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A Note on the Expected Time for Finding Maxima
by List Algorithms !

L. Devroy€

Abstract. Maxima inRY are found incrementally by maintaining a linked list and comparing new elements
against the linked list. If the elements are independent and uniformly distributed in the unit squ3fetféen,
regardless of how the list is manipulated by an adversary, the expected e lisg®~2 n). This should be
contrasted with the fact that the expected number of maxima grows %' lngso no adversary can force an
expected complexity afilogd=1 n. Note that the expected complexity@n) for d = 2. Conversely, there

are list-manipulating adversaries for which the given bound is attained. However, if we naively add maxima
to the list without changing the order, then the expected number of element comparisep®is) for any

d > 2. In the paper we also derive new tail bounds and moment inequalities for the number of maxima.

Key Words. Outer layers, Maxima, List algorithms, Expected time, Randomized algorithms, Probabilistic
analysis.

1. List Algorithms and Adversaries. Given areXy, ..., X, i.i.d. points uniformly
distributed in [0 1]9. We write X;i = (Xi1, ..., Xiq). We say thatX; is a maximum if
no Xj, j # i, exists for whichX; > X; foralll. If N is the number of maxima, then it
is known that

log®n

=N~ oD

(see Barndorff-Nielsen and Sobel, 1966). In 1990 Bentley et al. pointed out that list
algorithms may be quite efficient on the average for finding all maxima. A list algorithm
is one in which a linked list of maxima is kept, and eaxhis considered in turn.

The maxima are kept in the list in some order. In the worst scenario, the order may be
determined by an “adversary.” In the ordinary list algorith&n,is compared with each

list element in turn until either the list is exhausted (in which césis a maximum itself

and is added to the list) or a list elemeXjtis found that dominateX; in all components

(in which caseX; is discarded). Even before handliXg, the list may be reorganized by

an adversary. It is more common though to reorganize the list after having pro¢gssed
Forexample, Bentley etal. (1990, 1993) suggestesitirdieuristic: moveX; to the head

of the list if X; is the first list element that dominatXs, and appending; in the rear if

Xj itself is a maximum. They conjectured that this strategy wouldtake(n) expected
comparisons between elements where one (vector) comparison between elements may
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involve up tod scalar comparisons. This was later proved by Golin (1994) fer2. In
this note we extend and strengthen these results in several directions:

A. We show that the expected number of element comparisons for any list algorithm
(manipulated at will by adversaries) is bounded Imwhend = 2. For generadl,
the expected time is guaranteed to growG® log® =2 n) (see Theorem 1 below).

As EN grows as lo§ ! n, it is remarkable that no adversary can force an expected
complexity ofQ2(nlog=* n).

B. We show that the rates above cannot be improved.

C. Without adversaries or list manipulation of any kind, the linked list stores all current
maxima in chronological order. New maxima are appended at the rear of the list. Alist
constructed in this manner is called a random list. Despite the lack of any meaningful
list organization, the expected number of element comparisams-is(n) for any
d > 2 (see Theorem 2).

The first result shows that, fdr= 2, all list algorithms tak® (n) time on the average,
regardless of the list ordering strategy. o 2, the expected time linearity may be
lost. Theorem 2 shows the futility of any list organization method (sualragsince a
simple random ordering ensurest o(n) element comparisons on the average. It may
still be true, however, thatTF has a betterd(n)” term.

2. The Main Results

THEOREM1. For any list algorithmif X4, ..., X, are i.i.d. random vectors uniformly
drawn from[0, 1]¢, the expected time is @ log®~2n) foralld > 2.Note thatforn = 2,
itis in fact O(n). Converselythere exist list adversarigsvho are allowed to rearrange
the lists at will but not the order of insertigrsuch that the list algorithm takes expected
time bounded from below Ky (nlog®=?n).

THEOREM2. Let Xi,..., X, be ii.d. random vectors uniformly drawn frof@, 1]
where d> 2. Then the expected number of comparisons between elements in the random
list algorithm is n+ o(n).

