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Absfract: Let EN, be the expected number of extreme points among n i.i.d. points with a common radially symmetric distribution in 
the plane. We show that for any monotone sequence wn t co and for every e z 0, there exists a radially symmetric distribution for 

which EN,, 2 n/w,, infinitely often and EN, d 4+ E infinitely often. In addition, there exists a unimodal radially symmetric density 

such that EN, > r~"~/o~ infinitely often and EN, < 4 + E infinitely often. 
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1. Introduction 

Let Xi,..., X, be i.i.d. random variables with a radially symmetric distribution in the plane, i.e. Xi is 
distributed as (R cos 0, R sin O), where 0 is uniformly distributed on [0, 2~1, and R is independent of 
0 and has a given distribution on the positive reals. We let N, be the number of points on the convex hull 
formed by Xi,. . . , X,, (the convex hull is the subset of Xi,. . . , X, consisting of all extreme points; and a 
point X, is extreme if all XI’s belong to one halfspace defined by a hyperplane passing through X,). We 
would like to show by means of a constructive counterexample that EN, can oscillate wildly as a function 
of n, even for this restricted class of distributions. 

Theorem 1. Let w,, t 00 be given, and let E > 0 be arbitrary. Then there exists a radially symmetric 
distribution such that 

and 

EN, 2 n/w, infinitely often 

EN, Q 4 + E infinitely often _ 

In the example, EN, oscillates infinitely often between approximately 4 and an upper bound which is 
o(n) but as close to n as desired (because w, is allowed to increase at any slow rate). Note that the lower 
bound cannot be improved upon in view of asymptotic bounds for radially symmetric distributions 
obtained by Carnal (1970). Our examples are mixtures of absolutely continuous and singular distributions, 
but trivial modifications can be introduced that allow us to construct pure absolutely continuous 
distributions as well. For such distributions, Devroye (1981) has shown that EN, = o(n), so that the upper 
bound of Theorem 1 is also not improvable. For particular radially symmetric distributions, such as 
normal distributions, or the uniform distribution in the unit circle, EN,, is well studied. We refer for this to 
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the pioneering work of RCnyi and Sulanke (1963, 1964), and to the key contributions of Carnal (1970), 
who treated many distributions according to the rate of decay of the tail of the distribution of R. Other 
major contributions are due to Efron (1965), Raynaud (1970) Eddy (1980), Eddy and Gale (1981), 
Groeneboom (1988), Borgwardt (1987), Davis, Mulrow and Resnick (1987), Dwyer (1988, 1989), Brozius 
(1989) and Borgwardt, Gaffke, Jiinger and Reinelt (1989). Excellent surveys are now available in Buchta 
(1985) and Schneider (1988). 

The example of Theorem 1 uses a pathological distribution for R. We only selected it for convenience. 
The same manner of constructing examples can be employed for ‘nicer’ counterexamples. For example, 
assume that we would like to consider radially symmetric distributions with a unimodal density g( 11 x 11). It 
is known that for the uniform distribution on the unit circle, EN, - cn’j3 for some constant c (RCnyi and 
Sulanke, 1963, 1964). For any unimodal radially symmetric distribution, we have in fact EN, = O(n’13) 

(we could not find a reference for this, but we can show that for all n, EN, < 74 + ~(8~2n)‘/3). These 
results show that the following theorem cannot be improved upon: 

Theorem 2. Let w,, t 00 be given, and let E > 0 be arbitrary. Then there exists a radially symmetric 

distribution with a unimodal density such that 

EN, > n’/3/q infinitely often 

and 

EN,, < 4 + E infinitely often. 

Gruber (1983) (see also Barany and Larman, 1988) has shown that for every wn as in Theorem 2, there 
exists a convex set of unit volume in lRd such that for the uniform distribution on this convex set, we have 

and 

EN, < w, logd-’ n, 

EN, > (l/ti,)n(d-‘)/(d+‘). 

This oscillation result is related to ours, and basically reflects that the extreme cases for EN, are the 
polytopes (small EN,) and the spheres (large EN,,). 

2. Proof of Theorem 1 

We can assume without loss of generality that n/w, + CC (otherwise, replace on by min( w,,, 6)) and that 
on is strictly increasing (otherwise, replace it by w, + 1 - l/n). Let us extend w, to a continuous strictly 
increasing function w(x) on the positive reals, so that its inverse is well-defined. We also need a strictly 
decreasing function p on the positive reals such that p(n) > (5/n)log(20n/e), where E > 0 is arbitrary. 

