

Information Processing Letters 65 (1998) 195-199

Information Processing Letters

# On the richness of the collection of subtrees in random binary search trees

Luc Devroye<sup>1</sup>

School of Computer Science, McGill University, 3480 University Street, Montreal, Quebec, Canada H3A 2A7

Received 27 June 1997 Communicated by F. Dehne

#### Abstract

The purpose of this paper is to settle two conjectures by Flajolet, Gourdon and Martinez (1996). We confirm that in a random binary tree on *n* nodes, the expected number of different subtrees grows indeed as  $\Theta(n/\log n)$ . Secondly, if *K* is the largest integer such that all possible shapes of subtrees of cardinality less than or equal to *K* occur in a random binary search tree, then we show that  $K \sim \log n/\log \log n$  in probability. © 1998 Published by Elsevier Science B.V.

Keywords: Probabilistic analysis; Random binary search trees; Random permutation; Subtrees; Computational complexity

### 1. Introduction

The catalyst for this paper is the work of Flajolet, Gourdon and Martinez [4]: if N is the number of different (shapes of) subtrees in a random binary search tree on n nodes (which are constructed by insertion of a uniform random permutation of n numbers), then these authors showed that

$$\mathrm{E}\{N\} \leqslant \frac{(4+\mathrm{o}(1))n}{\log_2 n}.$$

They conjectured that this is indeed the right order of growth. Without attempting to obtain the best constant, we show the following.

# Theorem 1.

$$\mathbb{E}\{N\} = \Theta\left(\frac{n}{\log n}\right).$$

The size of N matters to those who use compression methods for storing or transmitting the shapes of binary search trees. The richness of the collection of subtrees may also be measured in a different manner. Let K be the largest integer such that all possible (shapes of) subtrees of size K or less occur as subtrees. Based upon similar properties for strings shown by Flajolet, Kirschenhofer and Tichy [5], Flajolet, Gourdon and Martinez [4] conjecture that K should be close to  $\log_4 n$ . We settle this conjecture by showing the following.

$$\frac{K}{(\log n)/(\log \log n)} \to 1 \quad in \text{ probability.}$$

<sup>1</sup>Email: luc@cs.mcgill.ca. Research of the author was sponsored by NSERC Grant A3456 and by FCAR Grant 90-ER-0291.

0020-0190/98/\$19.00 © 1998 Published by Elsevier Science B.V. All rights reserved. *PII* S0020-0190(97)00206-8

# 2. Proof of Theorem 1

For Theorem 1, it is good to recall some properties of paged trees. Let t denote a binary tree, and let |t| be its size. Let  $N_t$  be the number of subtrees of a random binary search tree on n nodes whose shape is identical to t. The b-index of a tree is a tree that retains only the nodes of size > b. The size of this b-index is denoted by

$$B=\sum_{t:\ |t|>b}|N_t|.$$

The idea is that subtrees of size  $\leq b$  can be trimmed away and stored in pages of capacity b in peripheral storage. The b-index resides in main storage. We need two results about B.

**Lemma 3** (Knuth [7, p. 122]). For  $n > b \ge 2$ ,

$$E\{B\} = \frac{2(n+1)}{b+2} - 1.$$

**Lemma 4** (Flajolet, Gourdon and Martinez [4]). For  $b \ge 2$ ,

$$\operatorname{Var}\{B\} = \frac{2(b-1)b(b+1)(n+1)}{3(b+2)^2}.$$

In the last paper, the authors also obtain a Gaussian limit law for B. Both results and the limit law can also be obtained from the general results of Devroye [2].