In addition, some interesting probability theoretical results about maxima are obtained
as well. These include tail bounds fidrand inequalities for the moments if

3. Proof of the Upper Bound Whend Equals 2. Assume thaiXy, ..., X, have been
processed. When a poit, 1 is considered, we look at the the four quadrants formed
by moving the origin toX,, ;1 as in Figure 1. Using the notation of that figure, we see that
the number of points oA compared withX,,;; during the traversal of the current list is
at most one. Thus, the number of comparisons during insertion is at most orlgplus
the number of maxima iB U C U D. We write N, instead ofN to denote the fact thak
points have been processed befitg ;. The expected time for finding the maxima of
n points is thus not more than

n-1
n—+ Z EN;.
i=0
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n+l

Fig. 1. Partition of the unit square by the newly inserted pofft.; into four rectangles, B, C, andD.

Now, Ni < N/ + N/", whereN/ is the number of maxima i@ U D andN;” is the number
of maxima inB U C. By symmetry, we have

n—1 n—1
n+Y EN <n+2) EN.
i=0 i=0
Given Xn4+1, we may comput&N;, as follows:

E{N/ | Xn+1} = nP{X; € CU D, X; is amaximum amongy, ..., Xn | Xnt1}
N E{lx,ccupP{X1 is @ maximum among, ..., Xn | X1} | Xn41}
= nE{lx,ecun(d — (1 = X111 — X1.2)" " | Xny1}

(whereX; = (X1.1, X1,2))

Y 1
_ n/ /(1—<1—x><1—y>>“*1dxdy
0 0

Y1_(M1_¢1_ n
=n/1 1-@a y))dy

n(l y)

Ynl
/ Zyjdy
0 j=0
n YJ

=



100 L. Devroye

If we take the expected value and note that, for a uniforni[@andom variabler, we
haveEY! = 1/(j + 1), then

N vyi
E{N'} = E{E{N/ | (X, Y)}}ZE:ZT}
i=1
n l 1
=) ———=1-—=<l
1g+1 n+1

=1

Therefore, the expected number of point comparisons for finding the maxima is not more
than

n—+2n=3n.

4. Proof of the Upper Bound for d Greater Than 2. Assumed > 3. In the above
argument, seKny1 = Z = (Z1, ..., Zg), and letN;, denote the number of maxima
whose first component is less thZn. Then, arguing by symmetry as above, wikis
inserted, the expected time does not exceed

n—1

n+d) EN/.
i=0

Write X; = (Xj1, ..., Xjq). Define the se€C = {z RY : z < Z;} and the random
variableY = [T_,(1 — Xy;). Then

E{N/ | Z} = nP{X; € C, Xy is a maximum amoniy, ..., Xn | Z}
= NE{lx,ccP{X1 is a maximum amons, ..., Xn | X1} | Z}

d n—-1
nE{leec (1—]‘[(1— xlj)) z}
j=1

= NE{lx,<z,(1 = YL = Xp))" 1 | Z4}
= NE{ly<z,(1 - YA —U)"1]| Zy},

whereU is uniform [0, 1]. Unconditioning, we see that
NE{lu<z,(1 - Y1 -U)"Y

nE{1-U)1-Y@-U)"1
= nE{U1-YU)" 1.

E{N;}

ReplaceY by VW, whereV is uniform [0, 1] and W is the product ofd — 2 uni-
form [0, 1] random variables. It is easy to verify that the densitWéfis given by
f(w) = log®3(1/w)/(d —3)!,0 < w < 1 (see, e.g., Devroye, 1986). Then, taking the
expectation first with respect ¥ and then with respect #d yields

E(nUI - VWUl = E{nul—ﬂ—vww }

nwWu
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w

(i)
cfm( )

(condition onW and apply Jensen’s inequality)

- /2/" f(w)n+/1 f(w)
~— Jo 2dw 2 wdw
2 log?~2(n/2)
f (ﬁ> T d-o
_ log*?(n/2)
d—2)!

_gli-a-wu }

IA

IA

Thus, any list algorithm takes expected ti@én log® =2 n) whend > 2, even if the lists
are allowed to be manipulated at will by adversaries.

