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ABSTRACT

Cartesian trees are binary search trees in which the nodes exhibit the heap property
according to a second (priority) key. lithe search key and the priority key are in-
dependent, and the tree is built . based on n independent copies, Cartesian trees basically
behave like ordinary random binary search trees . In this article, we analyze the expected
behavior when the keys are dependent : in most cases, the expected search, insertion, and
deletion times are of ). We indicate how these results can be used in the analysis of
divide-and-conquer algorithms for maximal vectors and convex hulls . Finally, we look at
distributions for which the expected time per operation grows like n a for a E [112, 1} .

© 1994 John Wiley & Sons, Inc .

1 . INTRODUCTION

Cartesian trees were introduced, by Vuillemin [40,41] as a data structure for

storing data according to two keys : they are binary search trees with respect to the

first key, and the nodes have the heap property with respect to the second key .
The minimal second key is found at the root . Cartesian trees can thus also be used
as priority queues . Let (X1 , Y1),. . . , (X,n Yn) be the values of these pairs of
keys. It is clear that this sequence uniquely determines the structure of the binary
tree. Permuting the pairs in the sequence does not alter the Cartesian tree . To
visualize things, it is helpful to put the (Xe , Y1 ) pairs in their exact position in R Z
and draw the tree, as in Figure 1 .
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Fig. 1 . Random Cartesian tree, in which points are placed at their true x and y coordinates .
The y-axis points down .

We analyze the properties of the Cartesian tree when the pairs of keys are
independent and identically distributed (i .i .d .) . The distribution of (X, Y) in-
fluences the shape of the tree as well as the complexity of the operations . In fact,
we will show that for most distributions of (X, Y), theexpected time complexity of
ordinary dictionary or priority queue operations becomes an unacceptable
4(-v'i) . It makes sense to assume that (X, Y) has a joint density . Consider, for
example, a distribution in which all points fall on the perimeter of a circle or
polygon with at least five vertices . It is easy to see that the Cartesian tree has
expected height SZ(n) . Thus, throughout the article, we assume that the pair
(X, Y) has an absolutely continuous distribution, so that events like Xi = X~ or
Yk = Y, occur with zero probability . A few special data structures are worth
mentioning :

A . Ordinary Binary search Trees under the operations irrsExT and sEAxcx [10]
can be considered as Cartesian trees in which the second key is the time of
insertion: elements down any path in the tree have increasing time stamps .
Of course, the second key is not usually stored, thus causing the analogy
with Cartesian trees to break down as soon as deletions, splay operations,
rotations, or other balancing operations are performed .

B . Treaps ([41] ; see also [2]) are Cartesian trees used for dictionary oper-
ations only, in which a second key is generated at random and in-
dependently of the first key . By explicitly storing the second key, deletions
transform Cartesian trees into Cartesian trees . Treaps are distributed and
shaped like random binary search trees under the equiprobable random
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permutation model . While deletions and insertions take O(log n) time on
the average, their implementations are of course different from those in
binary search trees .

C. Pagodas were first introduced by Francon, Viennot ; and Vuillemin [20] as
an alternative for a priority queue . Barring certain technical modifications,
the pagodas can be thought of as Cartesian trees in which the first key is a
time stamp, i.e ., the time of insertion of an element . The properties are
good on the average if elements are inserted in random order . In fact, if
the second keys form an i .i .d. sequence, pagodas are distributed as random
binary search trees under the equiprobable random permutation model .

D. Randomized Pagodas are pagodas in which the first key is drawn in-
dependently from a fixed distribution. This insures the random binary
search tree distribution regardless of how the second keys are picked .

E. Priority search Trees [34] are not Cartesian trees although they too are
designed to store information for double use as a dictionary and a priority
queue. This is achieved by creating a binary search tree with respect to the
first key and by adding pointers to the nodes with the largest second keys in
the subtrees of all nodes .

2, OPERATIONS ON CARTESIAN TREES

The quantities that interest us are those that describe the complexity of the
dictionary and priority queue operations . A quick revision of these operations is
therefore in order .

