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ABSTRACT

A random m-ary leach tree is constructed from a random permutation of 1, . . . , n. A la�
of large numbers is obtained for the height Hn of these trees by applying the theory of
branching random �alks . In particular, it is sho�n that Ha/log n - y in probability as
n ---~ oo, �here y = y(m) is a constant depending upon m only. Interestingly, as m ---~ 00 ,
y(m) is asymptotic to 1/log m, the coefficient of log n in the asymptotic expression for the
height of the complete m-ary search tree . This proves that for large m, random m-ary
search trees behave virtually like complete m-ary trees .
Key Words : analysis of algorithms, asymptotic behavior, binary search tree, branching
process, height of tree

7 . INTRODUCTION

In Devroye [5, 6], �e applied the rich theory of branching processes in the
analysis of the height of random binary search trees that are constructed by
repeated insertions of elements of a random permutation . The purpose of this
note is to extend those results to the case of m-ary search trees .

For the random binary search tree, under the standard random permutation
model for the data, a variety of techniques have been used in the analysis of
various quantities. For example, the result that the expected depth of the nth
node in an n-node tree is asymptotic to 21og (n) can be found in most textbooks
on data structures and algorithms [1, 2,14] . The limit la� of the depthh of this
node, and various other properties �ere obtained in Lynch [16], Knuth [5],
Sedge�ick [24], Pittel [21], Kemp [12], and Devroye [7] . The height H„ of a
(random) tree �ith n elements is the number of nonempty levels minus one .
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Flajolet and Odlyzko [8] studied H„ under other models of randomization ., For
the binary search tree, Robson [23] and Pittel [21] provided the first analyses of
H„ . The follo�ing result �ill be generalized in this note :

Theorem 1. [1, 2] . Let H„ be the height of a random binary search tree . Then

c log (n)
-*1 in probability

and

E(H) clog (n)

�here c = 4.31107 . . . is the solution of c log (?e ) =1 ; c ? 2.
c

Note that "in probability" is to be taken in the standard probability theoretical
sense. In combinatorial jargon, this corresponds to "almost all ." Thus, the first
statement of Theorem 1 can be rephrased as follo�s : for all E > o, almost all
permutations of 1, . . . , n yield trees of height Ha bet�een (c -- E) log (n) and
(c + E) log (n) as n -~ o.

The m-ary search tree is often attributed to Muntz and Uzgalis [2o]. It �as
introduced because of external memory problems ; nodes should be thought of as
pages that reside in external memory (m is thus in the hundreds). Each node
holds up to m -1 elements, and is childless �hen it is not fully occupied . Within a
node, the elements are usually kept in an array or a linked list in sorted order .
The advantages are clear : the number of node accesses is �ay do�n �hen m is
large, and �ith binary search �ithin each node, the number of comparisons
typically improves as �ell over its binary counterpart �hen �e search for an
element.

Several results are kno�n about Ln (the distance bet�een the root and the
n + 1-st element) and C1, (the number of comparisons made �hen that n + 1-st
element is inserted). Mahmo uo and Pittel [18] have sho�n that L ,, is in probabili-
ty asymptotic to c log n �ith c =1 l (hm -1) , �here hm = E' 1~(1/i) . (Note that �e
reserve the notation H,,, for the height of a tree .) Under a different model of
randomization, L TZ �as also analyzed by Halton [9] . The properties of C1z are
related to those of L,,, but depend upon the kind of list search that is used in a
node �hen that node is traversed. Mahmoud [17] - sho�ed that the average
internal path length is asymptotic to c n log n . But the je�el on the cro�n is the
joint asymptotic distribution of (L,, ,C,,), obtained by Mahmoud and Pittel [18] .
The random permutation model can be made into an infinite incremental model,
�hen �e think of the inserted elements as a sequence of i .i.d . uniform [U, 1]
random variables. Under this model, Mahmoud and Pittel [18] proved that almost
surely, L,, /log n E [d - €, c + €] for some positive constants c, d, and any fixed
E >0. Since H,, ~ L,, _ 1 , this implies that lim inf H,, /log n ~ c almost surely as
�ell . In the present article, �e identify this constant c, and sho� that H,,!
log n ---+ c in probability :
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TABLE I

