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A probability density on a finite-dimensional Euclidean space is orthounimodal with a given
mode if within each orthant (quadrant) defined by the mode, the density is a monotone
function of each of its arguments individually. Up to a linear transformation, most of the
commonly used random vectors possess orthounimodal densities. To generate a random vector
from a given orthounimodal density, several general-purpose algorithms are presented; and an
experimental performance evaluation illustrates the potential efficiency increases that can be
achieved by these algorithms versus naive rejection.
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1. INTRODUCTION

A multivariate density f on Rd is orthounimodal with mode at m 5
(m1, . . . , md) if for each i, f( x1, . . . , xd) is a decreasing function of xi as
xi 1 ` for xi $ mi, and as xi 2 2` for xi # mi, when all other components
are held fixed. For such multivariate densities, we propose general random
variate generators that are hopefully of universal utility. Orthounimodal
densities belong to the class of orthounimodal distributions (which include
distributions without densities as well).

With multivariate distributions, one is often faced with enormous prob-
lems for random variate generation. Von Neumann’s rejection method [von
Neumann 1963; Devroye 1986b] requires a case-by-case study. The condi-
tional method (generate one random variate; generate the next one condi-
tional on the first one, and so forth) requires often difficult-to-compute
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marginal densities. Recently, Gibbs samplers have been proposed. These
algorithms output an infinite sequence whose limit is a random variable
with density f under certain regularity conditions. For example, when d 5
2, one starts with X1 5 x, where x is arbitrary. X2 is obtained by randomly
sampling from the conditional density of X2 given X1 5 x. Given X2 5 y, a
new value for X1 is obtained by randomly sampling from the conditional
density of X1 given X2 5 y. This process is continued for a while, after
which the last pair (X1, X2) is returned. Its popularity is due to the fact
that conditional densities are readily derivable from f, and no inconvenient
marginal densities need to be computed. However, the returned pair is only
approximately correct. See Bélisle et al. [1993], Gilks and Wild [1992] or
Roberts and Polson [1994] for various aspects of Gibbs samplers.

We feel, therefore, that there is a real need for exact algorithms for large
nonparametric classes of multivariate distributions. On the real line, first
steps in this direction were taken by the author with respect to unimodal
densities [Devroye 1984b], log-concave densities [Devroye 1984c], Lipschitz
densities [Devroye 1984d], and densities with given characteristic functions
or moment sequences [Devroye 1984a; 1986a; 1989; 1991]. In all these
examples, efficient generators were derived that did not require any
knowledge about the underlying densities beyond certain general parame-
ters (the location of a mode, a Lipschitz constant, and so forth). The present
article is in the same mold, and is only a first timid step into the vast world
of multivariate distributions.

The main text on multivariate random variate generation is by Johnson
[1987]. The emphasis in that text and in the literature is on modeling—
finding a family of distributions that is flexible enough to fit the situation
at hand, yet not too complex so as to make simulation unmanageable. This
does not cover cases where one is asked by outsiders to generate random
variates from a given distribution.

The mode m, which must be known (for now), partitions Rd into 2d

quadrants. On each quadrant, the density f is orthomonotone, that is, f( x1,
x2, . . . , xd) is nonincreasing in s1x1, s2x2, . . . , sdxd, where the sis are 11
or 21 according to the position of the quadrant. Such densities are best
handled by taking care of each quadrant separately (see Section 8). The
main part of this article deals with the fundamental problem for or-
thomonotone densities defined on the first quadrant (which is defined by
the inequalities xi $ 0, 1 # i # d). We assume that the mode is at the
origin and that f is zero off the first quadrant. Examples include the
following (C is a normalization constant that may vary from equation to
equation):

(A)

f~ x1 , . . . , xd! 5 P
i51

d

fi~ xi!, xi $ 0, 1 # i # d,
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where the fis are nonincreasing and supported on [0, `).

(B)

f~ x1 , . . . , xd! 5 Ce2)i51
d gi~ xi!, xi $ 0, 1 # i # d,

where the gis are increasing functions of their arguments. This class
includes densities such as the Gumbel bivariate exponential family
[Gumbel 1960] f( x1, x2) 5 C exp(2ax1 2 bx2 2 cx1x2), a, b, c . 0.

(C) If Z 5 (Z1, . . . , Zd) is any random vector supported on (0, `)d (so
that P{Zi # 0} 5 0 for any i), and (U1, . . . , Ud) are i.i.d. uniform
[0, 1] random variables independent of the Zi’s, then X 5 (Z1U1, . . . ,
ZdUd) is called a block monotone random variable [Shepp 1962]. For
fixed Z with nonzero components, X is uniformly distributed on the
hyperrectangle with vertices at Z and the origin, and is thus or-
thomonotone. If Z is random, we obtain a mixture of orthomonotone
densities, which remains orthomonotone. Thus, block monotonicity
implies orthomonotonicity. The converse, however, is false.

2. OTHER NOTIONS OF UNIMODALITY

Various notions of unimodality may be entertained. In this section, we
briefly discuss these, and discuss their relevance and relationship with
orthounimodality. For a general survey, we refer to Dharmadhikari and
Joagdev [1982].

Intuitively, various notions of unimodality of a density f may be defined
by the shapes or properties of the sets Ac 5 { f( x) $ c}. For example, if for
some c, Ac consists of two disjoint closed sets, f must have two humps. As
we are not interested in topological properties of these sets, we will restrict
the shape of Ac to some suitably large subclass of connected sets.

A density is star-unimodal at the origin if for any x, f(tx) is nonincreas-
ing as t varies from 0 to `. Even this class is too large to be of practical
interest.

Orthounimodal densities are star unimodal, and both definitions above
generalize the standard notion of univariate unimodality. Most bivariate
densities, for example, that we are aware of, are either orthounimodal, or
orthounimodal after a linear transformation. This includes the bivariate
normal distribution, the non-standard normal conditionals distribution
[Bhattacharyya 1942; Arnold et al. 1992, p. 31], the bivariate exponential
distribution [Arnold and Strauss 1988], the bivariate Pareto distribution
[Arnold et al. 1992, p. 58], the bivariate Cauchy distribution [Arnold et al.
1992, p. 68], the multivariate t distribution (or multivariate Pearson
distribution), the multivariate Pearson II distribution, and many others too
numerous to mention.

There are narrower notions than orthounimodality. For example, a
density f is convex unimodal at the origin if all sets Tc 5 { x : f( x) $ c} are
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either empty or are convex sets that contain the origin. Some, but not all, of
the densities mentioned above are convex unimodal.

Log-concave densities, monotone unimodal densities, axially unimodal
densities, linear unimodal densities and a-unimodal densities are all dis-
cussed in Dharmadhikari and Joagdev [1988]. These are not considered
here. Of these, we believe that the log-concave densities are by far the most
important. They deserve a special study altogether.