SEARCH

Searching for an element with first coordinate Xi takes time proportional to the
path distance between the root and the element . For element (Xe, Y1) in a tree of
size n, this distance is called the depth D1 . The maximal such distance is called
the height :

Ian = max Dn,l .
TSiSn

DELETE THE ROOT

Deleting the node with the smallest Y -value is like deleting the root . Look at the
tree as in Figure 2, where we call the left spine the chain of nodes starting with
the leftchild of the root and taking all the right children down the tree. The right
spine is defined symmetrically . To delete the root, we only have to reconnect the
left and right spines according to increasing Y1 values, very much as in a merge of
two sorted lists . The time taken by this is proportional to the sum of the lengths of
the left and right spines . Let I be the index of the root (XI, YI), and define for
general i the quantity D1, which is the depth of (X,, oo) in the Cartesian tree
holding (X,., Y,-), I ~ j ~ n, in which Y1 is replaced by 0 . It is easy to see that Dn,1
is equal to the sum of the lengths of the two spines, plus one, as (XI, oo) would be
a leaf dangling at the bottom of the merged spines . Thus, the DELETE operation
requires time proportional to D1 . n , (See Fig . 3 .)
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Fig . 2 . Cartesian tree with root, left spine, and right spine . Subtrees are shown as
amorphous blobs ; y-axis points down .
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Fig. 3. Cartesian tree after deletion of root : left and right spines are merged . The y-axis
points down .
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DELETE

The deletion of (Xe , Y~ ) is done in two stages . The first stage reduces to a search
for (X1,

.Y1}.
Then, if T is the subtree rooted at (X1 , Y1 ), we proceed with a

delete-root operation as explained above, as only T is affected by the deletion .
Recalling a crucial property from the delete-root operation, we see that deleting
the i-th pair takes time proportional to Dn, 1. (See Fig. 4.)

INSERT

The INSERT operation is the reverse of the delete operation . Again, we proceed in
two stages . Let T be the original n-node Cartesian tree, and let T' be a copy of T
in which we keep only those nodes with Y-value less than Yn+1 (so T' is the top
part of T) . In a first stage, we insert the new element (X 1 ,,~ + Yn + 1 ) in T'. Then
we overlay T and T' . A collision occurs if we can't do this without creating a node
(the parent of (X +n 1 , Y,~+ 1 )) with two left children or two right children, one of
them of course being (Xn + 1, Yn + 1 } .

Let T" be the subtree rooted at that other
child. In the second stage, we merge the new element and T" by making it the
root of the subtree (since it has the smallest Y-value) . T" is split into Tl and Tr ,
where Tj contains all elements with X-value less than Xn +1' and Tr contains the
other elements of T. This split creates the spines of Figure 2 from the tree of
Figure 3 . The new element is made the root by connecting the spines to it as in
Figure 2. It is noteworthy that the time taken by the entire INSERT operation is
proportional to the distance between the root of T and the position of (X,~ + 1 ,

which is D, + 1,n + 1 .

Fig. 4, To delete the marked point from a Cartesian tree, apply a delete-root operation to
its tree ; y-axis points down .
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OTHER OPERATIONS

In pagodas, all INSERT operations are done for elements having the largest X-value
thus far. In ordinary binary search trees, all inserts are for elements possessing the
largest Y-value seen thus far . The time taken by these operations is reduced in a
simple manner to the quantities introduced thus far . Without enlarging our model
it is not possible to meaningfully discuss the operation DECREASEKEY [38] .

We retain from this brief introduction that the quantities of interest to us are
D,,, D, 1 , D n,i and Hn . We also introduce the worst-case insertion or deletion
time

Hn = max D .1Si~n

Observe that Dn ~ i D,, and Hn

3 . THE INDEPENDENT MODEL

and

Hn .

In this section, we briefly review what is known for the independent model, i .e .,
the model in which Y is independent of X. Under this model, the random
Cartesian tree is distributed as a random binary search tree under the equiprob-
able random permutation model, i .e., a binary search tree on n nodes obtained by
inserting, in the standard manner, the values o , . . . , cr,, of a random permutation
of {1, . . . , n } into an initially empty tree . Equivalently, the search tree is
obtained by inserting n i .i.d. uniform [o, 1] random variables X 1 , . . . , X . We
refer to such a tree simply as a RANDOM BINARY SEARCH TREE .

Thus, D, 1 and the D 1's are distributed as the depth of the last node inserted
in a random binary search tree (for D I , this is a corollary of the independence of
the X and Y coordinates). It is known that the expected depth of the nth node in
a random binary search tree on n nodes is asymptotic to 2 log n in many senses
[1, 26] . The limit law of the depth of this node, and various other properties were
obtained in [25, 26, 37, 35, 33, 24 ; 28, 17]. Various connections with the theory of
random permutations [37] and the theory of records [17] were pointed out over
the years . Thus, from [17] :

Lemma 1. Every D, 1 in a random Cartesian tree under the independent model is
distributed as Ln , the depth of the last node inserted in arandom binary search tree .
Also,

E{Ln} =2 --2

Var(Ln )= 2 --4
i=1 Z

	

i=1 1
L,~

--~ 1 In probability as n

	

,
E{L}

Ln - E{Ln}
\/Var(Ln )
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where-! denotes convergence in distribution and N is a standard normal random
variable .