Theorem 2 (The main result) . Let y > 1 /(hm - 1) be defined as

m-1
y ~inf{c>1/(hm -1) :t+clog(m!)-c ~ log (t+i)<0 ,

�here t > 0 is the unique solution of the equation

1 rn-i 1
C

Then Ha /log n ----~ y in probability as n -~ °o . Furthermore, for all p >0,

Finally, lim y(m) log rn = 1 .m-~

In Table I, some values for c are provided . For comparison, �e also sho�
1 /log m, the coefficient of log n in the asymptotic height of the best possible
m-ary tree, and 11(hm -1) , the coefficient of log n in the asymptotic expression of
ELM , the depth of the n + 1-st inserted element .

2. SPACI NGS of UNIFORM VARIABLES

We begin �ith an important distributional observation regarding the sizes of the
m subtrees of a node . Consider a random m-ary tree �ith n ~ m --1 . Then the
root node has subtrees of sizes N 1 , . . . , N,, . We have the follo�ing property :

log" n
EH

	

p--- y as n - ov .

i=1

m y(m) 1 /log m 1 /(h„, - 1)

2 4.3110 1 .442695 2.000000
3 2.4699 0.910239 1.200000
4 1 .8387 0.721348 0.923077
5 1 .5139 0.621335 0.779221
6 1 .3133 0.558111 0.689655
7 1 .1760 0.513898 0.627803
8 1 .0753 0.480898 0.582121
9 0.9979 0.455120 0.546756

10 0.9362 0 .434294 0.518412
20 0.6521 0 .333808 0.384950
30 0.5473 0 .294014 0.333891
40 0.4894 0 .271085 0.305014
50 0.4515 0 .255622 0.285779
60 0.4242 0 .244239 0.271749
70 0.4034 0.235377 0.260903
80 0.3867 0.228205 0252176
90 0.3731 0 .222232 0.244944

100 03615 0 .217147 0.238813
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P(N >_ i)

Lemma 1. The random variables N1 , . . . , Nm are identically distributed . Further-
more, Nl is stochastically smaller than Un and stochastically larger than U(n -
m +2) ---1, �here U is distributed as the minimum of m -- 1 i . i . d. uniform [0, 1]
random variables, in fact, there exists an embedding in a rich enough probability
space such that N 1 ~ Un .

Proof of Lemma T . The first statement of the Lemma is rather obvious . In vie�
of it, �e can �rite N instead of N I . For integer i,

~n-11
	m-11 (n-i)(n-m-i+2)

(m-1)

n

	

n(n-1) • • • (n-m+2)

This is at most equal to ("R̀)'"-' = P(Un ? i) and at least equal to
( ° n m2 Z+ )ni-1 = P(U(n - m + 2) >_ i) . To prove stochastic majorization, �e con-
sider a real number x E [0, n - m + 1] . Then

P(N>_x)=P(N>- fx])sP(Un? [xi)<_P(Un?x),

and

P(N?x)=P(N>_ {xl)?P(U(n-m+2)? Ix])>_P(U(n--m+2)?x+l),

�hich �as to be sho�n . The last claim of the lemma follo�s from a simple
argument. Consider the interval [0, n] and its n unit length subintervals . Consider
m i .i .d. uniform random variables on this interval, and in particular the leftmost
of these values, V. Next, remove all the points that fell into an already occupied
bin (subinterval), and replace these by ne� independent points . Repeat this
process until all bins have at most one point . Note that N1 is equal to i if and only
if the first i bins are empty and bin i + 1 is not empty. But clearly, N1 s V, �hich
is distributed as nU .

