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Abstract 

The purpose of this paper is to settle two conjectures by Flajolet, Gourdon and Martinez ( 1996). We confirm that in a 
random binary tree on n nodes, the expected number of different subtrees grows indeed as 0 (n/ log n). Secondly, if K is 
the largest integer such that all possible shapes of subtrees of cardinality less than or equal to K occur in a random binary 
search tree, then we show that K N log n/ log log n in probability. @ 1998 Published by Elsevier Science B.V. 
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1. Introduction 

The catalyst for this paper is the work of Flajolet, 
Gourdon and Martinez [ 41: if N is the number of dif- 

ferent (shapes of) subtrees in a random binary search 
tree on n nodes (which are constructed by insertion 
of a uniform random permutation of n numbers), then 

these authors showed that 

E(N) < 
(4+o(l))n 

log, n . 

They conjectured that this is indeed the right order of 
growth. Without attempting to obtain the best constant, 
we show the following. 
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Theorem 1. 

E(N) = @ (&). 

The size of N matters to those who use compres- 
sion methods for storing or transmitting the shapes 
of binary search trees. The richness of the collection 

of subtrees may also be measured in a different man- 
ner. Let K be the largest integer such that all possible 
(shapes of) subtrees of size K or less occur as sub- 
trees. Based upon similar properties for strings shown 
by Flajolet, Kirschenhofer and Tichy [5], Flajolet, 
Gourdon and Martinez [4] conjecture that K should 
be close to log, II. We settle this conjecture by show- 
ing the following. 

Theorem 2. 

K 

(bn)/mglogn) 
+ 1 in probability. 
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2. Proof of Theorem 1 

For Theorem 1, it is good to recall some properties 
of paged trees. Let t denote a binary tree, and let It] be 

its size. Let N, be the number of subtrees of a random 
binary search tree on n nodes whose shape is identical 

to t. The b-index of a tree is a tree that retains only the 
nodes of size > b. The size of this b-index is denoted 

by 

B = c IN,]. 
f: lrl>b 

The idea is that subtrees of size < b can be trimmed 
away and stored in pages of capacity b in peripheral 

storage. The b-index resides in main storage. We need 

two results about B. 

Lemma 3 (Knuth [7, p. 1221). For n > b 2 2, 

E(B)= b+2 
2(n+ 1) _ I 

Lemma 4 (Flajolet, Gourdon and Martinez [ 41). 
For b > 2, 

Var{B} = 
2(b- l)b(b+ l>(n+ 1) 

3(b+2)2 ’ 

In the last paper, the authors also obtain a Gaussian 

limit law for B. Both results and the limit law can also 
be obtained from the general results of Devroye [ 21. 

We briefly recall the proof of the upper bound for 
Theorem 1, as given by Flajolet, Gourdon and Mar- 
tinez. The number of binary trees on k nodes is 

Define the threshold 

b = I( 1 - E) log, nj. 

Then we have 

i=O f: Ifl>b 

We know that as k ---t 03, 

so that for IZ large enough, if E < l/2, 

Ii2 = o(g) = q (lo;;;3,2) 
i=O 

uniformly over all such E. Take 

log log n 

&=logn’ 

so that the upper bound becomes 

OC (lognn)5!2 . > 

From Lemma 3, 

E{ c IN,i} = 26”;;) - 1. 

t: Irl>b 

As b w log, n, we have E(N) = 0( n/ logn). 
For a lower bound, we argue not very differently. 

Let A denote the event that among subtrees of size 
> b, some duplicates occur, where 

b = [(4 + E) log, nl 

and E > 0 is arbitrary. Let ok,, denote the probability 
that a random binary search tree on k nodes is identical 
to a given tree t. This parameter has been studied by 
Fill [3]. We do not need any deep results on pk,r 

beyond 

where the product is over all nodes u of t, and 1~1 
denotes the size of the subtree rooted at U. Flajolet, 
Gourdon and Martinez [ 41 provide the upper bound 

pk.1 6 2-k’4, k > 4. 