So, orthounimodal densities are widely applicable and form a class with a
rich structure for which beautiful performance bounds can be obtained.
Finally, it is a robust class: for example, all lower-dimensional marginals of
orthounimodal densities are orthounimodal. The same is not true for
convex unimodal densities [Dharmadhikari and Joagdev 1988, p. 63].

3. OVERVIEW OF THE RESULTS

The discussion is greatly helped if we begin with the definition of several
families of mostly new multivariate distributions. For these distributions,
simple efficient random variate generation algorithms are proposed. For
easy reference, the list of these basic families is given in Table I. In all
cases, the domain of the densities is the positive quadrant xi $ 0, 1 # i #
d. The symbols c, ci denote general nonnegative functions on [0, `). The
symbols a, b, c denote positive constants.

The next section deals with these families. In the remainder of the
article, we propose general rejection algorithms for orthomonotone densi-
ties f. These are all based upon inequalities of the form f # cg, where g
belongs to one of the basic families of Table I, and c is a constant. All
algorithms thus take the form

repeat
generate U uniform [0, 1]
generate X with density g on [0, `)d

until Ucg(X) # f(X)
return X

The expected number of iterations is precisely c [Devroye 1986b]. To obtain
useful rejection inequalities, it suffices to assume that a little extra
information is known about the distribution. Table II summarizes the

Table I. A List of Useful Multivariate Families of Densities

Family Form of Density

Liouville distributions c(( xi)
MP (or: min-product) distributions c min (1, ) c (xi))
generalized MP distributions c min (1, ) ci(xi))
multivariate max distributions c(max xi)
multivariate min distributions c(min xi)
platymorphous distribution c min (1, be2(xi)
schizomorphous distribution c min (1, b/() xi(( xi)

a))
bathymorphous distribution c min (1, b/() xi (max xi)

a))
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algorithms developed in this article based upon inequalities that are
derived further on.

Finally, we develop table methods and adaptive algorithms that are
useful when many random vectors from the same f are needed. A limited
simulation concludes the article.

4. BASIC FAMILIES

In this section, the following simple facts will be used repeatedly.

LEMMA 1. For A, B, a, b . 0, we have

E
0

`

min~ Aua21, B/ub11!du 5
a 1 b

ab
~ AbBa!1/~a1b!.

If p, q . 0 and if U, V are i.i.d. uniform [0, 1], then the density of Y 5
Up/V1 is

1

p 1 q
min~ y ~1/p!21, 1/y ~1/q!11!.

The density of Wdef
% (B/A)pq/( p1q)Y is

1

~ p 1 q!~BqAp!1/~ p1q!
min~ Aw ~1/p!21, B/w ~1/q!11!.

4.1 Liouville Distributions

The class of Liouville distributions is studied at length by Sivazlian [1981a;
1981b]. A particular subfamily of densities is of the form

f~ x1 , . . . , xd! 5 c~ x1 1 · · · 1 xd!, xi $ 0,

where c is a general function. Whenever densities are written in this form,
the following fundamental property holds (check section XI.4.2 of Devroye
[1986b] or Sivazlian [1981a]:

Table II. Under Certain General Conditions of f, Rejection with Dominating Densities from
the Basic Families of Multivariate Densities become Feasible

Condition on f Form of g in f # cg

Bounded; support on [0, 1]d platymorphous (after transformation)
Generator available for fi 5 f(0, . . . , x, 0, . . . , 0) product density

symmetric in xis multivariate max
bounded; mi 5 E{Xi

z} known and finite for some
a . 0

bathymorphous

bounded; E{(( Xi)
a} known and finite for some

a . 0
schizomorphous

bounded; moment generating function known MP family
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If X has density j( x) 5 xd21c( x)/(d 2 1)! on (0, `), and (S1, . . . , Sd) is
a collection of uniform of uniform spacings (that is, the spacings of [0, 1]
defined by d 2 1 i.i.d. uniform [0, 1] random variables), then (XS1, . . . ,
XSd) has density c( x1 1 . . . 1 xd) on the positive quadrant. The density j
is called the generator for f.

Generating uniform spacings is trivial—see Devroye [1986 Ch. 6]. Thus,
one need only worry about the one-dimensional random variate generation
problem for g. We also point to the generalized Liouville distributions of
Sivazlian [1981b], a particular instance of which has densities of the form

cS O
i51

d

~ xi/ai!
bD .

This class includes the class of radially symmetric distributions with a
density (take b 5 2). In the context of orthomonotone densities, this more
general family will not be needed.

4.2 The Min-Product Family

The MP (min-product) family consists of all densities on the positive
quadrant that can be written as

f~ x! 5 c minS 1, P
i51

d

c~ xi!D ,

where x 5 ( x1, . . . , xd), c is an unspecified (not necessarily integrable)
function, and c . 0 is a normalization constant. The generalized MP family
consists of all densities on the positive quadrant that can be written as

f~ x! 5 c minS 1, P
i51

d

c i~ xi!D ,

where the cis are positive functions, and c . 0 is a normalization constant.

4.3 Multivariate Max Distributions

If a multivariate density is of the form c(max( xi)) for some function c,
where xi $ 0, we say that it is a multivariate max density. It is trivial to
verify that for such densities, we may generate a random variate by the
following method.

If X has density j( x) 5 dxd21c( x) on (0, `), Z is uniformly distributed
on {1, . . . , d}, and (U1, . . . , Ud) are d i.i.d. uniform [0, 1] random vari-
ables, and if we replace UZ by 1, then (XU1, . . . , XUd) has density
proportional to c(maxi51

d xi) on the positive quadrant. The density j is
called a generator.
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To check the validity, let (X1, . . . , Xd) have density c(max( x1, . . . , xd)).
Set X* 5 max(X1, . . . , Xd). Then, if Ai is the set on which xi 5
max( xi, . . . , xd),

P$X* # u% 5 E
@0,u#d

c~max~ x1 , . . . , xd!!P
j51

d

dxj

5 O
i51

d E
Aiù@0,u#d

c~max~ x1 , . . . , xd!!P
j51

d

dxj

5 O
i51

d E
0

u

xi
d21c~ xi!dxi .

Thus, X* has density dud21c(u). Given X* 5 Xi, the Xj’s j Þ i, are
independent and uniformly distributed on [0, X*]d21.