	

∎

We no� return to a tree associated �ith the m-ary tree, follo�ing a construc-
tion from Devroye [5] . Indeed, Lemma 1 suggests that the sizes of the subtrees of
the root, �hen divided by n - m + 1, are about distributed like the m spacings
induced on [0, 1] by a sample of m -1 i .i.d . uniform [0,1] random variables .
These spacings �ill be denoted by (S~ , . . . , Sm } . A collection of random variables
X1,. , X,,, is said to be negatively associated (NA) if for every pair of disjoint
subsets A, B of {1, . . . , n } ,

Cov(f,(X; ;iEA), f2(X, ; I EB))<_0

�henever fl , f2 are increasing [11] . For such random variables, and any sequence
of numbers x1,. . . , x,
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m m

P fl[X~x,i

	

~ H P(X1 ~ x i ) ,

m m

P

	

[X~x]i

	

i C 1 1 P(X1 C xi)
t-1

	

i=1

[18, property P3]

Lemma 2. Let N1 , . . . , Nm be the sizes of the subtrees of the root of a random
m-ary tree, and let S i , . . . , Sm be the spacings induced on [0, 1] by a sample of
m - 1 i . i . d. uniform [0, 1] random variables . Then, the follo�ing inequalities are
valid for any positive numbers x 1 , . . . , xm

P(N1~x1, . . .,Nm>xm)<P(nS1~x1, . . .,nS,,,

	

rn

P(N1?x1, . . .,Nm~xm)?P(nS1-(rn-1)?xz, . . .,nSm--(m--1)}xm)

Furthermore, N1 , . . . , Nm are negatively associated .

Proof of Lemma 2 . We begin �ith the follo�ing fact (proved in Mahmoud and
Pittel [l8] and again in Mahmoud [17]) : if i1,. ik are nonnegative integers,
then

P(Nl = i 1 , . . .

�hen E k 1 ik = n --- (m ---1), and the probability is zero other�ise . This immedi-
ately implies that for any sequence of nonnegative integers (i 1 , . . . , i,,,),

P(N1~i1, . . .

	

im)=P N1 ~O,N2 }~,

'N,n_Im , _1/l n 1 '
\m-li

ik)

~:)m-1 O , Nm

	

tk

( fl >k-im

- 1 1

< C1 - n

\mn 1/

�here E denotes E k 1 , and u + = max (u, 0) . For any sequence of nonnegative
numbers (x1 , . . . , xm ), �e have

P(N1 } x1 , . . . , Nm xrn ) P(Nl j 1x11 . . . , Nm } FX1)m

(1

= P(n5 1 ~ X1 ,

	

, fS„= ~ xm } .

Here �e used a �ell-kno�n fact about the distribution of uniform spacings [22] .

m-1

	

m-1
rXkl /

	

~ 1 - 1n

	

i+

	

n

	

) +
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Follo�ing the arguments of Lemma 1, �e obtain also

P[N1~x1, . . .,Nm~x1z}
m-1

	

1

	

m-1

n-m+2 ~ fXkl)
+ ~(1 n-m+2 E(l+xk))

=P((n--m+2)51 1+x1, . . .,(n--m+2)Sm~1+x„,)

~P(nS1-(rn-1)?x1,

	

,nSm"`(~"'1)'~m)~

�hich �as to be proved. Next, consider Y1 , . . . , Y,,,, i . i . d . uniform random
variables on {O,1, . . . , n } . Then given E m 1 1i = n - m + l , �e note that
(Y1 , . . ., Y,,) is distributed as (N1 , . . . , N,,,) because uniformity is not lost by
conditioning on subsets of the space . Note also that for every increasing function f
and subset A of {l, . . . , m } of size k c m,

E f(Y iEA)l

	

yi =s
lEA

is ~' in s. Thus, by Theorem 2 .6 of Joag-Dev and Proschan [11], the conditional
distribution of Y1 , . . . , Y,n given E m 1 Yi = s is NA for any value of s .