To construct our distribution, we need to describe three sequences of parameters, pi, probabilities 
summing to one, r,, certain radii, and n,, certain sample sizes. The latter two sequences will be 
monotonically increasing, while the former is monotonically decreasing in i. We begin with n, = 1, r0 = 1 
and p, = i. Then we compute the other parameters by iterating through the following loop for i from one 
to 00: 

Hz,-, + bY3~2p,,-,)n 
p2, + min(pL,, 1/Wn2,-,)). 
n2, + Imax(pi”“(p2,), i/P2,N 
p2,+] + nWp,2,, lAini,)). 
r2,_1 +- max((3n,,_,)““r,,_,, r2,_2(in:,)““). 
r2, + 100r2,_l. 
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Since p, < 2- 2’-’ for all i > 1, we see that the probabilities sum to a constant c < 0.8. We set p0 = 1 - c. 
To describe the distribution of (R, O), it helps to look at the probability space for the random vector 
(Z, R *, O), which consists of three independent random variables: 

(1) Z is a random integer with distribution determined by the vector of pi’s: P(Z = i) =pi, i 2 0. 
(2) R * has density a/r’ +a on [l, cc), and a > 0 is a positive integer chosen as a function of E only. 
(3) 0 is uniformly distributed on [0, 271. 
To put things together, define R by the following rule: 

r1 if Z=O, 

R = r,,_, if Z=2i-1, i&l, 

rziR* if Z=2i, i>l. 

In other words, if Z is odd or zero, we define R = rz, and otherwise R = r,R*. Note also that 
P( R > r 1 Z = 2i) = P( R* >, r/rzi) = (r2i/r)u_ 

Theorem 1 is proved by showing that as i + 00, we have EN,,,_, > n2;_ ,/o,~,~, for all i large enough, 
and EN,,, G 4 + E for all i large enough. This is achieved basically by noting that at sample size n2i_1, the 
convex hull is nearly always formed by the points on the rim of the circle of radius r2,_-1, while at sample 
size n2i, the convex hull is nearly always determined by the points whose radius is distributed as r,,R*. 
The proof consists of showing that failures of these desirable events have on the average an asymptotically 
negligible influence. 

Let N,, and N, , denote the number of data points which are sampled from the ith part in the mixture; 
thus, Nni is binomial (n, p, ). 

Lemma 1. Zfn = n2,_,, we have for all i large enough, EN,, > n/w,. 

Proof. We use an embedding argument. Let the data consist of i.i.d. triples (Z,, R$, O,), each distributed 
as (Z, R *, @), which were defined above. Recall that these three random variables are independent. Thus, 

EN, ~E(Nn,21-lz,n;_,,Rl,~r,,_,11> 

=E 

nE(z,=,=2,-,,z,,;=,[R*~r2,~,11 1 
= np,,-,E(Z[ n;=,LR,cr,,m,ll) (since R, = r2i--1 when Z, = 2i - 1) 

=np2,_,P 
i 

A [Z,=2i-1 or Z,#2i-1, Rk<r2i_l] 
k=2 

i 

i-l 
” 

a nP2r-1 I- c P2J(r2j/r2i-l)a- f Pj 

J=l j=2r i 

>np,,_, l- E 
i (1) 

n 

a - I? (P2i)” 
j=o 1 

>np2i_l(l-n(~)“-n$$--) 

a np,,-,(I - f - 5np,,) >npl,_,(l-t-+)>+n&=e. Cl 
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Lemma 2. There exists an a > 0 depending upon E > 0 only such that if n = n *;, then for all i large enough, 
EN,, < 4 + E. 

Proof. Let us consider the collection C of indices k E (1, 2,. . . , n } for which 2, = 2i. Clearly, C has 
cardinality N”,*,. We need to partition the plane into five sectors of equal angles 2a/5 around the origin: 
these will be called S,, _ _ _ , S,. We would like to use the fact that with high probability, N, = N *, where 
N * is the number of convex hull points among X,, k E C. In fact, if N,, # N *, then one of three events 
must hold, 

The last implication follows from the fact that if all five sectors capture at least one point with R, 2 rzi, 
then in view of r2, > 100 rz,_l, no point with R, < rzi_l can possibly be a convex hull point. Thus, 

EN,,<EN*+n(P(A,)+P(A,)+P(A,)). 

We look at each term in turn. First of all, by resealing, N * is distributed as the number of points on a 
convex hull defined by Nn,2i i.i.d. points drawn from the distribution of (R * cos 0, R* sin 0). From 
Carnal (1970) (see also Dwyer, 1988, 1989), we know that there exists a bounded function f with limit 
L, = 4Gr(a + f)r*(l + fa)/(T(l + a)r*($(a + 1))) such that 

EN* GEf(N,,,,). 

But since Nn,*, is binomial (n, p2,) and N,&(np2;) -+ 1 in probability (this follows from np,, > i + m), 
we see immediately that EN * + L, as well. It is also known that as a JO, L, -+ 4, SO we can pick a SO 
small that L, < 4 + $E. Thus, EN * < 4 + +E + o(1). Also, 

nP(A,)<n* E pj-n2p2;+,< +. 
j=2i+l 

Next, 

Finally, 

nP( A3) < 5n(l - +pzi)” < 5n e-nP21/5 < 5n e-np(n)‘5 < +e. 

