl(p-h)/2(1+6x1-X+s)) 

4p e’/“p( p - X)1’3 

G(l - h)16’15 

e-(‘l-X)~“5’p-““‘3/4~~“-X)*‘~(1+2-”~)) 

4P 
4/3 e’/4p 

J2?r (1 - X)16’15 

e-((2/3)“‘p”3/4fiz(1 -X)4”5(1 +2-“9) 

Ifweset u=p 5/4/(1 - h) then the last upper bound is of the general form (with 
positive constants A, B), ’ 

Proof of Lemma C4. The polynomial bound is obtained in Lemma P6. From 
Lemma P5, we recall the definition of p,. Thus, 

p:= log s 
i 1 

l/2 A+P +1-x+--- 
u+l xu+p 
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and 

x 1 P;chu+p--- l/2 A2+Xp 

u+l (u+1)2 + (hu+p)2 

= u2(3A2/2) + u(Ap + 3A2 -p’) + (A2 + 2hp - 3p2/2) 

(Au +p)2(u + 1)2 

But p 2 1 + X implies that p 2 2X2/(3 - A) and thus that A2 + 2hp - 3p2/2 I 0. 
Hence, pi I 0. Examining the numerator of py we thus see that p:’ is nonpositive 
on some interval [0, u * 1, and nonnegative on [u *, co) for some positive number 
u *. In particular, we claim that u * is at least as large as 

A 2 P2 “Z - -xp-3A2 
3 3A2 * 

Indeed, this follows from the.fact that the rightmost root of a quadratic equation 
x2 + ax + b = 0 is at least equal to -a when b I 0. In our case, we have to verify 
whether A2 + 2hp - 3p2/2 I 0. This requires that p 2 (X/3)(2 + m). This con- 
dition in turn is satisfied since p 2 1 + A. We also have to verify that the solution 
itself, u, is none ative, to avoid trivialities. This leads to the condition that 

+ pr(1/2)(h+ 12x+x ) ( a sufficient condition for this is that p 2 3). So, we 
have shown that p:’ I 0, that pu is unimodal, and that pi is 4 on [0, u]. Finally, 
by Taylor’s series expansion with remainder, 

for all n I u. The same is true if u is replaced by u with u < u in the last 

inequality. 

Proof of Theorem C3. The condition on cx implies that CY -C l/(1 + 2c/3), and 
thus that the limit given in the statement of the theorem is a finite positive 
number. We will use the fact that E(N) = 4, + q,. It is easy to see that u - 2p2/3 
as p + 00. Hence, 

limq,= -&. 
P-m J 

We will see that p; + 0 as p + 00, so that the limit of q, is equal to the limit of 
e”/p:. Furth e r more, this limit remains the same if the integer t is replaced by the 
real number u = (YU. Using the fact that log(1 + x) = x - x2/2 + 0(x3) as x + 0, 
we see that 

pu = log p + 1 - p-;log(2crr)+(u-1)log l+ (A-lu);;p-l 
i 1 
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= log p + 1 -p - 3277) + S((X-l)u+p-1) 

u-l (A-l)u+p-1 2 -- 
2 ( u+l i 

- 410g(2ap2/ 3 +24(1-X)+0(1) ) 

= -2 log p - $og(277) - $log(2a/3) - $(l - F)‘+ o(1). 

Thus, 

lim p2 epo = 1 

fi(2(~/3)~‘~ 

e-(l-2nc/3)2/(4a/3) 

P-w 

Furthermore, 

-(A-1)+(p-1)+1/2 2 

P’P: = u+l 

= P’( P2 - UPC1 - A) - h - A2u - Au/2 - 3p/2) 

(u + wu+P) 

; ‘;$;” l+o(1) -- 
i i 

1 - a - 2ac/3 = 

(243)2 
- +( L;;;;‘3)2+o(l). 

Combining all this shows that 

epx \/ZGJ5 e-(1-2uc/3)2/(4a/3) 

) + PU 6% 1 - a - 2ac/3 - f(1 - 2ac/3)2 ’ 

This concludes the proof of the convergence result. The limit for E(N) is minimal 
for the a function of a with a unique minimum. The last statement of the 
Theorem is left as an exercise. 

Proof of Lemma R2. Use the inequality log(1 + u) 2 u - u2/2, valid for all u > 0 
(but only recommended for 1 2 u 2 0) to obtain the bound 

i 

1 + p + 1 -(p+x) 

i 
5 e-(P(P+l)/x)-(P+l)+((P+l)*P/2*~)+(fP+1)2/2x) 

X 

Plug this into the definition of h(x) in Lemma Rl. 

Proof of Theorem RI. The inequality at the top of the Theorem follows from 
Lemma R2, if we use standard methods for computing densities of transformed 
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random variables; in this case, z := (p + 1)2/(2x) and dz := -( p + 1)2/(2x2) dx 
are the formal transformations required. 