	

∎

3. AN ASSOCIATED TREE OF RANDOM VARIABLES

We associate �ith the random m-ary tree a complete m-ary tree Tk �ith k full
levels of edges . We use the symbol p rather freely to denote a path from root to
leaf (clearly, there are m k such paths) . With each collection of m edges emanating
from an internal node, �e associate an independent copy of (S 1 , . . . , Sm ), the
spacings induced on [o, 1] by m -- 1 i .i.d . uniform [o, 1] random variables. The
number of independent replicas of this is equal to the number of internal nodes .
To simplify the notation, �e say that edge i has random variable X i associated
�ith it. Then �e define

1,

	

k-o,
max fJx, k>O .

P iEp

For n ~ 1 and k ~ 0 integers, in the binary case, it is true [5] that P(H 1z ~ k)
P(Vk ~ 1/n) and that P(H,, ~ k) ~ P(Vk ~ (k + 1) /n) . This connection allo�s one
to focus on the associated tree only . Unfortunately, these inequalities (or similar
ones �ith 1 + k replaced by 1 + k(m -- 1)) are much more difficult to establish for
m >2. Instead, �e �ill bypass them, and use a more direct proof, �hich
nevertheless exploits the connection �ith the associated tree .

There is a second type of tree, �hich is defined as the previous one, except that
each instance of (S 1 , . . . , Sm) is replaced by m i . i . d . copies of S 1 , denoted by
(S1 (1), . . . , S 1 (m)) . The random variable Vk is formally replaced by Zk . The
connection bet�een Zk and H,z is dealt �ith in Lemma 4 .

DEVROYE
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4. AN UPPER BOUND

Lemma 3. Let S 1(1), . . . , S1(k) be i . i . d. random variables, each distributed as S l
(defined in Lemma 2), �here k ? 1 is an integer . We have

k

P(H„ ? k) <_ m'`P(n ~ Si(i)>_ 1) .
i=1

When k = fc log nl for some constant c > y > 1 /(hm -1), this is further bounded
by n-'', �here 0 < ijTco as cT oo . In particular, �e can conclude that

lim sup P(H„ / log n ? y + e) = 0

for all e >0. Furthermore, for all p >0,

P(Hn

Proof of Lemma 3 . Let N1 , . . . , Nm be the sizes of the subtrees of the root,
�here the N1s are as defined in Lemma 2 . Thus,

m

P(H„?k)-<> P(HN>_k-1)=mP(HN>_k-1) .

Since there exists an embedding in �hich H,, is an increasing function of n (use
sequential insertion for example), and since N 1 ~ nS1 (1) on a rich enough
probability space (apply Lemma 1), �e see that the upper bound can be replaced
by mP(HI4S ( 1 )] ~ k -- 1) . We can no� argue by induction on k, after noting that
P(H, z ~ o) _~ 1 if and only if n } 1, if �e agree that the height of an empty tree is
minus one. Thus,

k
P(Hn ? k) ~ mkP(H k

	

~ o) = mkP n [I S1(i) ~ 1
In l1 S~(i)J

	

i - Ii-l

To bound the last expression, �e use Chebyshev's (or Jensen's) inequality,
�ith a yet-to-be-determined parameter t >0 :

lim su
n-�oo

EHP
	n

log" n -, P

~ 1 ~ mknt ~ E(Si(i)) - m knrEk(si)

1

	

k

	

1
= mkn`( f P(S l > xl/`) dx) = mkn`( Jo t(1- Y)m-1Y`-1 dY

k ,(r(m)r(r+ ilk=m n r(m+t) / -n (1)
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Let t* be the unique positive value of t that minimizes this expression . It is easy to
check that it can be obtained by setting the derivative of the logarithm of the
bound to zero . This yields the equation

	

`

m-~ 1log n - k

	

----: =0 .

In our proof, �e are interested in taking k = fc log nI for some c > 11(hm -1).
Thus, instead of �orking �ith t * , �e define t as the unique solution of the
equation

m-i 1

	

1
~_ t+i

	

C

The properties of the function t are derived in Section 7 . For c =1 /(hm -1), �e
have t =1 . Furthermore, tTco as cToo, and for c > 1 /(h m -1) (and thus t > 1), (1)
does not exceed

exp (log n(t + c log (m!) - c E log (t + i))) .