The exact distribution of Ln was derived by Lynch [29] and I nuth [26] (see
also [37, p . 144]). We next turn to DnT1 . Clearly, D, s Dn,1 , so that Lemma 1
describes already part of the story . In fact, D 1 is very close to D . We have the
following distributional property : Dn , 1 is distributed as LN , where N is uniformly
distributed on {1, . . . , n } and is independent of the tree, and L k is the depth of
the last node in a random binary search tree . As already noted by Francon,
Viennot, and Vuillemin [20] ; this immediately yields the following :

1 n

± 2ELN = - EL1 = - ± : (Lemma l)
n i-=1

	

n i=2 j=2

Furthermore,

Var{LN } = Var{E{LN I N}} + E{Var{LN I N}}
N

= O(1) + E(IN, 1 ~ ? 1
-Z i (

2 log n .

n+1±2 2(n - 1)
_

	

-

	

~- 21og n .n

	

;=2 i n

Thus, LNI ELN .-~ 1 in probability, by Chebyshev's inequality . With a little extra
work, one can also show that

LN - ELN -

	

the normal distribution .
\/Var{LN}

Next, observe that H,~ is distributed as the height of a random binary search tree .
Thus, from Devroye [14, 16] :

Lemma 2 . Let Hn be the height of a random Cartesian tree under the independent
model. Then

c log(n) -*1 in probability

and

E{H„} -~- c log(n)

where c = 4.31107 . . . is the solution of

clog(
2e
-) =1 ; c~2

211
ll
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Remark 1 . For the random binary search tree, Robson [36] and Pittel [35]
provided the first analyses of H,, . Surveys of known results can be found in [39,
22, and 31]. In [14, 16], the theory of branching processes is used in the analysis of
H,, . Flajolet and Odlyzko [19] studied H„ under other models of randomization .

This brings us finally to Hn . Using Lemma 2 and some large deviation
inequalities, we have :

Lemma 3. Let H* be the worst-case insertion time of a random Cartesian tree
under the independent model. Then

Hn
clo

	 ~1
g(n)

in probability

and E{H} -- c log(n), where c = 4 .31107 . . . is as in Lemma 2 .

Proof. We have H* ~ H,,, so that lower bounds for Hn can be derived from
Lemma 2. It suffices, therefore, to look at upper bounds only . Let t > o be
arbitrary . Bonferroni's inequality implies the following :

n

P{H*>t}~

	

>t}=nP{LTZ >t}=nP

	

Z.>t

where Z2 , . . . , Zn are independent Bernoulli random variables taking the value
one with probability 2/2, . . . , 2/n, respectively [17] . We use Chernoff's exponen-
tial bounding technique [7] : let S = > (11j) and let A > o be a constant to be
picked further on . Then

	

-z

n

P{Hn > t} nE exp - A t + A Zi
-z

n

- ne-'" f 1 -
i=z

2

	

2e'' 1
i

	

i
<- n exp(-J1t + 2S(e A - 1)) .

Take A = log(t/(2S)) and note that the upper bound becomes, with t = uS for
constant u >2 :

P{Hn > t} <_ n exp(t -2S - t log(t/(2S)))

= exp((1 + 0(1)) log n x (u - 1 - u log(u/2)))
-0

as n --* vo when u > c. The claim about EHn follows easily from the bound given

above and the fact that EHn = P{H * > t} dt.

	

∎
0
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Remark 2. If (X, Y) has a density f, then under some circumstances, we still
retain the log n expected behavior for the quantities studied in Lemmas 1 through
3 . A sufficient condition is that f is supported on [0,11 2 and that there exist
positive constants a, b such that b ~ f } a > 0 on [0, 11 2. This condition is rather
restrictive, and we won't pursue this angle here .

4. THE GENERAL MODEL

Assume that the prototype pair (X, Y) has a density f on E 2. The properties of
the random Cartesian tree deteriorate quickly with the amount of dependence
between X and Y. This leads us first of all to some measure of the dependence
between two random variables X and Y . Many such measures have been
proposed in the statistical literature, but we can't afford to choose : we have to use
the measure that imposes itself in a natural fashion. The following quantity, which
we dub the DOMINATION FACTOR, seems to capture what we want :

def.

	

P{XE A, YE B}
d = Z~f sup

A,B P{Z EA}P{ W E B}

Here the infimum is over all random variables Z and W and the supremum is over
all Borel sets A and B. Because X and Y are possibly dependent, one may ask
what the "closest" independent pair (Z, W) looks like, where closest is defined in
terms of the minimization of d in the inequality

P{X E A, Y E B} <- dP{Z E A}P{W E B} .

Remark 3. Since (X, Y) has a density f, it is sufficient to consider only Z and W
with densities g and h (say) . Then we have

def .