Statement A follows from the fact that the upper bound for g(z) tends to the 
density e-‘/G pointwise; hence g(z) must do so pointwise. Furthermore, by 
Scheffe’s lemma (1947), pointwise convergence of densities implies convergence 
in total variation. 

For statement B, we argue as follows: 

Proof of Lemma R3. 
all u > 0) to obtain 

We first use the inequality log(1 + U) 2 u/(1 + u) (valid for 

for all x and p. By Lemma Rl, the 
approximation, 

h(x) = p ep+l &si)p+x(’ + 

+l+PN > e-x 
- , 

fact that r( p f 1) = pT( p), and Stirling’s 

X -(p+x) 1 

P+l 1 xJl+p+x ’ 

G(p+l) 
/jGi ep+l xP_l evx 

(p + l)p+‘& pT(p) xx eX(p + l) 

p+l 1 

! 1 

P+x 

P+l 

x 1+x 
i P+l 1 

-(p+x) 
P 

~~ji-Tj?T 

= ew12(P+l)) 
xp-l --x 

TCPe) . 

e+(x%P) 

The derivative of $I is 1 + log(x) - log(p+l+x)+l/(p+l+x), and the 
second derivative is ( px + ( p + l)2)/(x( p + 1 + x)~), which is always positive. 
Hence, on any interval, C#J attains its maximum at one of the two ends. At x = 0, 
we have +(x, p) = 0. For x 5 c( p + 1) with c variable for the time being, we see 
that 

+(x, p) 15 max(O, p(c + log(c) - (c + 1) log(c + 1)) 

+c(1 + log(c) - log(c + 1))). 

It is convenient to choose c such that the coefficient of p is zero. This yields the 
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value of c given in the statement of the Lemma. For that value, and all 
x<c(p+l),wehave 

r&C, p) IC(l +log(c)-log(c+ 1)) =log(c+l). 

This concludes the proof of Lemma R3. 

Proof of Lemma R4. We start with I/J(X) = log(p) + (p + 1) - (l/2)6 + (p 
+ x - 1) log(x) - ( p + x + (l/2)) log( p + x + l), and observe that 

p+x-1 
$‘(x)=log(x)-log(p+x+l)+ x - 

p+x+1/2 

p+x+l 

= log x - 
i 

l/2 
p+x+l 1 

+p-l+ 
X p+x+l’ 

Also, 

q/‘(x) = ; - ,,;+ 1 - 9 - l/2 
(p+x+l)* 

= 2x-p*+1 
1’2 <o 

x2(p+x+l) - (p+x+1)2 ’ 

for 2xIp*- 1. Thus, 4’ is nonincreasing as x t. We only verify that it is 
positive when 4x I p* - 1. Using the inequality log(1 + u) I 2u/(2 + u), valid for 
all u > 0, we note that, temporarily setting x = c( p + l), 

~wP+l))=lw(~)+ c[p;ll) + (p+;;;c+l) 

+1og1+; - 
i 1 

l/2 
c(p:l) + (p+l)(c+l) 

1 2 
2 

l/2 
c(2c + 1) - c(p + 1) + (P+w+l) 

l/2 
2 (p+l)(c+l) ‘O 

when 2c + 1 I (p + 1)/2. This is satisfied if and only if x I ( p* - 1)/4. 
The second part of the Lemma follows directly from Taylor’s series expansion 

with remainder. 

Proof of Theorem R2. Without work, we have q, + 1 as p -+ 00 under the stated 
conditions. We will now show that qt --) 0 as p + 00. We first recall that 

$(t) 2 1 
2 l/2 

c(2c + 1) - c( p + 1) + (p+l)(c+l) - c(2c1+1) 

since c = o(p). Also, using 1 - (1 + c) log(1 + l/c) I - 1/(2c + l), we have 

h(t) 5 p ’ 
(c+l)(P+l) _ 

6 (c(p+ 1))2 

e (p+l)/(2c+l) 1 _ -,-3/* e -p/Gc+l) 

GG 
9 
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because c + co. Thus, 

4/= 
ho < (1+ o(l)) 

dw> - J g e-(P/(2c+l)) + 0 as p-,00. 

To choose c, we minimize q, + (q, - 1). Let us indicate very roughly how one 
can proceed. First, under the conditions of Theorem R2, q, - 1 - 3/2c. Equating 
this with the asymptotic bound for qt given above, we obtain a close-to-optimal c. 
One functional iteration started at c = p yields the value 

P 1 
c= -- 

8p2 2’ 
log T 

( i 

With this choice, q, + q, - 1 - q1 - (3 log p)/p as p + 00. 
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