We briefly recall the proof of the upper bound for Theorem 1, as given by Flajolet, Gourdon and Martinez. The number of binary trees on k nodes is

$$C_k = \frac{1}{k+1} \binom{2k}{k}.$$

Define the threshold

$$b = \lfloor (1 - \varepsilon) \log_4 n \rfloor$$

Then we have

$$N \leqslant \sum_{i=0}^{b} C_i + \sum_{t: |t| > b} |N_t|.$$

We know that as  $k \to \infty$ ,

$$C_k \sim \frac{4^k}{\sqrt{\pi}k^{3/2}},$$

so that for *n* large enough, if  $\varepsilon < 1/2$ ,

$$\sum_{i=0}^{b} C_i = O\left(\frac{4^b}{b^{3/2}}\right) = O\left(\frac{n^{1-\varepsilon}}{(\log_4 n)^{3/2}}\right)$$

uniformly over all such  $\varepsilon$ . Take

$$\varepsilon = \frac{\log \log n}{\log n},$$

so that the upper bound becomes

$$O\left(\frac{n}{(\log n)^{5/2}}\right)$$

From Lemma 3,

$$\mathbb{E}\Big\{\sum_{t: |t| > b} |N_t|\Big\} = \frac{2(n+1)}{b+2} - 1.$$

As  $b \sim \log_4 n$ , we have  $\mathbb{E}\{N\} = O(n/\log n)$ .

For a lower bound, we argue not very differently. Let A denote the event that among subtrees of size > b, some duplicates occur, where

$$b = \left\lceil (4 + \varepsilon) \log_3 n \right\rceil$$

and  $\varepsilon > 0$  is arbitrary. Let  $p_{k,t}$  denote the probability that a random binary search tree on k nodes is identical to a given tree t. This parameter has been studied by Fill [3]. We do not need any deep results on  $p_{k,t}$ beyond

$$p_{k,t}=\prod_{u\in t}\frac{1}{|u|},$$

where the product is over all nodes u of t, and |u| denotes the size of the subtree rooted at u. Flajolet, Gourdon and Martinez [4] provide the upper bound

$$p_{k,t} \leqslant 2^{-k/4}, \quad k \geqslant 4$$

Fill [3] showed that

$$p_{k,t} \leqslant \mathrm{e}^{-ck + \mathrm{O}(\log^2 k)}$$

where  $c = \ln(4) - \sum_{j=1}^{\infty} 2^{-j} |\ln(1 - 2^{-j})| \approx 0.946$ . Both bounds will do, but we provide a simple non-asymptotic bound for further reference.

**Lemma 5.** For all  $k \ge 0$ ,

 $\sup_{t: |t|=k} p_{k,t} \leq 3^{-(k-1)/2}.$ 

**Proof.** We proceed by induction on k and show that

 $\sup_{t: |t|=k} p_{k,t} \leqslant c 2^{-Ck}$ 

for some constants c and C. Clearly, for k = 0 and k = 1, the formula is valid provided that  $c \ge 1$  and  $C \le \log_2 c$ . For k = |t| = 2,  $p_{2,t} = 1/2$ , so  $c4^{-C} \ge 1/2$ . Assuming that  $k \ge 3$ , |t| = k, and that the left and right subtrees of the root are l and r with |l| + |r| = k - 1, we have

$$p_{k,l} \leq \frac{p_{|l|,l}p_{|r|,r}}{k} \leq \frac{c^2 2^{-C(|l|+|r|)}}{k} = \frac{c^2 2^C 2^{-Ck}}{k}$$
$$\leq c 2^{-Ck}$$

provided that  $k \ge c2^C$ . All the inequalities for c and C can be simultaneously satisfied if we pick  $c = \sqrt{3}$  and  $C = \log_4 3$ . Thus,