Example 1. Consider f( x1, . . . , xd) 5 e2max( x1. . . , xd)/G(d 1 1), xi $ 0,
a multivariate distribution of exponential flavor. Then the density of
X* 5 max(X1, . . . , Xd) is

dxd21e2x

G~d 1 1!
5

xd21e2x

G~d!
, x $ 0,

which is the gamma (d) density. In the remainder of this article, Gd
denotes a gamma (d) random variable. Thus,

~X1 , . . . , Xd! |
+

~U1Gd , U2Gd , . . . , UdGd!,

where the Ui’s are i.i.d. uniform [0, 1], with the exception of UZ 5 1, where
Z is a uniformly picked integer from {1, . . . , d}. Gamma variate genera-
tion is discussed in Devroye [1986b]. Recent high quality gamma genera-
tors were obtained and implemented by Cheng and Feast [1979; 1980],
Ahrens et al. [1983], and Stadlober and Kremer [1992]. Equivalently, by
considering order statistics, it is easy to see that random variates with the
given density f may be obtained as follows, avoiding gamma generators
altogether:

generate E1, E2, . . . , Ed, i.i.d. exponential random variates
set X1 4 E1, X2 4 X1 1 E2, . . . , Xd 4 Xd21 1 Ed
return a random permutation of (X1, . . . , Xd)

Example 2. Consider f( x1, . . . , xd) 5 c min( A, B/maxa( x1, . . . , xd))
where c, A, B and a are positive constants. The density of X* is dc
min( Axd21, Bxd212a). This is a valid density on (0, `) and if a . d. By
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Lemma 4.1, we note that

X* 5 max~X1 , . . . , Xd!|
+SB

AD 1/a U1/d

V1/~a2d!
.

With X* in hand, we have:

generate U, V i.i.d. uniform [0, 1]
X 4 (B/A)1/aU1/d/V1/(a2d)

generate (U1, . . . , Ud) uniformly in [0, 1]d

generate a random integer Z [ {1, . . . , d}
set UZ 4 1
return (XU1, . . . , XUd)

4.4 Multivariate Min Distributions

If a multivariate density on [0, 1]d is of the form c(min( xi) for some
function c, where xi $ 0, we say that it is a multivariate min density. For
such densities, we may generate a random vector by the following method:

If Y has density j( y) proportional to (1 2 y)d21c( y) on [0, 1], Z is
uniformly distributed on {1, . . . , d} and (U1, . . . , Ud) are d i.i.d. uniform
[0, 1] random variables, and if we replace UZ by 0, then (Y, Y, . . . , Y) 1
((1 2 Y)U1, . . . , (1 2 Y)Ud) has density proportional to c(mini51

d xi) on
the positive quadrant. Note that given Y, Z, d 2 1 components of this
random vector are uniformly distributed on the cube [Y, 1]d21.

The proof of the validity is exactly as for multivariate max distributions.

4.5 The Platymorphous Distribution

The platymorphous distribution has density

hb,d~ x! 5 c min~1, be2(i51
d xi!,

where x 5 ( x1, . . . , xd), and xi $ 0 for i $ 1. It is a two-parameter family
with parameters b $ 1 and d a positive integer. Furthermore, c is a
normalization constant defined by

c 5
1

I1 1 I2

, I1 5
logdb

d!
, I2 5 O

i50

d21 logib

i!
.

The notation logd b is used to denote (log b)d. The name platymorphous
comes from “platy”—the density is flat near the origin—, and “morphous”—
shape. An important special case occurs when b 5 1: the density reduces to

h1,d~ x! 5 P
i51

d

e2xi, xi $ 0,
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the density of d independent exponential random variables. The platymor-
phous distribution is a Liouville distribution with generator given by

gb,d~u! 5
cud21

~d 2 1!!
min~1, be2u! 5 5

cud21

~d 2 1!!
bcud21e2u

~d 2 1!!

if 0 , u , log b

if log b # u.

The generator consists of two pieces, a polynomial part and a tail of a
gamma distribution. We let Gd(t) denote a gamma (d) random variable
restricted to [t, `), or, a tail-gamma variate. It is easy to check that

E
0

log b

gb,d~u!du 5
c logdb

d!
5

I1

I1 1 I2

,

and that

E
log b

`

gb,d~u!du 5 bcP$Gd $ log b% 5 bc O
i50

d21 logibe2log b

i!
5

I2

I1 1 I2

.

The following composition algorithm may thus be used to generate a
random variate with density gb,d:

generate a uniform [0, 1] random variate U
if U , I1/(I1 1 I2)

then generate V uniformly on [0, 1]
return X 4 V1/d log b

else return X 4 Gd(log b)

Tail-gamma variate generation. Gd(t) can be generated in O(1) ex-
pected time via the algorithm given in Devroye [1986, Sect. IX.3.7] when
t . d. For d $ 1, the expected time is bounded from above by

1

1 2 ~~d 2 1!/t!2

(this follows from Devroye [1986, p. 422]. It is uniformly bounded if t $ 2d,
say. For t , d, the algorithm

repeat generate Gd
until Gd $ t
return X 4 Gd

takes expected number of iterations 1/P{Gd $ t} # 1/P{Gd $ d}. But
P{Gd $ d} 3 1/2 by the convergence of (Gd 2 d)/=d to the normal
distribution as d 3 `. This shows that the expected number of iterations
stays uniformly bounded. Finally, for d # t , 2d, one may employ
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rejection based upon a dominating curve that consists of a constant piece
near the origin and an exponential tail starting at d 1 =d. This too takes
uniformly bounded expected time.

The above algorithm suffers from a major drawback, the computation of
I1 and I2, two constants which involve summations and factorials. Merely
computing them takes time proportional to d. We will show that the
following efficient modification provides exact variates as well, and is less
cumbersome:

(algorithm gdb)
generate a uniform [0, 1] random variate U
generate a tail-gamma variate Gd11(log b)
set Gd 4 U1/dGd11(log b)
if Gd $ log b

then return X 4 Gd

else return X 4 V1/d log b where V is uniform [0, 1]

Algorithm gdb requires at most two uniform and one tail-gamma variate
per returned X, and should be acceptable in most cases. Needless to say
that further improvements are possible. Its correctness is shown in Appen-
dix A. If (S1, . . . , Sd) are uniform spacings on [0, 1], then (XS1, . . . , XSd)
is platymorphous. The expected time is O(d) if the uniform spacings are
generated by the algorithms described by Devroye [1986, Section V.3.1], if
X has density gb,d and is generated by the method given above, and if
tail-gamma variates are obtained as described above.

4.6 The Schizomorphous Density

The schizomorphous density has three parameters, a positive integer d, a
positive shape parameter a and a scale parameter b:

wb,a,d~ x! 5 c minS1,
b

) i51
d xi~ x1 1 · · · 1 xd!

aD .