	

f(x, y)
d = Ynf ess sup -

	

,
g'

	

(x,y) g(x)h( y)

where ess sup denotes the essential supremum with respect to f. To see why this is
true, we provide a brief explanation. Let p. and v = of v2 denote the probability
measures for (X, Y) and (Z, W), respectively . If p. is not absolutely continuous
with respect to v, then there exists a set C1 X C2 such that v1(C1) v2(C2 ) = 0, yet
p. (C~ x C2 ) >0. For this choice of v, we note that the supremum in the definition
of d is infinite . Therefore, the infimum over v is certainly reached with respect to
product measures v such that p. is absolutely continuous with respect to v. So
assume that v = vac + vs , its decomposition into a part that is absolutely continu-
ous with respect to p., and its singular part . Let the probability weights of these
parts be p and 1 - p, respectively . The supremum in the definition of d remains
the same even if we restrict ourselves to sets A, B for which v5(A X B) =0 . But in
that case, the measure vasl p makes the infimum in the definition of d smaller . So
we may assume without loss of generality that v is also absolutely continuous with
respect to p., and therefore that v is induced by some product density g X h . But

IA

	

(

	

X,	
Xs f Jaxs g gh < ess sup g X)h( Y) X A g
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thus showing that for every choice of (g, h),

	 SAXBf

	

f(x,y)sup
IA 8

SB
h

es=
•r
up

8(x)h(Y)

Let Sx , u denote the closed sphere of radius u centered at x . Then also

	IAXBfsup	 ~ ess sup lam inf
A,B fgfflhA

	

x ,y

	

u-U

Isxuxsy,u

	

, f

J Sx u g ~5 ee
y

	 f(x, y)ess sup
g(x) h(Y)

where we used the Lebesgue density theorem [42, p . 100]) . This concludes
Remark 3 .

It is clear that d ? 1 (otherwise, derive a contradiction by integrating f over
I 2

) . In fact, d =1 if and only if f can be decomposed as f(x, y) = g(x)h(y), in
which case we see that X and Y are independent . It that case, we can take Z = X
and W = Y.

Example I . There is no reason why the choice Z = X and W = Y would lead to
the infimum in the definition of d . In fact, often it does not . Consider f as the
uniform density on the unit circle of B . Then d = 4/it: indeed, for Z and W both
uniform on [-1, 1], we see that figh takes the value 41'rr on the unit circle, and
the value zero elsewhere . Thus, d 4I'm Also, for any densities g and h on
[--1, 1], we have

f(x,y)
}

	

1

	

4
sup g(x)h(y)

	

~ w infxE1_1,xag(x) inf1-1, hx~y

	

yEl~ ( . )

We conclude that d =4 17x. The optimizing random variables Z and W are thus not
distributed like the marginal random variables X and V .

Example 2. If f is a bounded density on any compact set C C [a, b] x [a', b'],
then d is finite, and, in fact, d < ~~ fJJ „(b - a)(b' - a') . 1f f is the uniform density
on the same compact set, and C C_ Cl x C2 , where C, and CZ are the smallest
closed sets with the properties that P{X E C, } =1, and P{ Y E C Z } =1, then
d = A(C, x C2)/.l(C), where A(•) denotes Lebesgue measure on U8 2.

Example 3. Another important family of distributions occurs when f is radially
symmetric, so that

f(x, y) = F(1/z2 + y2)

for some function F. Assume that F is nonincreasing . Then,

F(VxZ+Y2)~1~F(IXI)1~F(IYI)

for all x and y. If we take g(x) = h(x) = C\/F(lxI), where C is a normalization
constant, we obtain that

DEVROYE
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x

d<(JVF(IxI)ds)

Thus, for most radially symmetric densities, d is finite . Note that F can be
unbounded at the origin .

Example 4 . The value of d is invariant under strictly monotone transformations
of the axes . That is, the value for (X, Y) is the same as for (G(X), H(Y)), where
G and H are strictly monotone transformations . Thus, we can always assume, if it
is convenient to do so, that X and Y have support on [0, 1]. In this respect, d
measures a deeply rooted type of dependence .

Example S. Consider a bivariate normal distribution with correlation coefficient
p E [-1, 1]. By the previous example, we can assume that the variances of X and
Y are one-otherwise, just rescale everything, leaving d unaltered . By the same
token, assume that, the means are zero . If g and h are standard normal densities,
then

1
f(x,y)=

2
	 eXP -

~r 1-p

	

2(1- P
2

This inequality implies that

d

x

315

Y2
- 2Pxy))< , X1 1 PZ S(x)h(Y)

V1-

1

Not unexpectedly, there is a one-to-one relationship between I p 1 and the upper
bound for d, with the bound on d varying from 1 at p = 0 to °° as 1 p ~ -* 1 .