Fill [3] showed that 

Pk,r < e 
-ck+O(log’ k) 

where c = ln(4) - C,:, 2-.i] ln( 1 - 2-j) I M 0.946. 
Both bounds will do, but we provide a simple non- 
asymptotic bound for further reference. 

Lemma 5. For all k > 0, 

sup p/q < 3-(k-‘)‘2. 
r: ItJ=k 
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Proof. We proceed by induction on k and show that 

sup pk,, < c2-Ck 
r: IrJ=k 

for some constants c and C. Clearly, for k = 0 and 
k = 1, the formula is valid provided that c 2 1 and 
C < log, c. For k = ItI = 2, p2,, = l/2, so ~44’ > 
l/2. Assuming that k 3 3, ItI = k, and that the left 
and right subtrees of the root are I and I with /II + Irl = 
k- 1, we have 

< pl,l,rpIrjJ < c22-c(ir’+lrl, = c22c2-ck 
Pk.1 . 

< c2-ik 

\ 
k k 

provided that k 3 ~2’. All the inequalities for c and 
C can be simultaneously satisfied if we pick c = & 
and C = log, 3. Thus, 

sup pk.t 6 3-‘k-“‘2. 0 
1: Irl=k 

We conclude that the probability that two subtrees 
both have sizes > b and have identical shapes is 

P(A) < n23-b’2 + 0 

by choice of 6. Here we used the union bound and the 
fact that if two nodes are not in an ancestor/descendant 
relationship, then conditional on the sizes of the sub- 
trees being m and n, the subtrees themselves are inde- 
pendent random binary search trees of sizes m and n 
respectively. Therefore, if AC denotes the complement 

of A, 

E(N) 2 E{BIAc} 

= E(B) - E{BZA} 

3 E(B) - dm 

(by the Cauchy-Schwarz inequality) 

2(n + 1) 

= b+l 
- 1 - o( J(E2{B} + Var{B})) 

2n 

- (4 + E) log, 12 

by Lemmas 3 and 4 and our choice of b. This con- 
cludes the proof of Theorem 1. 0 

3. Proof of Theorem 2 

3.1. An upper bound 

Let E > 0. Define k = [( 1 + E) logn/ log log nl . 
Verify that k! = n’+‘+‘(‘). Denote by Lk a binary tree 
on k nodes consisting of a chain of left children. If the 
random binary search tree is constructed incremen- 
tally by standard insertions of Xi, . . . , X,, a random 
permutation of 1, . . . , n, then we let T be a subtree 
rooted at the node for X;. The size of T, is IT,I. We 
have 

P{K > k} < P{ij,, = &]} 
i=l 

&P{z+ Lk) 

i=l 

&P{T,=Lk 1 lKl=k) 
i=l 

n 
=- 

k! 
1 

=- 
n&+0( 1) -+ 0. 

3.2. A lower bound 

For an accompanying lower bound, we define k = 
[( 1 -E) logn/ log log nl, and note that k! = n’-E+O(l), 

where E E (0,l). The random binary search tree 
many also be thought of as based upon an i.i.d. uni- 
form [0, I] sequence XI,. . . , X,. Assuming n even, 
the partial tree based upon X1, . . . , X,,/, has n/2 + 1 

external nodes (these are at all possible positions for 
insertion of a new node). When the tree is completed 
by adding X,,/2+, , . . . , X,, these external nodes grow 
to trees labeled Ti, . . . , T,,/z+i (note the change in 
definition from the first part of the proof). Some of 
these trees may have size 0. We recall that there are 
Cl = I-$I (:[) possible shapes of binary trees on 1 
nodes. Each of these shapes has a probability of oc- 
currence at least equal to l/Z! under the random bi- 
nary search tree model (this is easy to show by induc- 
tion). Let us denote by T the vector of cardinalities 