The constant c normalizes the integral to one. The prefix schizo refers to
the dependence of the density upon both ( xi and ) xi. In previous sections,
we have seen how functions of the sum or the product alone may be
handled, but not functions of both. A generator for the schizomorphous
density is given below. The proof of the validity is given in Appendix C.

generate i.i.d. uniform [0, 1] random variates U, V
generate independent gamma (a/(d 1 a)) random variates Y1, . . . , Yd

Y 4 (i51
d Yi

(T1, . . . , Td) 4 ((Y1/Y), . . . , (Yd/Y))
T 4 )i51

d Ti

S 4 (b/T)1/(a1d) 3 (U1/d/V1/a)
return X 5 (X1, . . . , Xd) 4 (ST1, . . . , STd)
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4.7 The Bathymorphous Density

The bathymorphous density is

zb,a,d~ x! 5 c minS1,
b

) i51
d xi~maxi51

d xi!
aD ,

where a . 0 is a shape parameter, b . 0 is a scale parameter, and d is a
positive integer. Once again, c is a normalization constant. The prefix
bathy (deep) refers to the shape of the density in dimension 2, where it
resembles a flat beach in a cove, and a quickly dropping sea level. Let X 5
(X1, . . . , Xd) have this density. Set Xi 5 TiM, M 5 maxj Xj for all i,
where 0 # Ti # 1 are random variables. With probability one, all Tis are
pairwise different. The joint density of (T2, . . . , Td, M) given M 5 X1 5
m is

dcmd21 minS1,
b

ma1d 3 ) j52
d tj

D .

If we take the integral with respect to m, then we obtain the marginal
density of (T2, . . . , Td). Recalling Lemma 4.1, we note that the conditional
density of (T2, . . . , Td) given X1 5 M is given by a constant times

S P
j52

d

tjD 2d/d1a

, 0 # tj # 1, 2 # j # d.

This is proportional to the product of d 2 1 densities on [0, 1] of the form
(a/(a 1 d))tj

2d/(a1d). A random variate with the latter density may be
generated as Tj 4 Uj

(a1d)/a where Uj is uniform [0, 1]. Therefore, given
X1 5 M,

~T2 , . . . , Td! |
+

~U2
~a1d!/a, . . . , Ud

~a1d!/a!

where the Uis are independent uniform [0, 1] random variables.
To generate M (still conditional on X1 5 M), we use the conditional

method. Let T 5 ) i52
d Ti. Then M has density proportional to

md21 minS1,
b

Tma1dD .

By Lemma 1, it is easily seen that

M |
+S b

TD 1/~a1d!

3
U1/d

V1/a

where U, V are i.i.d. uniform [0, 1]. Finally, by symmetry, we note that all
of the above may be repeated for the conditions M 5 Xi. In fact, then, M 5
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XN where N is uniformly distributed on {1, . . . , d}. We summarize the
algorithm for the bathymorphous density:

generate N uniformly on {1, . . . , d}
generate i.i.d. uniform [0, 1] random variates U, V, U1, . . . , Ud
UN 4 1
(T1, . . . , Td) 4 (U1

(a1d)/a, . . . , Ud
(a1d)/a)

T 4 )i51
d Ti

M 4 (b/T)1/(a1d) 3 (U1/d/V1/a)
return X 5 (X1, . . . , Xd) 4 (MT1, . . . , MTd)

5. GENERAL REJECTION ALGORITHMS

In this section we develop five rejection algorithms for different general
subclasses of orthomonotone densities, as listed in Table II. In each case,
the algorithm follows easily from an appropriate inequality.

5.1 Bounded Densities On The Unit Cube

Let f be orthomonotone on [0, `)d. Then, by orthomonotonicity,

1 5 E f~ y!d y $ f~ x! P
i51

d

xi .

Therefore,

f~ x! # minS f~0!,
1

) i51
d xi

D .

The bounding function is not integrable. However, if f is also bounded and
vanishes off [0, 1]d, then we may apply a transformation xi 5 e2yi, and
restrict each yi to [0, `). Under this transformation, f( x) is transformed
into g( y), with y 5 ( y1, . . . , yd) and

g~ y! 5 f~ x!e2(i51
d yi, yi $ 0.

In particular,

g~ y! # min~1, f~0!e2(i51
d yi! 5

hf ~0!,d~y!

c
,

where hf(0),d is the platymorphous density with parameters f(0) and d, and

c 5
1

I1 1 I2

5
1

( i50
d @logif~0!#/i!

.
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This inequality may be used straightforwardly with the rejection method.

(algorithm universal-1)
repeat

generate U uniform [0, 1]
generate Y with platymorphous density hf(0),d
set Z 5 (e2Y1, . . . , e2Yd)

until U min(1, f(0)e2( i51
d

Yi) # f(Z)e2( i51
d

Yi
return Z

The expected number of iterations before halting is

1

c
5 O

i50

d logif~0!

i!
.

Clearly, this number never exceeds f(0) as it sums over only the first d 1 1
terms of the Taylor series expansion of f(0) 5 e log f(0). The number f(0)
measures the expected number of iterations for the rejection method based
on the trivial inequality f(x) # f(0). If d ,, log f(0), the expected
number of iterations is much smaller than f(0). For fixed d, it grows as
[logd f(0)]/d! as f(0) 3 `. The Table III shows the usefulness for large
values of the ratio log( f(0))/d:

Scaling. If f is orthomonotone on 3i51
d [0, si], then we first set wi 5

xi/si, so that (W1, . . . , Wd) has density f 0(w) 5 f(s1w1, . . . , sdwd) ) i51
d

si on [0, 1]d. We may apply the above algorithm to obtain (W1, . . . , Wd)
and then set Xi 5 siWi for all i. Note that f 0(0) 5 sf(0), where s 5 ) i51

d si.
The expected number of iterations before halting is

O
i50

d logi~sf~0!!

i!
,

Table III. Expected Number of Iterations for Algorithm Universal-1 as a Function of f (0)
and d

Algorithm universal-1 is a generalization of the one-dimensional method of Devroye [1984b].
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Note that sf(0) is a scale-invariant factor, and thus that the complexity is
determined solely by the shape of the density.

5.2 Bounding by Product Densities

In multivariate Gibbs sampling, one assumes that the explicit form of f is
known before the Gibbs sampler is designed. This situation differs from the
others in this section, where f can only be computed at fixed points but its
analytic form is not available or manageable. The starting point is the
obvious inequality

f~ x1 , . . . , xd! # min~ f~ x1 , 0, . . . , 0!, . . . , f~0, . . . , 0, xd!!.

Setting fi(u) 5 f(0, . . . , 0, u, 0, . . . , 0) with u in the ith position for f,
and using x 5 ( x1, . . . , xd), we have

f~ x! # min
i

f i~ xi! # P
i

f i
1/d~ xi!.

Thus, the following algorithm is valid for generating random variates with
density f.

(algorithm universal-2)
repeat

for 1 # i # n, generate Xi with density of the form Qfi
1/d (for some

constant Q)
generate U uniformly on [0, 1]

until U )ifi
1/d(Xi) , f(X)

return X

The expected number of iterations until halting is ) i * fi
1/d. As an example,

consider the density f( x) 5 exp2(i51
d xi), the density of the product of d

independent exponential random variables. Here fi(u) 5 exp(2u) and *0
`

fi
1/d(u)du 5 d. Thus, the expected number of iterations before halting is

dd. If, however, f is uniform on [0, a]d, then fi 5 1/ad on [0, a], and the
expected number of iterations is 1. Thus, the efficiency of the algorithm
depends heavily on the density.