Example 6 . It helps to construct an example in which d = oo . Consider X uniform
on [0, 1] and Y = X + Ul UZ where U1 , UZ are independent and uniform on [0, 1]
and independent of X. The joint density looks like a rollerskate slope with an
infinite crest at y = x . [Note in particular that Ul UZ has density - log u on (0, 1) .]
Assume d < oo . Fix g and h and x E (0, 1) and let y T x. Then f(x, y) T 0o . This
implies that at almost all x, max(g(x), h(x)) _ ao , which leads to a contradiction .
In general, examples can be constructed with d = oo based upon densities that
have infinite-valued crests that are not aligned with one of the two axes .

Example 7. Bounded densities as well can have infinite values of d. Just take
f =1 on an unbounded set C of Lebesgue measure one, and f = o elsewhere .
Assume that for every x, the Lebesgue measure of the section of C at x is
positive, and similarly for every y . Then, extending Example 2, we see that d = oo .

Our first main result, Theorem 1, states that both Hn and H * for a random
Cartesian tree are O(Vii) in probability when the domination factor d is finite . In
fact, the main asymptotic term in our bounds is proportional to dn . This bound
describes more the norm than the exception : in an example following Theorem 1,
we establish that for the uniform distribution in the unit square, the expected
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depth ED,,, is ,fl(v7i) for all rotations of the square except when the axes are
aligned with the coordinate axes, in which case we know that EH„ = O(log n) . •In
other words, there is a sudden jump in the performance . What matters is the
collection of points near the border of the square . As they are about evenly
distributed, most of these "border" points along two sides are either pure left
descendants or pure right descendants from the root, and there are about ~n of
these when the square is not aligned with the coordinate axes . However, when the
square is perfectly aligned, very few of these extreme points are pure left or pure
right descendants of the root: only those near the top two vertices play a role, and
there are about log n such points .

Theorem 1. Consider a random Cartesian tree on n nodes under the general
model. Assume that the domination factor d is finite . Then, for every e >0,

i m P{Hn > (C + €)Vi} =0,n

where C = 4e log 4 . Also,

E{H}
lim sup	 _ 1
n~~

	

dry

The same inequalities remain valid for H,, .

Proof. The proof of Theorem 1 is combined with that of Theorem 2 below .
∎

5. LOWER BOUNDS

The bound of Theorem 1 cannot be improved for many simple distributions . To
clarify this, just take the uniform distribution on the trapezoid T formed by
intersecting [0, 1] 2 with {(x, y) : x < y < x + c}, with 0 < c ~ 1 . The area of the
trapezoid is (1/2)(1 - (1- c) Z) = c - c2/2. Hence,

1
f(x,y) - c - c2/2 IT~x' Y)

Example 2 shows that d = 1/(c -- c 2/2) . Let L,~ denote the length of the path in
the tree that leads to the node with the maximal x-value . Clearly, H,s ~ L,,, so
that lower bounds on EL 1z provide us with lower bounds on EH,, . We will also see
further on that modulo a constant, this gives us a lower bound for every ED,,, .

We take an integer m large enough such that 11 m c c . Then partition the unit
square into a rectangular grid of m by m with sides equal to 11 m . Mark the rn grid
cells that straddle the diagonal of the square . Let E 1 , . . . , Em be the indicators of
the events that the marked grid cells contain at least one data point, with E 1
referring to the cell with the smallest y-values, and so on up . A simple geometric
argument shows that

DEVRC YE
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S i , S,,, ,

m

i=I

Hence, if the marked grid cells intersected with our trapezoid T yield the triangles

EL„ >_ mEE I

= m(1- (1- d area(S l ))")

= m(1- (1- dl(2m 2))")

m(1- exp(-dnl(2m 2)))

m/2

?\/dn/41og4-1

if we choose m = dn/log 4] . Recall that n has to be so large that
m = m(n)>1/c . Thus, we have

E H ~ do 14 log 4 ---1 .

The upper bound in Theorem 1 cannot be improved upon in terms of d and n.
To make matters worse, the fl(vi) behavior is also inherited by every D 1 . In

the same example, consider all nodes whose x-coordinate is between 112 and 1 .
For those nodes, the path to the root necessarily visits at least one node in every
triangle S i with i ~ m/2 that is occupied. Thus,

Lm121

D ,~

	

I[ .~I12]

	

~, E • ,~

Given that Xi ~ 112, the number of points in Ej is binomial (n --1, d 1(2m2)}
(j m12) . Thus, since for c 112,

we have

P{X;?1/2}=(2~\4 - \2 - ~/ 2I ^ \2/~~ - ~Z~

ED? ( 2 _ c ) ~m/2J (1- exp(-d(n -1) /(2m 2)))

C2-~) (1/2)LmI2j

(1- c) do
4(2 - c) log 4

if we choose m = L1ld(n -1) /log 4] . Note that as c--~ 0, d- oo and (1- c) /
(2 - c) -* 1/2 . This implies that on average, the times required for SEARCH,

INSERT, and DELETE grow as 4(V ) for this family of distributions . The same is

1--c
2-c
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true for the uniform distribution on the unit square rotated over an angle 0, with
O E (o, ir12) .

