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Abstract: Let f,, be the kernel density estimate with arbitrary smoothing factor h and arbitrary (absolutely integrable) kernel 

K, based upon an i.i.d. sample of size n drawn from a density f. It is shown that 

and that 
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1. Inttoduction 

In this paper, we give a short proof of a lower bound for the expected Li error for the kernel density 
estimate 

where K is an absolutely integrable function (the kernel), h > 0 is a smoothing factor, K,,(x) p 

(l/h)K(x/h), and Xi,. . . , X,, are i.i.d. random variables with common density f on the real line 

(Rosenblatt, 1956; Parzen, 1962). The main result is 

Theorem 1. 

Theorem 1 states that even if we are allowed to choose f, K and h, we can’t possibly have an expected 
error that is roughly speaking smaller than about l/(m). The lower bound is the price we have to pay 
for the use of the kernel estimate. This result could be used to determine if n is large enough for someone 
to be able to use the kernel estimate. It also states that under no circumstances can the kernel estimate 
compare favorably with an estimate which, for a given f, has an expected error 0(1/h). The latter 
estimates are usually “parametric”. 
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There are two kinds of universal lower bounds one can study. First, one might consider lower bounds 
for 

jjy( JIM) 

The bound depends upon n and f only, and is in the spirit of a celebrated L, lower bound obtained by 
Watson and Leadbetter (1963) (see also Davis, 1975, 1977). Unfortunately, if one takes the infimum over 
all f of the Watson-Leadbetter lower bound, one obtains zero, since the L, criterion is not scale invariant. 
Furthermore, lower bounds that depend upon f are less useful for determining sample sizes since one does 

not know f in the first place. 
For another density-free lower bound for the kernel estimate, see for example Devroye and Penrod 

(1984) (or Devroye and Gybrfi, 1985): 

inf E(SIf,-fl)p(0.86+o(l))n-2/5. 
KsK,h,f 

Here the class K is the class of all symmetric densities. It is well known that by allowing negative-valued 
K with vanishing positive moments, better rates than ne2j5 are achievable for very smooth densities f. In 

fact, the rate that one can achieve is limited by the smallest s for which jx”K# 0. The rate l/6 can be 
obtained for densities f with bounded spectrum (i.e., whose characteristic function has compact support), 
provided that a kernel is used whose Fourier transform is flat in an open neighborhood of the origin (see 
Devroye and GyBrfi, 1985, Section V.ll, for a discussion; see also Ibragimov and Khasminskii, 1982). 

Note also the contrast with minimax lower bounds, which are valid for all estimates (not just the kernel 

estimate), but only tell us about the worst density in a given target class of densities. 

2. Proof of Theorem 1 

At a crucial junction, we will need the following lower bound (see, e.g., Devroye and Gyorfi, 1985). 

Lemma 1. Let XI,. . , X,, be i.i.d. zero mean random variables with finite first absolute moment. Then 

The proof of Theorem 1 is based upon Fourier transforms. Let C$ be the characteristic function for f, 

and let 4 be the Fourier transform of Kh defined by q(t) = /ei’“Kh(x) dx. Observe that the convolution 
f *Kh has Fourier transform cp( t)#( t). The dependence upon h is absorded in 4. From simple inequalities 
(see, e.g., Devroye and Gyiirfi, 1985, p. 139), we have 

E( jlf-f, 1) >Jlf-f*Kh I z supI~(t)-cP(t)~(t)I =supI+I 11-41. 
I 

Also, 

where $J~ = (l/n)Cy=, eitq is the empirical characteristic function. Note that we used the fact that the 
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Fourier transform of f, is ~~4. Now, we can finally use Lemma 1. Indeed, I+,, - + 1 >, / Re(&,) - Re( +) I. 
A similar inequality holds true for the imaginary part. But 

Re(%) - Re(G) = i ,$i (cos(tT) - Re(+(t))) 

is an average of n i.i.d. zero mean random variables, whose absolute value does not exceed 2. By Lemma 1, 

fiE(IRe(Gn,) - Re(+) 1) 2 (l/fi)E(lcos(t&) - Re(+(t)) 1) 

2 (l/m)E((cos(rX,) - Re(G(t)))‘) 

= (1/\/5z)(i + tRe(e(2t)) - Re’(+(r))). 