5.3 Symmetric Densities

Consider the important subclass of densities that are symmetric in all xis.
In that case, we have

f~ x! # gS max
1#i#d

xiD ,
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where g(u) 5 f(u, 0, 0, . . . , 0). The following algorithm is applicable
since g (max1#i#d xi) is proportional to a multivariate max density.

(algorithm symmetric)
repeat

generate X 5 (X1, . . . , Xd) with multivariate max
density of the form Qg(max1#i#d xi) (for some constant Q)

generate U uniformly on [0, 1]
until Ug(max1#i#d Xi) , f(X)
return X

The expected number of iterations is 1/Q 5 *0
` dtd21g(t)dt. The algorithm

above is applicable if and only if this quantity is finite.

Example 1. Take the symmetric density f( x) 5 C/(1 1 x1
a 1 . . . 1 xd

a)
on the positive quadrant, and note that g(u) 5 C/(1 1 ua). For the
multivariate max generator, it suffices that one can generate random
variates with the univariate density proportional to td21/(1 1 ta) on [0, `).
This is only possible if a . d.

Example 2. Consider the symmetric density f( x) 5 C exp(2a ) i51
d (1 1

xi)) on the positive quadrant. Observe that g(u) 5 Ce2a(11u), so that the
univariate density for the multivariate max generator becomes propor-
tional to td21e2at, which is the density of Gd/a.

Example 3. For a . d, consider the symmetric densities f( x) 5
C/)i51

d (1 1 xi)
a and f( x) 5 C/(1 1 ( i51

d xi)
a on the positive quadrant.

Observe that in both cases, g(u) 5 C/(1 1 u)a, and the univariate density
for the multivariate max generator becomes j( x) 5 Qxd21/(1 1 x)a for
some constant Q. Note that j is proportional to the beta II density. A beta
II random variate may be generated as a ratio Gd/Ga2d of two independent
gamma random variates [Devroye 1986, p. 427].

Example 4. Consider the symmetric density f( x) 5 C/)i51
d (1 1 xi

d)2

on the positive quadrant. Observe that the multivariate max generator is
j( x) 5 CQxd21/(1 1 xd)2, which is proportional to the density of (U/(1 2
U))1/d [Devroye 1986, p. 437] when U is uniform [0, 1].

5.4 Bounded Densities With Some Known Moments

Assume X is orthomonotone on [0, `)d but possibly of infinite support. No
rejection method is possible unless we are given some information about
the rate of decrease of the tail of f. In particular, assume that one of the
multivariate moments is known, such as

m 5 E$X1
a1 · · · Xd

ad%
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for some a1, . . . , ad $ 0. By orthomonotonicity,

f~ x! P
i51

d xi
ai11

ai 1 1
5 f~ x!E

0#yi#xi

P
i51

d

yi
ai d y1 . . . d yd

# E
0#yi#xi

f~ y!P
i51

d

yi
ai d y1 . . . d yd

# E$X1
a1 · · · Xd

ad%

~where ~X1 , . . . , Xd! has density f !

5 m.

Therefore,

f~ x! # minSm) i51
d ~ai 1 1!

) i51
d xi

ai11 , f~0!D .

Several examples may be considered:

(A) If ai [ 0, then m 5 1, and we obtain an inequality like that involving
the platymorphous distribution. It is only useful if the Xis have
compact support.

(B) If a1 5 a, ai 5 0 for i . 1, then

f~ x! # minS ~a 1 1!m

x1
a ) i51

d xi

, f~0!D .

If mi 5 EXi
a for all i, and the inequality above is applied for all i

individually, we obtain the bound

f~ x! # minS f~0!, min
1#i#d

~a 1 1!m i

xi
a ) j51

d xj
D .

Case B proves useful and will be discussed in the next section.

(C) If ai [ a, for i $ 1, then

f~ x! # minS ~a 1 1!dm

) i51
d xi

a11 , f~0!D .

Unfortunately, the upper bound is not integrable in x for any value of
a, so this inequality is useless for us.
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Let us consider case B in more detail, and set m i 5 EXi
a for all i. Define

the normalized random variables Yi 5 Xi/m i
1/a so that EYi

a 5 1 for all i. If
f is the (orthomonotone) density of X 5 (X1, . . . , Xd), then mf( y1m1

1/a, . . . ,
ydmd

1/a) is the (orthomonotone) density of (Y1, . . . , Yd), where m 5 )i m i
1/a.

Call this density g. If y 5 ( y1, . . . , yd), then

g~ y! # minSmf~0!,
~a 1 1!

maxi yi
a 3 ) j51

d yj
D .

The upper bound is proportional to the bathymorphous density zb,a,d with
b 5 (a 1 1)/(mf(0)).

We summarize the rejection algorithm based upon the above inequality:

(algorithm universal-3)
b 4 (a 1 1)/(mf(0))
repeat

generate U uniform [0, 1]
generate Y with bathymorphous density zb,a,d

until U min (mf(0), [(a11)/(maxi Yi
a 3 ) j51

d Yj)]) # g(Y)
(where g(Y) 5 mf(Y1m1

1/a, . . . , Ydmd
1/a))

return X 5 (X1, . . . , Xd) 4 (Y1m1
1/a, . . . , Ydmd

1/a)

5.5 Bounded Densities With Known Moment Of A Sum

By orthomonotonicity

f~ x!~ x1 1 · · · 1 xd!
a22a P

i51

d

xi

# f~ x!EH ~U1x1 1 · · · 1 Udxd!
a P

i51

d

xiJ
(by Jensen’s inequality if a$1); (where (U1 , . . . , Ud) are i.i.d. uniform [0, 1])

5 f~ x! E
0#ti#1

~t1x1 1 · · · 1 tdxd!
a P

i51

d

xidt1 . . . dtd

5 f~ x! E
0#yi#xi

~ y1 1 · · · 1 yd!
ad y1 . . . d yd

# E
0#yi#xi

f~ y!~ y1 1 · · · 1 yd!
ad y1 . . . d yd

# E$~X1 1 · · · 1 Xd!
a%
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~where ~X1 , . . . , Xd! has density f !

5 m.

From this, we have

f~ x! # minS f~0!,
m2a

) i51
d xi~ x1 1 · · · 1 xd!

aD .

The right-hand-side is proportional to the schizomorphous density wb,a,d
with b 5 2am/f(0). The rejection algorithm in its entirety may be summa-
rized as follows.