6. VERY DEPENDENT RANDOM PAIRS

Consider pairs (X, Y) so intertwined and dependent that the domination factor
d = oo . What can we say about H,~ and H * ? It is futile to attempt to give the
answer in each individual case : the behavior seems to be related to the depen-
dence in a very intricate way . We are mainly interested in what can be said
globally. One way of doing this is by giving upper bounds that are valid for large
classes of distributions, but that may, in individual cases, be rather loose . Let us
introduce the following dependence criterion : for a > 1,

da =
g,

	

(g(x)h(y))a _ dx dy

where g, h are arbitrary densities . We always have da ~ 1 since by Jensen's
inequality,

f fa

	

fr f\ °

	

(r l
a

J (8ti)` - ' - I ~8h~ gh ~\1 f/ -1 .

We see that da =1 if and only if f = gh almost everywhere, i.e., if and only if X
and Y are independent . Next, we see that da d in all cases because for any pair
(g, h),

(J
(f)ag,)l/a

h

	

< ess sup gh

What makes da interesting is that it is finite for many more distributions : there are
many examples in which d = 00 , yet da < co for some or all a > 1 (see Example 11
below). In fact, there is much more structure in the problem : the collection
{da : a > 1 } is increasing in a : indeed, for a </3, and fixed f, g, h,

\J Cg 1 ~ghl 1/~ ~ \J \g1 sghl 1/s '

from which we conclude da ~ d, . As in the case of the domination factor, da
somehow measures the degree of dependence between X and V.

Example 8. To show that da < oo for most densities of practical interest, just
consider a = 2. Then, taking g and h both as Cauchy densities 1/(a(1 + x2)),

dz ~ J	Y) dx dS~z)h~ Y)

IIfIIE{ 2(1

	

,~r+XZ)(1 + YZ )}

IIf11 7r2\/E(1

	

„+XZ )ZE(1 + YZ )2 ,

DEVROYE
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which is finite when f is bounded and both X and Y have finite fourth moments.
In fact, d2 is also finite if there exist monotone transformations of the axes that
transform f into a density with these properties .

Example 9. By extending Example 8, it is easy to see that whenever f is
bounded, and EIX c and E( Y~ f < for some E >0, we have da c for some
a>1 .

Example 10 . Assume that f hass support on [0,1] 2. Then, taking g and h both
uniform on [0,1], we observe that dQ <_ f f °. It should be noted that f f °` is a
measure of the peakedness of f. However, it may be finite even though f has
infinitely many infinite peaks. The larger «, the more restrictive the peakedness
condition .

We now proceed basically as in Theorem 1 . The height is O(n 2a -t~) in
probability . The O(v71) height obtained in Theorem 1 is in a sense a limiting
result as a -~ oo . The main result is the following :

Theorem 2 . Consider a random Cartesian tree on n nodes under the general
model. Assume that d a Coo . Then, for every E >0,

lira P{Hn > (C + e)(da n
)al(za - l) } =

o
,

where

C = 2e(4 log 4)(°`-1)i(2°`-') .

Also,
E{H}

hm sup

	

--
C(dan

)',{2"~'

The same inequalities remain valid for H„ .

1

7. PROOF OF THEOREMS 1 AND 2

For Theorem 1, find densities g and h such that for every x, y,

f(x, y) ~ OS(x)h(Y)

where 0 = (d + S ) and S > 0 is arbitrary. For Theorem 2, find densities g and h
such that

I fa(x~ y) 	ax ay _< oa ,
J (g(x)h( y))° -

where ii" = (d + S ) and 3 > o is arbitrary . We consider a partition of the x-axis

into intervals A1,. . . , A m such that g(x) dx =11m. Similarly, we find intervals
A
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B1 , . . . , Bm such that L. h( y) dy =11m . We call a cell a Cartesian product of the
form A x B1 . Under the conditions of "Theorem 1, observe that the probability of
a cell is given by

JA1 XB1
f(x Y) dxdY ~ ~ JAS g(x) dxx JB , h(Y) dY = mz

Let S be a collection of cell indices of the type (i, j), and set

D = U(,I)ESAI

	

,x B1 .