A similar argument on the imaginary part can be used to show that 

fiE(Ilm(%) - lm(+) 1) 2 (l/m)(t - iRe(+(zt)) - 1m2(+(t))). 

Averaging the two bounds yields 

Jt;E( I @,a - G I> 2 (l/m& - I + I ‘). 

Collecting all the bounds shows that 

E(/IJ,-f I) ==(sypl1-4I 

2 supm=( 11-41 

l@Jl, suPI+ln -“‘(l/m)(l - I + I’,) 

IGI, l;l~-l/‘(l/m)(l- ld2)) 

-“‘(l/m)(l- [$I I’)). >+supmin( 1~1~ n 
f 

The minimum is maximal when both operands are equal, which occurs for 

I+I=;(-~+J128n+4)=fJiZs;;(-1+/1+4/(128n)) 

4 
use m 2 1 + 

E 

256n/l+ 4/(12&r) 2m 

The value for I + I is between zero and one, so that by the continuity of 9, it is attained for some f. The 
sought lower bound is : times the given value of I + I. 0 

Table 1 gives some constants. 

Table I 

Sample size n 

1 
10 

100 

1000 

Lower bound 

0.043519 
0.013953 
0.004418 
0.001397 

Sample size n 

10000 
100000 

1000000 
10000000 

Lower bound 

0.000441 
0.000139 
0.000044 
0.000013 
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3. An asymptotic bound 
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We can give another inequality which is slightly better (by a factor of l/a) than the bound of Theorem 1 
for very large n. It is not as good for small and moderate values of n. We will only indicate where the 
proofs require modification. 

Theorem 2. 

In particular, 

li--‘,“f phffJ;;E 
7 1 

(/lr,-f I) >ik. 

At a crucial junction, we will need the following lower bound (see Devroye, 1988, Lemma 2). 

Lemma2. L&X,,..., X,, be i.i.d. zero mean random variables with finite first fourth absolute moment. Then 

n 
E 

iI ii 
$ is1 Xi > i/m - (1/4n)1’4E1’4( X$). Cl 

Proof of Theorem 2. We proceed as in the proof of Theorem 1. By Lemma 2, 

Jr;E(IRe(~~)-Re(~)I)~f\/ E((cos(tX,) - Re(+(t)))‘) - 2(1/4n)1’4 

2: E(cos2(tX1) - Re2(+(t))) - 2(1/4n)“4 

= t/i + :Re($(2t)) - Re’(+(t)) - 2(1/4n)“4. 

A similar argument on the imaginary part can be used to show that 

fiE(IIm(+n) - Im($) I) > i/i - iRe(G(2t)) - Im2($(t)) - 2(1/4n)1’4. 

Averaging the two bounds, and using the inequality 6 < fi + 6 yields 

J;;E(I~~-Q,()1,a~~-2(1/4n)1’4~:(1-21~I)-(4/n)”4. 

Collecting all the bounds shows that 

E(/lfn-f I)am=[sypl1-$I l+l, sqpl~ln-‘/2(:(1-21~l)-(1/4n)“4)) 

3 swmm ( I1-~Il91~ I+ln -‘/‘(+(l - 2 I + I) - (1/4n)1’4)) 

>::upmin( l$l, n-1’2(~(l-2~~~)-(1/4n)1’4)). 
f 

The minimum is maximal when both operands are equal, which occurs for 

I ~ I = l/(86) - V(4n3)1’4 

1+ l/(4&) . 

The lower bound in question is half this value of I + 1. 0 
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