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Abstract. We study the effect of a well-known balancing heuristic on the expected
height of a random binary search tree . After insertion of an element, if any
node on the insertion path has a subtree of size precisely 2 t + 1 for a fixed
integer t, then the subtree rooted at that node is destroyed and replaced by
a new subtree in which the median of the 2 t + 1 elements is the new root .
If H„ denotes the height of the resulting random tree, we show that H„/log n
-~ c (t) in probability for some function c (t) . In particular, c(0) = 4.31107 . . .
(the ordinary binary search tree), c(1) 3.192570 . . ., c(3) 2.555539 . . .,
c(10) 2.049289 . . . and c(100)-1.623695 . . . .

1 Introduction

Consider an ordinary binary search constructed by standard consecutive inser-
tions of values X 1 , . . ., Xn . It is well-known that when the input forms a random
permutation of {1, . . ., n} (or equivalently, when the input sequence is indepen-
dent and identically distributed) that the height H n of the tree satisfies the follow-
ing convergence property :

Hn -~ 4.31107 . . . a .s .log n

(Robson 1979 ; Devroye 1986) . The purpose of this note is to investigate what
happens to Hn when we apply a very simple heuristic during the insertion pro-
cess .

Bell (1965) and Walker and Wood (1976) introduced the following heuristic
applied to the fringe of the tree : fix an integer t . After insertion of an element
in the tree, verify whether one of the nodes on the insertion path is the root
of a subtree of size precisely 2 t -+-1 . If so, we perform the operation MEDIAN-
ROOT on that subtree . This operation consists of finding the median of the

© Springer-Verlag 1993

* Research of the author was sponsored by NSERC Grant A3456 and by FCAR Grant
90-ER-0291



460

	

L. Devroye

2 t + 1 elements in the subtree, and making it the root . This can be done in
a number of ways, via a splay operation, via a tree splitting method, or by
complete reorganization of the subtree . As t is typically small - t =1 is the
most frequently studied case -, the reorganization of the subtree is less important .

Another way of looking at this, following Poblete and Munro (1985), is
to consider internal nodes and external nodes, where internal nodes hold one
data point and external nodes are bags of capacity 2 t . Insertion proceeds as
usual. As soon as an external node overflows (i.e ., when it would grow to size
2 t + 1), its bag is split about the median, leaving two new external nodes (bags)
of size t each, and an internal node holding the median . After the insertion
process is completed, we may wish to expand the bags into balanced trees .
In fact, what we do with the bags does not matter : if Hn is the maximal distance
between an internal node and the root, and H,, is the height of the tree, i .e .,
the maximal distance between any expanded external node and the root, it
is easy to see that

Hn<H 1z <Hn+2t.

Asymptotically, this is unimportant .
Using the branching process method of proof (Devroye 1986, 1987, 1990 ;

see also Mahmoud 1992) we obtain the almost sure limit value of H,,/log n
for all t. For another possible proof method, see Pittel (1992) . The improvement
in H„ is important for small values of t . Not surprisingly, for every E >0, we
can find a t such that

lim P {H„ > (1+ E) loge n} -0 .
t --~ o0

Unfortunately, the value of t increases very rapidly as 8 J, 0.

2 The expected depth of a node

The depth D„ of the last node when the fringe heuristic is used has been studied
by the theory of Markov processes or urn models in a series of papers, notably
by Poblete and Munro (1985), Aldous et al . (1988). See also Gonnet and Baeza-
Yates (1991, p . 109). Poblete and Munro (1985) showed that

ED,,
hm	=d(t)
n-. log n

and
D,,

-+ d (t) l.p .,
log n

where
Zt+1

d(t) i _~ 1 l+i •

It is a simple exercise to show that d(t) -> 1/log 2 as t j oo . The values of H„
we will obtain below are larger than these . A comparison of the limits will
be provided.
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3 The main result

Theorem 1 A random binary search tree constructed with the aid of the fringe
heuristic with parameter t has the following property :

H„
tog n -' c (t)

i.p .,

where c(t) is the unique solution greater than d(t) of the equation

(1)

and 2(c) is defined by the equation

1

	

2t+1

	

1

C i=t+ 1 ~' + t

A table of values for d(t) and c(t) is given below.