IT,],... , ]Tn,2+t I. Note that given these cardinalities, 
the shapes of the is;‘s are clearly independent. Thus, if 

N; = C;i;+i II+;, 
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P{K < k\T} so that 

< 2 P(one of the Ci binary trees is not 
E 

1 
e-A~;::t”l~,~=~ 1 X} 

i=l 
represented by the Tjs 1 T} 6 e-Cli:+’ P/.,(1-emA) zf e-Z,(l-e-A) 

k 

6 c Ci sup P{t is not represented 
i=l t: Ifl=i 

by the Tjs 1 T} 

=&CL SUP ‘EtP{Tj # t 1 ITj]} 

i=l I: ItI=i + 

k n/2+1 

< CCi SUP n (IIT,l+i + IlT,l=i(l - lli!)) 

i=l t: (t(=i j=l 

= 2 Ci nfjf’( 1 - Zl,l=i/i!) 
i=l j=l 

E 
{ 

e-A c;;:+’ ‘Ir,I=’ 1 X} 

k 

= c cke-N,/i!. < e-_(I/2)E(Z,}(~--e-A) + 2e-‘E{Z;}‘Z/32n \ 
i=l 

Therefore, 

Summarizing the above bounds, we have 

P{K < k} < 5 CkE(eeN”!). 
i=l 

To bound this, it helps to condition on X = 

(Xl,. . . , X,,/2). Conditional on X, the sizes ITjl are 
indeed multinomially distributed. As the components 
of a multinomial random vector are negatively asso- 
ciated (see [ 61) , we have for all A > 0, 

The points Xi, 1 < i < n/2, define n/2 + 1 spacings 

sl,...7s?l/2+1. Given Sj, ]Z’j] is binomial (n/s, Sj). 
Thus, if pj,i is the probability that such a binomial 
takes the value i, 

E{e -A1lT,l=’ 1 Sj} = pj,;eeA + ( 1 - P&i) 

< ,-/~,.,(l-e-“) 

where 

Zi %f nE pj,i_ 

j=l 

Observe that Zi is a function of X that is such that 
if one of the components of X is replaced by another 
value, then 2; changes by at most 4. Therefore, by 
the independence of the components of X, and by 
McDiarmid’s inequality ( [ 91; see also [ 1 ] ) , for a > 

0, 

P{ 12; - E{Zi}l > aE{Zi}} 6 2e-a2(E{Z,})Z/(n/2)42. 

Take a = l/2 and note that 

P{K < k} < 5 CkE(e-N’/i!) 
i=l 

k 

<xCke 
-(1/2)E{Z;}(l-e-l”!) 

i=l 

k 

+  C ~~2~-(E{Z~I?/32n 

i=l 

< kck SUP t? 
-(1/2)E{Z,}(I--e-“‘I) 

l<i(k 

+ 2kCk sup e-(w})2/32n. 

l<i<k 

The proof is thus finished if we can obtain a lower 
bound for E{ Zi}. By linearity of expectation, 

E{Zi} = (n/2 + l)P{binomial(n/2,X(t)) = i}, 

where Xc 1) = min( Xl, . . . , X,/2). The previous for- 
mula follows from the fact that all uniform spacings 
have identical distributions. Assume that 1 < i 6 k < 
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n/4. If we consider the entire sequence Xl,. . . , X,, it As kc,, = (‘j(49 = #(I), e-2k = @Cl), e--4k = @l) 

should be clear that 

P{binomial(n/2,X(l)) = i} 

42 z--x n/2x...x 
n/2 - i + 1 n/2 x- 

n n-1 n-i+1 n-i 

3 f(S)’ 

1 n/2 i 
=- 

2 ( l-- n-i > 

and 1 - l/k! - .1/k! = n’-‘+“(‘), we see that 

p{K < k} < no(l)e-nE+oc’) + nO(l)e-“‘+Oc’) --) 0. 

This concludes the proof of Theorem 2. 0 
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