(algorithm universal-4)
b 4 2am/f(0)
repeat

generate an i.i.d. uniform [0, 1] random variate W
generate X 5 (X1, . . . , Xd) with the schizomorphous density wb,a,d

until W min [f(0), (m2a/()Xi((Xi)
a)] # f(X)

return X

5.6 Bounded Densities With Finite Moment Generating Function

Assume X is orthomonotone on [0, `)d and that the moment generating
function f is known and finite at one or more points (t1, . . . , td) with
nonzero components, where

f~t1 , . . . , td!|
def

Eet1X11· · ·tdXd.

By orthomonotonicity,

f~ x! P
i51

d etixi21

ti

5 f~x!E
0#yi#xi

et1 y11· · ·td yddy1 . . . dyd

# E
0#yi#xi

f~ y!et1 y11· · ·td yddy1 . . . dyd

# Eet1Y11· · ·tdYd

~where ~Y1 , . . . , Yd! has density f !

5 f~t1 , . . . , td!.
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Therefore,

f~ x! # minS f~0!, f~t1 , . . . , td! P
i51

d ti

etixi21D
# 5minS f~0!, f~t1 , . . . , td!) i51

d
1

xi~1 1 t1xi/ 2!
D

minS f~0!, f~t, . . . , t!
t maxixi

~et maxixi21!)i51
d xi

D ~if ti [ t . 0 for all i!.

The first two bounding functions are proportional to generalized MP
densities which we call MP I and MP II, respectively. The third bounding
density (for ti [ t . 0) depends upon maxi xi and )i51

d xi only, a property
shared with the bathymorphous density. Random variate generation for f
may thus be done by an algorithm that resembles (but is different from)
universal-3.

PROOF OF THE LAST TWO INEQUALITIES. Set ti 5 t for all i. It suffices to
bound the product

P
i51

d t

etxi 2 1
,

where all variables are positive. Assume without loss of generality that
x1 5 max( x1, . . . , xn). By Taylor’s series expansion,

etxi 2 1 $ txi~1 1 txi/ 2! $ txi .

Apply the first inequality d times to get

P
i51

d t

etxi 2 1
# P

i51

d t

txi~1 1 txi/ 2!
5 P

i51

d 1

xi~1 1 txi/ 2!
.

Apply the second inequality for 2 # i # d, and obtain

P
i51

d t

etxi 2 1
#

t

etx1 2 1
P
i52

d t

txi

5
tx1

etx1 2 1
P
i51

d 1

xi

5
t max~ x1 , . . . , xd!

et max~ x1 , . . . , xd! 2 1
P
i51

d 1

xi

. e
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5.7 Densities With Compact Support

In this section, we assume that X is orthomonotone on [0, 1]d and that
additionally, f is analytically known so that g(u) 5 f(u, u, . . . , u) (the
diagonal function) may be used in an auxiliary random variate generator.
Clearly, by orthomonotonicity,

f~ x1 , . . . , xd! # g S min
1#i#d

xiD .

If this inequality is used in the rejection method, we need to obtain random
vectors with density proportional to the multivariate min density

g S min
1#i#d

xiD
on the unit cube. Using properties of multivariate min densities, we obtain
the following algorithm:

(algorithm universal-5)
repeat

generate U uniform [0, 1]
generate Y with density proportional

to (1 2 u)d21f(u, u, . . . , u) on [0, 1]
generate i.i.d. uniform [0, 1] random variates U1, . . . , Ud
set UZ 5 0 where Z is uniform on {1, . . . , d}
for i 5 1 to d, set Xi 5 Y 1 (1 2 Y)Ui

until Uf(Y, Y, . . . , Y) # f(X1, . . . , Xd)
return X 5 (X1, . . . , Xd)

6. MANY RANDOM VARIATES FROM THE SAME DISTRIBUTION

If many random variates from the same distribution are required, we may
increase the efficiency in two ways:

6.1 Adaptive Table Methods

Develop increasingly better bounds for rejection as new data are generated.
If X1, . . . , Xn have been generated, and if we set X0 5 0, then we may
bound f( x) as follows:

f~ x! # gn~ x!|
def

min
i#n:Xi#x

f~Xi!.

Here # denotes inequality for all d components. Assume for simplicity that
f is orthomonotone with support on [0, 1]d. The dominating curve is
piecewise constant and thus could be dealt with by an appropriate discrete
random variate generation method. Sampling is done from gn, and the Xis
used in improving gn include all points generated thus far, both those
rejected and accepted. The expected area under the dominating curve
decreases to one as n tends to `. This fact is shown in Appendix B.
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6.2 Static Table Methods Via Precomputation

Do some preprocessing and precompute f on a carefully selected grid.
Assume once again that f is supported on [0, 1]. Compute f at all points

~i1/n, . . . , id/n!,

where 0 # ij # n for all j, and n . 1 is integer-valued. The grid consists of
(n 1 1)d points. If grid cells are characterized by their lower left vertex, we
see that exactly nd cells are present. A table is set up (see Devroye [1986b,
Ch. VIII]) from which a cell with lower left vertex xi is selected with
probability proportional to f( xi) in expected time O(1). A point X is
generated with a uniform distribution in the cell. Afterwards, the rejection
method is applied in a routine manner. If B 5 f(0), the expected number of
iterations is

O
i

f~ xi!/nd 5 O
i

~ f~ xi! 2 f~ yi!!/nd 1 O
i

f~ yi!/nd

~where yi is the upper right vertex of cell i!

# O
i: some component of xi is 0

f~ xi!/nd 1 1

~by telescoping!

# B~n 1 1!d21/nd 1 1

5
B

n 1 1S1 1
1

nD
d

1 1.

By adjusting n as a function of B, the efficiency can thus be controlled
without any problems. The efficiency gain with respect to naive uniform
rejection is about n (at the expense of nd storage). In the next section, we
verify that this method compares favorably with the other methods. Fur-
ther speed-ups are possible by taking geometrically increasing grid cells (as
described by Devroye [1986b, Ch. VIII]) and by introducing squeeze steps
(see same reference).

7. EXPERIMENTAL RESULTS

Four simple experiments on three platforms show the usefulness of the
above bounds. Tests A and B were carried out in an interpreted language
(PostScript) as these are increasingly important and often neglected in
computer studies. A Sun 4 workstation without floating point acceleration
was used for test A and a Pentium 120 processor for test B. Tests C and D
were programmed in C, compiled with gcc, and run on a machine with a
Pentium 120 processor.
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7.1 Test A: Table Methods Versus Rejection

The results are given in a general time scale relative to the expected time
to generate one gamma random variate, which in turn takes 0.7 millisec-
onds on average. Uniform variates are obtained by the PostScript linear
congruential generator ( xn11 5 16807xnmod(231 2 1)), even though we
realize its limitations in real-world simulations. Exponential random vari-
ates are obtained by inversion, and gamma variates by the ratio-of-
uniforms method [Devroye 1986b, pp. 197, 203].