2r+1

	

\
2(c)-c ~ log (1 + ~ ~~~)+clo2g

Remark 1 The existence o a solution . The constant 2 (c) is well-defined whenever

1

	

2t+1

	

1 def 1
C i=t+ 1 1+ i

	

d

This follows from the fact that the left-hand-side of (1) is a concave function
of c, and that at c = d (note that 2(c)=1), the left-hand-side of (1) is positive
(and takes the value 1). The derivative of (1) is

(c) 2t+1
logll+

2
i
c)
)-c~.'(c) 2~ 1

2()
+i +log2

i-r+l
log( 1+

2(c)\

	

i-r+i
2t+1

~

	

2(c)1
-

	

log (1+)+lo2
i=r+1

0,

t c (t) d (t) t c (t) d (t)

0 4.311070 2.000000 10 2.049289 1.490455
1 3.192570 1 .714286 20 1.863726 1 .467601
2 2.779633 1.621622 30 1.782617 1.459539
3 2.555539 1.575985 40 1.734851 1.455420
4 2.411554 1.548863 50 1.702554 1.452920
5 2.309726 1.530900 60 1 .678898 1.451241
6 2.233133 1.518130 70 1 .660617 1.450035
7 2.172976 1.508587 80 1.645976 1.449128
8 2.124195 1.501186 90 1 .633883 1.448420
9 2.083648 1.495279 100 1 .623695 1.447853
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and the second derivative of (1) is

1

	

zr+1

	

1

	

1
ac/a2

	

cac/aa, <o .

Thus, the left-hand side of (1) is a concave function in c .

4 A property of spacings

As in Devroye (1986, 1987), we establish a crucial link between random binary
search trees and trees of random variables. The root of a random binary search
tree splits the n -1 remaining elements in two sets, one for each subtree, where
the size of the left subtree is distributed as Ln U], and U is a uniform [0,1]
random variable. In the model that we are considering, the split is not according
to a uniform [0,1] random variable. Rather, the value U should be replaced
by V, the median of 2 t -+-1 i .i.d. uniform [0,1] random variables . Such a random
variable will be called a median-of-uniform (MOU) random variable, and we
will denote all such random variables by V or V . The sizes of the subtrees
are jointly distributed as (N, n 1 N), where n V t 1 < N < n V -f- t, and <
denotes stochastic ordering .

Proof. Let U denote the minimum of 2 t + 1 i .i.d. uniform [0,1] random variables,
and let M be the minimum of 2 t + 1 integers drawn without replacement from
{ 1, . . ., n}. A simple argument shows that M < n U -+-1, where _< denotes stochas-
tic ordering . Thus, n - M >_ n W -1, where W is distributed as the maximum
of 2 t -E-1 i .i.d. uniform [0,1 ] random variables . Iterating this t -+-1 times, an
induction argument shows that N >_ n V- (t + 1), where V is distributed as the
median of 2 t + 1 i.i .d. uniform [0,1] random variables . Since n -1-N is distrib-
uted as N, we see that N < n V+ t as well, where all the inequalities still refer
to stochastic dominance.

Each of the subtrees can be split in a similar fashion, requiring this time
two new MOU random variables. This process can be repeated at all levels
and it leads to a tree in which node values are subtree sizes that are approximate-
ly obtained as (truncated) products of MOU random variables . More formally,
let Tk be a complete binary tree with k full levels of edges . The total number
of edges is 21+22+ . . . + 2 k = 2k+ '2_ . We will use the symbol p for a path
from root to leaf (there are 2" such paths in Tk). Consider all edges pairwise
in level order and from left to right, and associate with each pair an independent
random vector distributed as (V, 1- V) where V is distributed as a MOU random
variable. Take one of the 2" leaves of Tk and let p be the path from that leaf
to the root of Tk . Let {V1 , V2 , . . ., Vk} denote the collection of MOU random
variables encountered on the path from leaf to root . The quantity

n V12 V2 . . . Vk

is approximately equal to the size of the subtree rooted at a leaf in the random
binary search tree. A node corresponds to a real internal node in the search

L. Devroye
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tree when its values is ? 2 t +1. Indexing the MOU random variables in an
obvious manner, we define

1

	

(k 0)
= max flY (k>O) .

iep

Lemma 1 Let n >_ 1, k 1 be given integers . Then the internal node height H;,
of a random binary search tree on n nodes with fringe reorganization is related
to the random variables Z k via the following inequalities :

P{H;,>_k}>_P{Zk>_
1+2t+k(t+l)}

n

P{H„>_k+21} <_PIZk>n~+2lP~`fiY> kll~, 0<l<k.