 $\sup_{t: |t|=k} p_{k,t} \leqslant 3^{-(k-1)/2}. \qquad \Box$ 

We conclude that the probability that two subtrees both have sizes > b and have identical shapes is

$$\mathsf{P}\{A\} \leqslant n^2 3^{-b/2} \to 0$$

by choice of b. Here we used the union bound and the fact that if two nodes are not in an ancestor/descendant relationship, then conditional on the sizes of the subtrees being m and n, the subtrees themselves are independent random binary search trees of sizes m and n respectively. Therefore, if  $A^c$  denotes the complement of A,

$$E\{N\} \ge E\{BI_{A^{c}}\}$$

$$= E\{B\} - E\{BI_{A}\}$$

$$\ge E\{B\} - \sqrt{E\{B^{2}\}P\{A\}}$$
(by the Cauchy–Schwarz inequality)
$$= \frac{2(n+1)}{b+1} - 1 - o(\sqrt{(E^{2}\{B\} + Var\{B\})})$$

$$\sim \frac{2n}{(4+\varepsilon)\log_{3} n}$$

by Lemmas 3 and 4 and our choice of b. This concludes the proof of Theorem 1.  $\Box$ 

### 3. Proof of Theorem 2

#### 3.1. An upper bound

Let  $\varepsilon > 0$ . Define  $k = \lceil (1 + \varepsilon) \log n / \log \log n \rceil$ . Verify that  $k! = n^{1+\varepsilon+o(1)}$ . Denote by  $L_k$  a binary tree on k nodes consisting of a chain of left children. If the random binary search tree is constructed incrementally by standard insertions of  $X_1, \ldots, X_n$ , a random permutation of  $1, \ldots, n$ , then we let  $T_i$  be a subtree rooted at the node for  $X_i$ . The size of  $T_i$  is  $|T_i|$ . We have

$$P\{K > k\} \leq P\left\{\bigcup_{i=1}^{n} [T_i = L_k]\right\}$$
$$\leq \sum_{i=1}^{n} P\{T_i = L_k\}$$
$$\leq \sum_{i=1}^{n} P\{T_i = L_k \mid |T_i| = k\}$$
$$= \frac{n}{k!}$$
$$= \frac{1}{n^{\epsilon+o(1)}} \to 0.$$

# 3.2. A lower bound

For an accompanying lower bound, we define k = $\lceil (1-\varepsilon) \log n / \log \log n \rceil$ , and note that  $k! = n^{1-\varepsilon+o(1)}$ , where  $\varepsilon \in (0, 1)$ . The random binary search tree many also be thought of as based upon an i.i.d. uniform [0,1] sequence  $X_1, \ldots, X_n$ . Assuming *n* even, the partial tree based upon  $X_1, \ldots, X_{n/2}$  has n/2 + 1external nodes (these are at all possible positions for insertion of a new node). When the tree is completed by adding  $X_{n/2+1}, \ldots, X_n$ , these external nodes grow to trees labeled  $T_1, \ldots, T_{n/2+1}$  (note the change in definition from the first part of the proof). Some of these trees may have size 0. We recall that there are  $C_l = \frac{1}{l+1} {2l \choose l}$  possible shapes of binary trees on *l* nodes. Each of these shapes has a probability of occurrence at least equal to 1/l! under the random binary search tree model (this is easy to show by induction). Let us denote by T the vector of cardinalities  $|T_1|, \ldots, |T_{n/2+1}|$ . Note that given these cardinalities, the shapes of the  $T_i$ 's are clearly independent. Thus, if  $N_i = \sum_{j=1}^{n/2+1} I_{|T_j|=i},$ 

$$P\{K < k|T\}$$

$$\leq \sum_{i=1}^{k} P\{\text{one of the } C_i \text{ binary trees is not} \\ \text{represented by the } T_j \text{s} \mid T\}$$

$$\leq \sum_{i=1}^{k} C_i \sup_{t: \mid t \mid = i} P\{t \text{ is not represented} \\ \text{by the } T_j \text{s} \mid T\}$$

$$= \sum_{i=1}^{k} C_i \sup_{t: \mid t \mid = i} \prod_{j=1}^{n/2+1} P\{T_j \neq t \mid |T_j|\}$$