Tests A and B are designed using the observation that if Z 5 (Z1, Z2,
. . . , Zd) is any random variable on [0, `)d, then (U1Z1, . . . , UdZd) is
block monotone (and thus orthomonotone) when U1, . . . , Ud are indepen-
dent uniform [0, 1] random variables.

We four test densities on [0, 1]3:

(1) f1 is block monotone with mixing random variable

Z 5 5 @1, 1, 1#

@0.1, 1, 1#

@0.01, 0.1, 1#

with probability 1/2
with probability 1/4
with probability 1/4

.

(2) f2 is block monotone with mixing random variable

Z 5 H @1, 1, 1#

@0.01, 0.1, 1#

with probability 1/2
with probability 1/2

.

(3) f3 is orthomonotone but not block monotone, and is of the form CIA( x)
for a constant C and a set

A 5 R@0.01, 1, 1# ø R@1, 0.01, 1# ø R@1, 1, 0.01#

where R[a, b, c] denotes the rectangle with the origin and (a, b, c) as
opposite

(4) Similarly, f4 5 CIA( x), where now

A 5 R@0.01, 0.01, 1# ø R@0.01, 1, 0.01# ø R@1, 0.01, 0.01#.

The values of f(0) matter a lot for most of the algorithms—they are 253,
500.5, 33.6689 and 3333.33, respectively. These numbers are roughly
proportional to the difficulty of each density for the naive rejection method.

Timings are reported for the following three methods (after subtracting
the time for empty loops):

(A) The naive rejection method, with uniform bound f( x) # f(0) on [0, 1]3.
The expected time grows as f(0).

(B) Algorithm universal-1. The expected time grows as (i50
d [logi f(0)]/i!.

This number is roughly equal to f(0) unless d is much less than log
f(0). This is only the case for densities 1, 2 and 4.
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(C) The table method described earlier based upon a 9 3 9 3 9 grid of
points. Selection of a grid cell was done via the guide table method of
Chen and Asau [1974] (see Devroye [1986, pp. 96–98]). The expected
time still grows proportionally with f(0), but the constant is much
smaller. This method requires considerable set-up times and extra
storage. However, as soon as at least 10 variates with the same density
are needed, the amortized set-up time becomes manageable.

It is noteworthy that one platymorphic random variate (hf(0),d) takes
between 1.5 and 4.5 time units for any value of f(0) when d 5 3.

For density f4, the Gibbs sampler stays in one of the three arms of the
distribution for on average 300 iterations. Sufficient mixing can only occur
if switching between arms is repeated sufficiently often. Suppose we do this
only 20 times. Then about 6000 iterations are needed to even get close to
the true limit distribution. This requires about 3000 of our relative time
units. All methods except naive uniform rejection are more efficient.

7.2 Test B: Comparison Between Universal Algorithms

We compared all the universal algorithms with each other. Again, we
consider block monotone densities in R5 of the form

f~ x! 5 p
IA~ x!

r5
1 ~1 2 p!O

i51

5 IAi~ x!

r4
,

where A 5 R[r, r, r, r, r], A1 5 R[1, r, r, r, r], A2 5 R[r, 1, r, r, r],
A3 5 R[r, r, 1, r, r], A4 5 R[r, r, r, 1, r], A5 5 R[r, r, r, r, 1], and p [
[0, 1] and r [ (0, 1) are parameters. A huge peak at the origin results when
r is taken very small. In this manner, even though f has support in [0, 1]5,
we may simulate large tails.

What one finds, generally speaking, is that the timings decrease with the
amount of knowledge employed. The algorithms universal-3 and univer-
sal-4 assume certain moments, but work quite generally on densities of
unbounded support. Surely, these methods are the slowest, but for difficult
densities, some of them become very competitive. Note in particular that
different densities require different moments (parameter a in algorithm

Table IV. Mean Times per Random Variate and Set-up Times per Distribution
Divided by the Mean Time per Gamma Random Variate
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universal-3) for optimal performance; in our case, a 5 4 and a 5 8 were
often the best choices. The algorithms universal-2 and universal-5 assume
analytic knowledge of f at some point, and have performances that are very
much tied to f, lacking the robustness shown by universal-3, for example.
The algorithm universal-1 requires knowledge of the compact support
(which is much more than just knowledge of moments), and performs quite
well for densities that are well spread out over the support.

Table V. Mean Times per Random Variate in Milliseconds per Random Vector

Table VI. Mean Times per Random Variate in Seconds. “Exact Method” Refers to the
Method Based Upon the Genesis of the Distribution

Table VII. Mean Times per Random Variate in Seconds for the Algorithm Symmetric
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7.3 Test C: Densities With Infinite Tails

In the third test, we see how the methods stack up for orthomonotone
densities with infinite tails. The methods that apply are symmetric, univer-
sal-3 and universal-4. Uniform random variates are obtained by L’Ecuyer’s
combined generator [1988]. Gamma variates are obtained by Cheng’s
method GB [Cheng 1977]. The test density is that of (E1/Z1, . . . , Ed/Zd),
where E1, . . . , Ed are i.i.d. exponential, and (Z1, . . . , Zd) is a vectors of
ones with one “4” in a random position. The density is a mixture of
densities, each of which is a product of univariate exponential densities. We
will refer to it as an exponential mixture. For testing purposes and easy
extensions to higher dimensions, this family is very convenient.

7.4 Test D: Expected Time Versus Dimension

In the last test, we merely point out that the expected time of our rejection
algorithms typically grow very rapidly with the dimension. The example of
test C is taken for dimensions 3, 5, 7 and 9. The algorithm was symmetric,
as it performed well for this distribution at small dimensions. The timings
show that past dimension 10, one should give serious consideration to other
methods, foremost of which adaptive methods that store ( x, f( x)) pairs for
which the values are known. As this introduces interesting data structure
problems, it will be dealt with elsewhere.

8. ORTHOUNIMODALITY FROM ORTHOMONOTONICITY

If Q1, . . . , Q2d are the closed quadrants of Rd with center at the origin,
then an orthounimodal density f with mode at the origin is almost every-
where equal to

O
i51

2d

f~ x!IQi~ x!

where I is the indicator function of a set. Note that on quadrant bound-
aries, we do not obtain f, but this does not matter as the boundaries have
zero Lebesgue measure. Assume that bounding on all quadrants can be
done as explained in the previous sections. Assume thus that we have
f( x) # g( x) for all x, where g is obtained by piecing together 2d functions,
one for each quadrant. As g is known, we easily compute pi 5 *Qi

g for
each 1 # i # 2d (note again that the definition of g on quadrant
boundaries is unimportant). One then applies the rejection method by
noting that a random vector with density proportional to g is obtained as
XZ, where P{Z 5 i} 5 pi/( jpj, and Xi is a random vector on the ith
quadrant Qi with density proportional to gIQi

.
As an example, consider the orthounimodal bivariate density 1/( x1

4 1
x2

4 1 1). By symmetry, if we have f( x) # g( x) on the quadrant Q1 5 { x1 $
0, x2 $ 0}, then f( x) # g( ux u) everywhere, where ux u |

def ( ux1u, ux2u). In this
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case, all pis are equal. It suffices to generate X with orthomonotone density
fIQ1

, and to randomly and uniformly flip the signs of the components of X.