Recall the definition of y in Theorem 2. Note next that for c > y, the upper bound
(2) becomes

e -r1 lag n = n -f

�here 11>0 depends upon c only . In the next section, �e �ill prove that as ctoo,
ntoo . For fixed p >0, �e find d > c so large that 11(d) > p, and �e choose
c - y + E for arbitrary small E >0. Then,

EHn C (c log n)" + (d log n)"P(Hn >_ c log n) + npP(H„ >_ d log n)

_< (c log n)p•+ 0(1) .

This concludes the proof of Lemma 3 .

	

∎

5 . LOWER BOUNDS

Lemma 4. Let n ~ 1 and k ~ 0 be integers . Then

P(Zk~l+k(m-1))~P(Hn~k)n

Proof of Lemma 4. We proceed by induction on k. For k =0, the statement is
obviously true for all n ~ 1 . We assume that the inequality holds up to k --- 1 and
for all n . First �e sho� that the bound remains valid for k and all n ? 1 . The
bound is obviously valid for all n ~ m --1, so �e need only consider n > m -- -1 .

Let us introduce a random collection of uniform spacings, (S 1 , . . . , S,. j,
independent of all the other random variables that �e shall mention. Let
N1 , . . . , Nm be the sizes of the subtrees of the root, i .e ., E N~ = n - (m -- 1 ) if
n ? m -1, and each N1 = 0 if n c m -- l . Let Zk_ (1}, . . . , Zk_ l(rn be m i .i .d .
copies of Zk_ l , defined just before Lemma 3 . These random variables �ill be
associated �ith the subtrees of the root . If HN1 , . . . , HNm are the heights of these
subtrees, then �e have,

DEVROYE
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m
P(H„>_k)=P U [HN ?k-1])

provided that �e arbitrarily define the height of the empty tree to be minus one .
Thus, by our induction hypothesis, and various independencies,

m

P U [HN.~k-1}IN1, . . .,Nm

•

	

1-P(n [HN.<k-1]IN1, . . .,Nm)

m

=1 - fl P(HN< <k-l) N,)

m

P(N;Zk_,(i)<1+(k-1)(m-1)IN,)

•

	

1-P(maxNjZ k _ 1 (i)<1+(k- 1)(m-1)INi, . . .,Nm) .

Thus, unconditioning, and using Lemma 2,

P(Hn k)~P(maxN=Zk_l(i)~l+(k-1)(m--1)) .

No�, �e condition on the collection of Z k _ 1 (i)s, 1 i m, and denote the
conditional probability by P* . Let N', . . . , N be i .i.d. random variables distrib-
uted as N1 . Let S1 (1), . . . , S 1 (m) be i . i . d . random variables distributed as S 1 . By
Lemmas 2 and 1, �e have

P*(max N;Zk_ 1(i) ? 1 + (k -1)(m -1))r

•

	

1- P*( n [NjZkj (i) -<_ 1 + (k -1)(m -1)])

?1-P*(n [NZk_l(i)1+(k-1)(m-1)])*<_

1- P*( (1 [Sl(i)(n-m+2)Zk1(i)<

	

_Zk_1(i) + 1 + (k -1)(m -1)])
t

P*( U [nSl (i)Zk1 (i)?

	

_(m -1) + 1 + (k -1)(m -1)))

•

	

P*(malt nSl(i)Zk _ 1 (i) >_ 1 + k(m -1)) ,

�hich, if �e un-condition again, and recall the definition of Zk , yields

P(H„ ? k) ? P(nZk ? 1 + k(m -1)) .

	

∎
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6 . BRANCHING RANDOM WALKS

We recall the follo�ing result from the theory of branching random �alks, as
applied to random variables

Xk = max
P iEp

�here the Xis are i .i.d. random variables associated �ith all the edges of a
complete rn-ary tree having precisely rnk leaves (i.e., k full levels of edges) ; by p
�e denote a path from the root to one of the leaves of this tree . It is assumed that
X, is such that

p(t) = mE(e`Xl ) < o0

for some t > o .