$$\leq \sum_{i=1}^{k} C_i \sup_{t: \mid t \mid = i} \prod_{j=1}^{n/2+1} (I_{\mid T_j \mid \neq i} + I_{\mid T_j \mid = i}(1 - 1/i!))$$

$$= \sum_{i=1}^{k} C_i \prod_{j=1}^{n/2+1} (1 - I_{\mid T_j \mid = i}/i!)$$

$$\leq \sum_{i=1}^{k} C_k e^{-\sum_{j=1}^{n/2+1} I_{\mid T_j \mid = i}/i!}$$

Therefore,

$$\mathbb{P}\{K < k\} \leqslant \sum_{i=1}^{k} C_k \mathbb{E}\{\mathrm{e}^{-N_i/i!}\}.$$

To bound this, it helps to condition on  $X = (X_1, \ldots, X_{n/2})$ . Conditional on X, the sizes  $|T_j|$  are indeed multinomially distributed. As the components of a multinomial random vector are negatively associated (see [6]), we have for all  $\lambda > 0$ ,

$$\mathbf{E}\left\{\mathbf{e}^{-\lambda\sum_{j=1}^{n/2+1}I_{|T_j|=i}}\mid X\right\}\leqslant\prod_{j=1}^{n/2+1}\mathbf{E}\left\{\mathbf{e}^{-\lambda I_{|T_j|=i}}\mid X\right\}$$

The points  $X_i$ ,  $1 \le i \le n/2$ , define n/2 + 1 spacings  $S_1, \ldots, S_{n/2+1}$ . Given  $S_j$ ,  $|T_j|$  is binomial  $(n/s, S_j)$ . Thus, if  $p_{j,i}$  is the probability that such a binomial takes the value i,

$$\mathbb{E}\left\{ e^{-\lambda I_{|\mathcal{T}_j|=i}} \mid S_j \right\} = p_{j,i} e^{-\lambda} + (1 - p_{j,i})$$
$$\leqslant e^{-p_{j,i}(1 - e^{-\lambda})}$$

so that

$$E \left\{ e^{-\lambda \sum_{j=1}^{n/2+1} I_{|T_j|=i}} \mid X \right\}$$
  
  $\leq e^{-\sum_{j=1}^{n/2+1} p_{j,i}(1-e^{-\lambda})} \stackrel{\text{def}}{=} e^{-Z_i(1-e^{-\lambda})}$ 

where

$$Z_i \stackrel{\text{def}}{=} \sum_{j=1}^{n/2+1} p_{j,i}.$$

Observe that  $Z_i$  is a function of X that is such that if one of the components of X is replaced by another value, then  $Z_i$  changes by at most 4. Therefore, by the independence of the components of X, and by McDiarmid's inequality ([9]; see also [1]), for a > 0,

$$P\{|Z_i - E\{Z_i\}| > aE\{Z_i\}\} \leq 2e^{-a^2(E\{Z_i\})^2/(n/2)4^2}$$

Take a = 1/2 and note that

$$E \left\{ e^{-\lambda \sum_{j=1}^{n/2+1} I_{|T_j|=i}} \mid X \right\}$$
  
  $\leq e^{-(1/2) E\{Z_i\}(1-e^{-\lambda})} + 2e^{-(E\{Z_i\})^2/32n}$ 

Summarizing the above bounds, we have

$$P\{K < k\} \leq \sum_{i=1}^{k} C_k E\{e^{-N_i/i!}\}$$
  
$$\leq \sum_{i=1}^{k} C_k e^{-(1/2)E\{Z_i\}(1-e^{-1/i!})}$$
  
$$+ \sum_{i=1}^{k} C_k 2e^{-(E\{Z_i\})^2/32n}$$
  
$$\leq kC_k \sup_{1 \leq i \leq k} e^{-(1/2)E\{Z_i\}(1-e^{-1/k!})}$$
  
$$+ 2kC_k \sup_{1 \leq i \leq k} e^{-(E\{Z_i\})^2/32n}.$$

The proof is thus finished if we can obtain a lower bound for  $E\{Z_i\}$ . By linearity of expectation,