Under the conditions of Theorem 2, by Holder's inequality,

JD f(x, Y) dx dY = ID
fix, Y)

h(y) g(x)h(Y) dx dYg(x)
fc~(x, Y)

	

i~a

c "(ID (g(x)h(y)dx d)?) X CJn g(x)h(Y) dx dY)

S 1-1/a
m

If ~ S I = 2m, then the number of points (N) in D is stochastically not greater than
a binomial (n, p) random variable with p = 1(2/m)1-'~r, where formally a = oo
when the conditions of Theorem 1 are satisfied . By Chemoff's bounding method
[7], for t>0,

so that

P{1V > t} < E{eat"'-`)}

XP(

(2m - 2
~ m-1

- t log( p ))

P{N > (1 + e)np} <-exp(np(E -(1 + E) log(1 + E)))

= exp(-np)

when we take E = e -- 1 .
After these preliminaries, we can get on with the business of bounding H . We

define a chain of cells as a sequence of cells with indices (1,1), . . . , (m, m)
having the property that if (i, j ) is in the chain, then the next cell must have
indices (i + 1, j ) or (i, j + 1) . The number of chains is

22m-2

DEVRQYE

Define an antiehain of cells as a collection indexed by (m, 1), . . . , (1, m), with
the restriction that (i, j) must be followed by (i -1, j) or (i, j + 1) . The number
of chains equals the number of antichains . We let N(~) denote the number of
data points in the chain or antichain ~ . The next claim is crucial :
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Hn C 1 + max N()+

	

~max N(f) .
all chains `€

	

all antichains '

This uses the down-records, up-records argument of Devroye [171 : the depth of a
node in a binary search tree is equal to the number of down-records observed in
the subsequence of data points that have a larger key, plus up-records observed in
the subsequence of data points that have a smaller key . Clearly, the nodes on the
path formed by the down-records all belong to an antichain, while the up-records
all belong to a chain . By Bonferroni's inequality, we have

P{ Hn > 2t + 1 } 2P{ max N( ) > t}
all chains '

2

	

P{N(?) > t}
all chains 'e

when we take

(2m -21
e\ m-1 I

t = enp = en0(2/m) 1-1 ~«

Choose m in such a way that m- cc with n. Then

2m-2

	

22m-2

m--1 vTh

so that for n large enough,

22m
P{Hn > 2t + 1} ~ ~ exp(-On(2/m)' -lea) = 0(1)

provided that

cxl(2a-1)

rn = I ---- )

	

2(~-1)J(zar-1)
log 4

	

.

If a = cc, a /(2a -1) should be replaced by its limit by continuous extension, i.e .,
112, and similarly for all other similar occurrences . With this choice,

t ~ e(~~~al(tar-1)2(2cr-2)1(2ar-i) (log 4}(a-1)!(2cr-1)

Considering that 0 can be picked arbitrarily close to d or d a , the first half of both
theorems is proved . The second half follows simply from the bounds given above

and EHn = 0 P{H~, > t} dt .

8. COUNTEREXAMPLES

It is useful to have a battery of distributions readily available for drawing
counterexamples . Let us describe one such family, in which (X, Y) is distributed

-np
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on the top left triangle of [0,1] x [0, 2]. Assume that we have independent
random variables W and U, where U is uniformly distributed on [0,1], and W has
a decreasing density cp on [0,1] . Its distribution function is denoted by ~ . Next,
we define

(X, Y)-(U, U+ W)

so that Y - X = W. The density of (X, Y) is given by

f(x, y) = ~P (Y - x)jo~X51

For later reference, observe that

d~ 2

Partition [o, 1] x [0,2] into a rectangular grid of m by 2m with sides equal to 11rn .
Mark the m grid cells that straddle the diagonal of [o, 1] 2. Let E1 , . . . , Em be the
indicators of the events that the marked grid cells contain at least one data point,
with E1 referring to the cell with the smallest y-values, and so on up . A simple
geometric argument shows that

m

n ~ L,~ ~

	

E1 ,
i=1

where L,~ is the length of the left spine of the Cartesian tree . Hence, if the marked
grid cells intersected with the upper left triangle yield the triangles S1 , . . . , Sm ,

E.Fl',~ EL„ ? mEE1

= m(1- (1- P{(X,Y)E S 1 }lnJ
,

i

>_ m(1- (1 -(1/(2m -1))P{'W < 1/m})")

m(1- exp(- 2m ~(1lm)~)

m/2

if we choose m in such a way that

nc1(1 /m >_log2 .
2m-1

It suffices that
1 /m

R à f m J
p(w) dw >_

lon 4

0

We thus obtain

EL„ ? (l/2)R"(log4/n)j~'" .
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If q(w) varies as w-a as w-> 0 for a E [0, 1), then EL n = fl(n" 2) . The lower
bound can thus grow at any polynomial rate between and o(n) . When a >0, it
is easy to see that d = 00, yet da c oa for a <1 1a . The upper bound of Theorem 2
implies that

EH n = ~(nl It2-a}+E )

for any € >0. This shows that Theorem 2, in this instance, yields almost optimal
results .