Here V1 , . . ., Vk are i .i .d. MOU random variables .

Proof. A simple induction argument shows that the size of the subtree rooted
at a node with path p to the root is at least equal to

nfl Y-k(t+l).
iep

If this is at least 2 t + 1 for some node, then Hn? k. On the other hand, if Hn > k
+21, then some node at distance k from the root has a subtree of size at least
equal to 2 l (t +1) -+-1 . On the other hand, if N (p) denotes the size of the subtree
rooted at the node at distance k from the root, where p is the path to the
root, and V1 , . . ., Vk are the MOU variables associated with the edges on this
path, with Vk nearest the root, then N (p) is in distribution not greater than

k

	

k k

nflv+t+t> flJ'
i=1

	

j=2 i= j

k

	

k

<nfV+lt+(k l)t

	

V.
i=1

	

i=k-l+ 1

The last product is shared by precisely 2" -t paths. Therefore, by Bonferroni's
inequality,

P{H„>_k+21}<P{maxN(p)>_2l(t+l)+1}
P

l
<P{z k >1}+21P{fiY>

k
_ 1 } . En

	

t _ 1

	

-

Next, we need a simple result about the MOU distribution related to spacings
of uniform random variables (see Pyke 1965) .
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Lemma 2 A MOU random variable V is distributed as

2t+1

U'I1,
i=t+ 1

where the U 's are i.i.d . uniform [0,1] .

Proof. Note that the maximum of 2 t + 1 i.i.d. uniform [0,1] random variables
is distributed as U 21/+2i+ 1) • Apply this rule recursively to obtain the given proper-
ty. o
Finally, we recall a theorem regarding trees of random variables from the theory
of branching random walks (Hammersley 1974 ; Kingman 1973 ; Biggins 1976,
1977) : note that

log Zk

The maximum is over all 2" paths in the tree of length 2k. Then, we have

log Zk
k

	

-~ y a.s .

as k - + co, where
Zr+1 1

y-infix> ~ - :2M(x)<1~

and
M(x)= inf E{V~e - ~"x>o

In our case, by Lemma 2, we see that

Zt+1

M(x) inf fJ
z'°i=r+1 1-f- 2/j

The minimum of the latter expression is obtained when 2 is the solution of
the equation

2t+1

	

1
x--

j=r+1

This only has a positive solution when

0>x>

0

	

(k-0)
max ~ log V (k>0) .

iep

The function M (x) is decreasing in x. Over the range of interest here, it decreases
from 1 to 0. Therefore, y is well-defined.
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Another way of viewing this is from the exponential inequality angle . Indeed,
for 2>0,

k

P{IogZk >kx} <2k P{log fl Y>kx}

if we choose 2 as outlined above . The upper bound tends to
when 2M(x)<1.

5 Proof of Theorem 1

From Lemma 1 and the last result of the previous section, we see that

P

when we choose k ~ c log n and 1/c > y . Also, as each Y (notation of Lemma 1)
is stochastically smaller than (1 + U)/2, where U is uniform [0,1], we see that

E Yz < E (1 + U) z/2z <_ 2/(1 +2) .

Thus, for any 2>0, by Jensen's inequality, and 0<1< k,

l P flo~Zk > l~g n~
l

21P {fl Y>
i k

l

~~ log Y>kx}

k
<2kE{e 10~ ~ gV; e -xkx}

Ia-1

(2E{Vz e - ~x})k
(2M(x))"

2"P

E'J'(k t)z
J

	

Iz

<((l+ 2)llCk lllz
t

	

1

	

1

if we choose l Ll/ii, k ~ clog n (as above), and 2-4. By Lemma l, we thus
conclude that P {H„ > k + 2j/i} -+0. Furthermore,

P{H„>k} p
logZk log(2t+l+k(t+l))-logn

k

	

k

when we choose k c log n and 1/c <y. Putting both statements together, we
obtain

Hn

	

.
logn

	

y

zero as k -~ oo
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Set 1/y-c(t). This leads precisely to the definition of 2 and to equation (1)
(which is equivalent to 2M(-1/c)=1) in Theorem 1 . p

As a by-product of the inequality

P {Zk> l/n} cC2M ( -logn l}k~

we see that EH/log9 n -~ (c(t))q for all q >0. Using arguments as in Pittel (1984),
we may also deduce strong convergence of H„/log n to c(t) .
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