Lemma 5 [24---23] . Xk 1 k - •-~ 0 almost surety as k -+ 00, �here

o =° SuP {e : p(O)>l},

and

µ(9) ~ inf {p(t)e t°- : t > 0) .

The proof of Theorem 2 follo�s directly from Lemma 3 and Lemma 6 belo� .

Lemma 6. Let y be as in Theorem 2 . Then, for any € >0,

lim P(Hn (y -- €) log n)=1 .

Also, for all p >0, lire inf EH IlogF n ~ y" .

Proof of Lemma 6. The second half of Lemma 6 follo�s trivially from the first
half. Also, �e note that log Zk is distributed as Xk used in Lemma 5, provided
that �e let X, be a random variable that is distributed as log (S 1 ). The quantities
used in Lemma 5 can no� be calculated for this specific example . We have

p(t) = mE(e`X' ) = mE(S i ) =
I'(m+1)I'(t+ 1)

rim + t)

Furthermore,

µ(9) = inf {e-`B rim + 1)I'(t + 1) : t > 0}I'(m + t)

and O = sup {O : µ(9) > 1} . The minimum in the definition of µ(B) is reached for
that value t > 0 for �hich

DEVRQYE
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-6=

1

1 i

i - I t + t ∎

A quick inspection sho�s that - 6 is related to t exactly as 1/c is related to t in its
definition in Theorem 2 . Hence, y = -1/0 .

Lemma 5 implies that k log 2k -*0 = --- y almost surely as k -* oo . Thus, for
E >0, �ith k

o
[('y -- E) tog nI, and applying Lemmas 4 and 5, �e obtain

P(H„?(y-e)logn)=P(H„?k)

l+k(m-1)1
~P(Zk~	 I

=P(k log (Zk) >_ k log( . +k(n-1) ) 1-+ 1 as n - 00

provided that the limit of k log ('+kin -1) ) is smaller than -117. We note that this
limit is -1/(y-e), and thus �e are done .

	

∎

7. PROPERTIES OF y

In this section,, �e are concerned �ith the constant y = y(m) of Theorem 2, and
�ith some related facts needed in the proof of Lemma 3 . It helps to introduce
some notation . Recall the definition of the function t = t(c) as the unique solution
of the equation

m-i 1V
c

	

t+i'

Throughout, �e assume that c >_ 1 /(hm - 1) . At this threshold value, t = 1, �hile
tToo as cTOO .

We define 1Y(u) = log m! - E;"i t log (u + i) and S(c) = t + ctY(t(c)) . Observe
that y = inf (c> 1 /(hm -1) : S(c) <0), and that i7 in the proof of Lemma 3 is
nothing but -S . It is note�orthy that 1 + c'Y'(t(c)) = 0 by definition of t . The
function tY decreases monotonically from 0 (at u = 1) to -00 (as u-* oo) . We verify
the follo�ing statements about the function S(c) :

A. S(1 /(hm -1)) = 1 .
B . S'(c) = tY'(t(c)) (use the fact that 1 + cIY'(t(c)) = 0) . Thus, S' decreases

monotonically from 0 (at c =1 /(h m -1)) to - 0o (as c--> 00) . This implies
that S is a concave function, and in particular, that y is indeed �ell-defined .

C. For all c ? 1 /(hm -1), S "(c) <- - (m "`1)c , . This can be seen as follo�s . First
note that 1 /(c 2t'(c)) = E ;"_~ 1 (t + i) -2 s f "'+ `-1 x-z dx = (m - 1) l(t(m + t -
l)<_ (m - 1) lm . Thus, S"(c) = tP'(t(c))t'(c) _ -t'(c) lc <- -m/(m - 1)c 3) .

D . By Taylor's series expansion about c = 1 /(h m - 1), �e obtain the follo�ing
inequality from observations A, B, and C :

m(c	- 1/(hm3l )) Zs(c) ~ 1 -

	

	.
2(m - 1)c
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E. If S(c) s 0, then �e can conclude that y s c . With e > 0 and c = (1 +
e) l(hm - 1), �e see that S(c) < 0 �hen
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