Combining all this, we see that EN, < 4 + i.z + o(l) + 2/i + $e = 4 + )r + o(l). 0 

Lemmas 1 and 2 together give us our result. 0 

3. Proof of Theorem 2 

The family of distributions is not unlike that of Theorem 1. The data are determined by i.i.d. foursomes 
(Z, R’, R”, O), where Z is integer-valued with probability vector pi, i > 0, 0 is uniformly distributed on 
[0, 27~1, R’ has density 2r on [0, 11, and R” has density br/(l + r*+O) on [0, co), where b > 0 is a 
normalization constant and a > 0 is a constant depending upon E only. If Z is odd or zero, we set 
R = R’r, (inducing the uniform distribution on the unit circle), while otherwise R = R”r, (which leads to 
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a unimodal distribution with polynomially decreasing tails). Since for fixed Z, (R cos 0, R sin 0) is 
unimodal, the mixture distribution is also unimodal. As before, we define iVni = Xi_, I=,=,. We will make 
use of the inequality P( R” > r) < b/( d), and of the fact that for r 2 1, P( R” G r) 2 b/(2&). 

Now for the definition of pi, r;, ni_ We define w(x) as in Theorem 1. Take a strictly decreasing function 
p on the positive reals with the property that p(n) 2 max(T, lOa/b) log(5n2)/n. We have p > p(x) when 
x 2 pi”“(p). The iterative definition of our constants starts with n a = 1, ‘a = 1, p, = 5. We have, for i 

looping from 1 to 00: 

n2;_r + rmax((2i - 1)/p,,_,, Jnv (3/(Cpi{?,)), p’“‘( p2,_r))1, where C > 0 is a universal constant to be 
defined later. 

p2i + min(p,2i_l, 1/(2in$;_,)). 

n2, + ImW2i/P2iy b”“( P2, ))l- 
Pzi+l +- fin(PL 1/W&>). 

r2i_1 +- max(((b/a)(2i - l)n~i_1)““100r2,_2, 100f-2,_2). 
rzi + 1oor2;_l. 

The sum of the p,‘s sums to a constant c < 0.8, and we set p,, = 1 - c to obtain a proper distribution. 
Note in passing that ni 2 i for all i. 

Let H, be the hull defined by X,, . . . , X,, and let H,; be the hull defined by the subset of these points 
for which Z, = i. The bounds we will use in our arguments are based on the obvious inequalities (valid for 
any i): 

EN,~EIH,iI+nP(H,#H,i), 

EiVnaEIH,jI-nP(H,#HH,i). 

We will show that as i grows to 00 along even integers, and n = ni, then E I H,,i I G 4 + E for all i large 
enough, and nP(H, # H,,i) = o(l). Also, as i grows to 00 along odd integers, and n = ni, then E I H,,i I a 
n’/3/u, for all i large enough, and nP( H, f H,,i) = o(1). This would conclude the proof of Theorem 2. 

For i even, we have E I H,,i I G Ef(N,,) where f is a bounded function with limit L, (see proof of 
Lemma 2), where L, J 4 as a J 0. Thus, E ) H,,; I G 4 + $E + o(1) by our choice of a when EN,,, = np, + cc 
(but this follows from nrpi a i). 

For i odd, we have E I H,; I 2 E(CIVi[3) for some constant C > 0 (RCnyi and Sulanke, 1963,1964). But 

E(CNi/3) > C[np,]“3P(N,,i 2 [np,]) 

2 +Clnpi11’3 

> )C( np,)l” (for all i large enough) 

> n’/3/t.d, 

by an inequality due to Slud (1977), the fact that npi 2 i + 00, and our definition of pi for i odd. 
For i odd, we have H,, = H,,; when all five sectors Sj (see Lemma 2 for a definition) have at least one 

point with Z, = i, R, > iri, when no point has Z, > i, when r,_2 < &,r, (which is satisfied by definition), 
and when for all points with Z, =j < i, j even, we have r,Ry G &r,. Thus, 

nP(H,#H,,),(n2~pj+5n(l-$~p,)n+n2P R”>& 
J>i ! r-l 

~n2(l+o(l))p,+1+5ne~3”P~~20+n2~(~)o 
I 

~ 1 + O(l) i+l + f +; =0(l). 
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For i even, we have H,, = H,,j when all five sectors S, have at least one point with Z, = i, R, 2 ri, when 
no point has Z, > i, when r,_1 < &r, (which is satisfied by definition), and when for all points with 

Z, = j < i, j even, we have 5Ry < &rj. Thus, 

nP(H,,fH,,)Gn2xp,+5n 
jzi 

~ 1+ 41) i+ 1 + ; + f =0(l). 

This concludes the proof of Theorem 2. •I 
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