Example 11 . The family described here can be used to show that there exist
distributions with d = oo, yet da coo for all a . Just take co(w) _ ---log w .

Example 12. If we take cp(w) = c max(1, 1/(w Iog2 w)), where c is a normaliza-
tion constant, then R(m) ~- cl(m log m) as m -~ oo, so that

EL >_ (c+ o(1))n
log 4 log n

But the inequality of Theorem 2 then implies that da = oo for all a > 1 .

9. RELATIONSHIP WITH OUTER LAYERS, MAXIMAL VECTORS

A maximal vector among the data is a pair (X1 Y1) such that no (X,, Y~) exists
with both X1 X, and Y1 ~ Y1, j i. The collection of maximal vectors forms the
maximal layer. A common generalization of this is the outer layer, which consists
of all data pairs (XI , Y1) such that one of the four quadrants centered at (X1, Y1)
is empty . All maximal vectors are on the right spine of the Cartesian tree . If M,~ is
the number of maximal vectors, we have

M Hn .

Thus, all the bounds of Theorems 1 and 2 apply as well to Mn . Let us collect these
in Theorem 3, which generalizes results by the author [13,16] :

Theorem 3. Assume that da C Then, for every e >0,

1im P{Mn > (C + E)(dan)a1~2a--1)} = s

where

C = 2e(4 log 4)(121

Also,

lim sup
n--~~ C(da n

E{M} < 1

)a/(2a --1)
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and EMS = D(nr°`'(2c _'}) for any r >0 . If d is ,finite, then, for every € >0,

lim P{Mn > (C + €)\/d}=0,

where C = 4e log 4 . Also,

	

.

.

	

E{M}
lim sup	

and EM = 0(nn/2)for any r>0 .

Remark 4. If d Coo, we have EMn = O(n2) by Theorem 3 . The same result
could have been obtained by the moment inequalities of Devroye [12] .

	

∎

Remark S : Finding the Maximal Vectors by Divide-and-Conquer . Two collec-
tions of maximal vectors can be merged in linear time if both are sorted according
to the same coordinate. By the expected time analysis of divide-and-conquer
algorithms given in [12] this means that the collection of maximal vectors can be
found in linear expected time if

°° EM n

-2-Coo.

This result was rediscovered later by Clarkson and Shor [$, 9] . It is clear that
under the conditions of Theorems 1 or 2, the divide-and-conquer algorithm
described in [12] takes linear expected time . From Example 9, we recall that it
suffices that the joint density f be bounded and that EI Xr E + El YI < co for some
E >0. This generalizes results in [5, 4, 11], and [13] . For other fast algorithms for
maximal vectors, and some analysis, we refer to [1$, G, 21, 25, 3], and [27] . ∎

Remark 6 : Convex Hull Algorithms . Assume that we find the convex hull by first
finding the outer layer, which is known to contain the convex hull, and then
applying a convex hull algorithm . Consider the time required for the second step
only. With Graham's algorithm [23], we obtain an expected complexity equal to
o(EMn log Mn) = O(EM) log n = o(n) when da < for some a > 0 (see Exam-
ple 9) . Thus, on the average, finding convex hulls for these distributions is
(complexity-wise) equivalent to finding outer layers . Interestingly, if d < cc, and if
a naive quadratic convex hull algorithm is used, the second step still takes linear
expected time because EMn = D(n) (see Theorem 3) . It should be stressed that
the linear expected time algorithms for convex hulls obtained in this manner do
not rely on hashing or truncation operations : the linearity is simply the result of
the sparseness of the sought objects, in this case, the outer layer and the convex
hull .

	

∎

10. CONCLUSION

The big disappointment with Cartesian trees is that standard dictionary and
priority queue operations take about V instead of log n time on the average

DEVROYE
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Fig. 5. Random polar Cartesian tree, in which points are placed at their true x and y
coordinates .

when we work with real data . Only the artificial case in which X and Y are
independent offers a log n behavior. Thiss suggests the following exciting prospect :
assume that both X and Y are [o,1]-Valued . Why don't we add artificially
generated points with the uniform distribution on the unit square? If the original
distribution has a bounded density on [0,1] 2, then adding n such points yields a
Cartesian tree with 2n points and €(log n) expected time per standard operation .
Thus, adding points reduces the expected time ! This paradigm certainly deserves
more attention .

For locating points in the plane in computational geometric applications, one
might consider a polar Cartesian tree, which is a Cartesian tree based upon
(, R) pairs, where R 2 = XZ + Y2 and tan e = YI X as in the standard polar
transformation . Such a tree is shown in Fig . S .
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