$$E\{Z_i\} = (n/2 + 1)P\{binomial(n/2, X_{(1)}) = i\},\$$

where  $X_{(1)} = \min(X_1, \ldots, X_{n/2})$ . The previous formula follows from the fact that all uniform spacings have identical distributions. Assume that  $1 \le i \le k \le$ 

n/4. If we consider the entire sequence  $X_1, \ldots, X_n$ , it should be clear that

$$P\{\text{binomial}(n/2, X_{(1)}) = i\}$$

$$= \frac{n/2}{n} \times \frac{n/2 - 1}{n - 1} \times \dots \times \frac{n/2 - i + 1}{n - i + 1} \times \frac{n/2}{n - i}$$

$$\geqslant \frac{1}{2} \left(\frac{n/2 - i}{n - i}\right)^{i}$$

$$= \frac{1}{2} \left(1 - \frac{n/2}{n - i}\right)^{i}$$

$$\geqslant \frac{1}{2} e^{-(in/2)/(n/2 - i)}$$
(use  $1 - u \leq e^{-u/(1 - u)}$  for  $u \in (0, 1)$ )

$$= \frac{1}{2}e^{-(in)/(n-2i)}$$
$$\geqslant \frac{1}{2}e^{-2i}$$
$$\geqslant \frac{1}{2}e^{-2k}.$$

Therefore

$$\mathbb{E}\{Z_i\} \geqslant \frac{n\mathrm{e}^{-2k}}{4}$$

and

$$P\{K < k\} \leq kC_k e^{-ne^{-2k}(1-e^{-1/k!})/8} + 2kC_k e^{-ne^{-4k}/256}.$$

As  $kC_k = O(4^k) = n^{o(1)}$ ,  $e^{-2k} = n^{o(1)}$ ,  $e^{-4k} = n^{o(1)}$ and  $1 - 1/k! \sim 1/k! = n^{\varepsilon - 1 + o(1)}$ , we see that

$$\mathsf{P}\{K < k\} \leqslant n^{\mathfrak{o}(1)} \mathrm{e}^{-n^{e+\mathfrak{o}(1)}} + n^{\mathfrak{o}(1)} \mathrm{e}^{-n^{1+\mathfrak{o}(1)}} \to 0.$$

This concludes the proof of Theorem 2.  $\Box$ 

## References

- [1] K. Azuma, Weighted sums of certain dependent random variables, Tohoku Math. J. 37 (1967) 357-367.
- [2] L. Devroye, Limit laws for local counters in random binary search trees, Random Structures and Algorithms 2 (1991) 303-316.
- [3] J.A. Fill, On the distribution of binary search trees under the random permutation model, Random structures and Algorithms 8 (1996) 1–25.
- [4] P. Flajolet, X. Gourdon, C. Martinez, Patterns in random binary search trees, Tech. Rept., INRIA Rocquencourt, 1996.
- [5] P. Flajolet, P. Kirschenhofer, R.F. Tichy, Deviations from uniformity in random strings, Probability Theory and Related Fields 80 (1988) 139–150.
- [6] K. Joag-Dev, F. Proschan, Negative association of random variables, with applications, Ann. of Statist. 11 (1983) 286– 295.
- [7] D.E. Knuth, The Art of Computer Programming, vol. 1: Fundamental Algorithms, 2nd ed., Addison-Wesley, Reading, MA, 1973.
- [8] H.M. Mahmoud, Evolution of Random Search Trees, John Wiley, New York, 1992.
- [9] C. McDiarmid, On the method of bounded differences. in: Surveys in Combinatorics 1989, London Mathematical Society Lecture Notes Series, vol. 141, 1989, Cambridge University Press, Cambridge, pp. 148–188.