SUMMARY AND FUTURE WORK

We introduced various general algorithms for generating random variates
with orthounimodal densities. All are based upon probability inequalities
that require minimal information on the part of the user. For dimensions
up to 10, the algorithms are shown to be efficient. For higher dimensions,
other methods must be developed. We believe that the most promising
among the exact methods are the adaptive methods that make clever use of
all known ( x, f( x)) pairs, perhaps using quadtrees or other multivariate
tree structures to partition the space up into pieces.

The present article shows how orthounimodality may be dealt with.
Convex unimodality and log concavity require separate study. Further
research is also needed in the exploitation of symmetries that occur
frequently in multivariate densities. For example, how would one generate
random variates when the densities are of the form

cS O
iÞj

xixjD ?

APPENDIX A. Proof of Algorithm gdb

Lt G*d11 denote a gamma random variate with parameter d 1 1. Set G*d 5
U1/dG*d11, where U is uniform [0, 1]. Observe that G*d is gamma (d) by a
well-known property of the gamma distribution (see Devroye [1986, Sect.
IV.6.4.]. The random variate Gd11 in the algorithm may be thought of as
G*d11 given G*d11 $ log b. With this conditional distribution in mind, we
have for u . 0.

P$X # u% 5 P$Gd , log b, V1/d log b # u% 1 P$Gd $ log b, Gd # u%

5
P$G*d , log b, V1/d log b # u, G*d11 $ log b%

P$G*d11 $ log b%

1
P$G*d $ log b, G*d # u, G*d11 $ log b%

P$G*d11 $ log b%

5 P$V1/d log b # u%P$G*d , log b uG*d11 $ log b%

1
P$u $ G*d $ log b%

P$G*d11 $ log b%
.

If u , log b, only the first term is nonzero, while if u $ log b, the first term
reduces to p 5 P{G*d , log b uG*d11 $ log b}, which is independent of u. The
density of X is obtained by taking a derivative with respect to u. First, for
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u , log b, the density is pz(u), where z(u) 5 dud21/logd b is a valid density
on [0, log b). But

P$G*d , log b, G*d11 $ log b% 5 P$G*d , log b% 2 P$G*d11 , log b%

5 O
i50

d logibe2log b

i!
2 O

i50

d21 logibe2log b

i!

5
logdb

bd!
5

I1

b
.

Fig. 1. Six orthomonotone functions are shown: (a) and (b) show two exponential mixture
densities; (c) shows a density on the unit rectangle of the form tested in test B; (d) is a
platymorphous density; (e) is a schizomorphous density; and (f) is a bathymorphous density.
To some extent, the shapes explain our nomenclature.
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As P{G*d11 $ log b} 5 (I1 1 I2)/b, we see that p 5 I1/(I1 1 I2).
Next, for u $ log b, the density is the gamma (d) density divided by (I1 1

I2)/b. Equivalently, it is I2/(I1 1 I2) times the tail-gamma (d) density on
[log b, `). Thus, the density of X coincides with gb,d. e

APPENDIX B. Convergence Result for the Adaptive Sampler

We show that for each x [ (0, 1)d,

lim sup
n3`

Egn~ x! 5 f~ x!.

As gn( x) is monotone in n, this implies

lim sup
n3`

E Egn~ x!dx 5 E f~ x!dx 5 1.

Let e . 0 be small and at the very least smaller than the smallest
component of x. Let An be the event that Xn falls in the rectangle with x 2
e and x as its opposite vertices where e is the d-vector all of whose
components are e. Then

gn~ x! # gn21~ x!~1 2 IAn! 1 IAnf~ x 2 e!.

But if ^n21 denotes the history up to time n 2 1, then P{Anu^n21} $
gn21( x)ed/* gn21. Note that * gn21 # * g0 5 B if we start with the
uniform density on the unit square. Thus, since g0( x) $ f( x 2 e), the
sequence gn( x) can only decrease monotonically.

PH lim inf
n3`

gn~ x! . f~ x 2 e! 1 1/kJ # P$ ù n51
` An

c %

# P
n51

` S1 2
~ f~ x 2 e! 1 1/k!ed

B D
5 0.

Therefore, by the arbitrary nature of k and d, we conclude that lim supn3`

gn( x) # f( x 2 e) almost surely. Thus, by the arbitrary nature of e, and
monotone convergence,

lim sup
n3`

Egn~ x! # inf
y,x

f~ y!.
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Since infy,x f( y) 5 f( x) at almost all x,

lim sup
n3`

E E gn~ x!dx # E f~ x!dx 5 1.

Thus, the acceptance rate increases to one monotonically with n.

APPENDIX C. Validity of the Generator for Schizomorphous Density

If we define S 5 ( i51
d Xi, Xi 5 TiS for all i, with 0 # Ti # 1, ( i51

d Ti 5 1,
then (S, T1, . . . , Td21) has the following density on [0, `) 3 7, where 7 is
the simplex of Rd21 defined by 0 # ti # 1, (iti # 1:

f9~s, t1 , . . . , td21! |
def

wb,a,d~t1s, . . . , td21s, ~1 2 t1 2 · · · 2 td21!s! 3 sd21

5 csd21 minS1,
b

) i51
d21 ti~1 2 ( i51

d21 ti!sd1aD .

Random variate generation can now proceed by the conditional method
[Johnson 1987]. Taking the integral with respect to s in the upper bound
yields a function of )i51

d21 ti(1 2 (i51
d21 ti) only (see Lemma 4.1):

d 1 a

ad
~wb,a,d~0!!a/~d1a!S b

) i51
d21 ti~1 2 ( i51

d21 ti!
D d/~d1a!

, ti $ 0, O
i

t i # 1.

This function is proportional to the Dirichlet density with parameters
a/(d 1 a) for all variables [Devroye 1986b, Sect. XI.4.1]. We generate (T1,
. . . , Td21) as

G1

G
, . . . ,

Gd21

G
,

where the Gis are independent gamma (a/(d 1 a)) random variables, and
G 5 ( i51

d Gi. Furthermore, it is known that G is independent of (T1, . . . ,
Td21) if we do this. For later reference, we define Td 5 1 2 (i,d Ti 5
Gd/S. Fixing T 5 )i51

d21 Ti(1 2 (i51
d21 Ti), we then generate S with density

proportional to

sd21 minS1,
b

Tsd1aD .

By Lemma 4.1, it is easily seen that

S |
+ S b

TD 1/~a1d!

3
U1/d

V1/a

where U, V are i.i.d. uniform [0, 1].
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