5. Proofofthe Lower Bound. We finish by noting that our bound, under the adversary
manipulation model, is best possible. It is trivially so thi= 2 as the expected time
is ®(n), but it is also true fod > 2. To that end, note that the expected time after
manipulation of the list to make it perform at its worst, is bounded from below by

n-1

> EN.

i=0
Now, as noted above,

L [1-@-wu)
E(N/} = E{—W }

g[i-d-@/o+ 1)%)“|
W W>2/(n+l)}

v

1
2

1-1/e (1
5 E W|W>2/(n+l)

/1 f (w)
2/(n+1) (4U)) dw

() [

v

= \Vor072) by @uydu
log?3 (V(n+1)/2) log(v/(n + 1)/2)

- 4(d—3)!
log’%((n+1)/2)

- 20(d-3)

Thus, the expected time §(nlog®~2n).
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6. Random Lists. Theorem 2 relies heavily on the distributional assumption. Itis true
whenever the components #f, are independent and nonatomic. In this sense, things
differ dramatically from randomized algorithms. The proof of Theorem 2 requires some
basic properties of maxima, which are derived in Appendix B.

PROOF OFTHEOREM2. Let T be the expected number of list element comparisons
when X, 1 is processed and the list contains the maximadar. . ., X,,. Let Nx denote

the number of maxima foKy, ..., X. If the maxima are in chronological order, all
permutations are equally likely. L&t be the number of maxima in sétof Figure 1,

and letM be the number of maxima elsewhere. Recall @} = O(log®2n). In a
random list withN 4+ M items, the expected number of comparisons for inserting a new
element is the expected number of items encountered until one ®f flems inA is
seen. If the number of comparisonsTiswe have

M
E(TINM}=1+ —.
{T | } +N+1

Unconditioning, we get, for any integer > 0,

ET < 1+E{M|N<m}+E{%IN>m}
< 1+ VE{M2}P{N < m} + %
(by the Cauchy—Schwarz inequality)
d—2
< 1+ VE{(M + N)ZP{N < m} + W
d—2
= 1+ /E{NZP{N < m} + W
O(log®2n
< 14 V(EN) + EINPIN < m) + 2009 °

d—2
1+ O(log®*n)/P{N < m} + W.

We first deal withd = 2, for which the short proof deserves separate treatment. Take
m = 1. The proof is complete if we can show that

P{N < 1} = o(log~2n).

It should be noted that; < N, < N3 < --- < Nk, where< denotes stochastic ordering.
Given Xp 1, letV denote the number of;’s with 1 < i < n that dominateX,,;. Thus,
theseX;’s are in the quadranf centered afX,,;—see Figure 1—and are uniformly
distributed inA. Therefore,N £ Ny, whereZ denotes equality in distribution. By
Lemma 1 (see Appendix A),

P(N <1} < P{V <Kk} +P{N¢ < 1}
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k+d N elog(k + 1)
n+1 k+1

logn
o ==

(%)

if we takek ~ ./n. The first part of the last step follows from the observation that if
V < k, then one of thel coordinates o, ; must be among the -+ k/d largest of all
similar coordinate values i, . . ., Xy ;1. Asthe latter probability for a fixed coordinate
does not exceed. + k/d)/(n+ 1), we haveP{V < k} < (k+d)/(n+ 1). Thisis more
than is required, and the proof is complete.

Ford > 2, we must argue a bit more carefully. Deflne- | ,/n], andm = L%E{NK}J,
and note tham ~ log?~*n/(29(d — 1)!). Observe that

ET

IA

M
1+ E{MIn=o} + E{Mlocn<m} +E {WIsz}

d—2
1+ VEMZP(N = 0] + E{Mlo_n-m} + W

(by the Cauchy—Schwarz inequality)

IA

1+ VE{(M + N)ZJP{Xny1 is @ maximum + E{M lo_n-m} + O <Iogj;-n)

E{Nnra) 1
n+1 E{MIO<N<m}+O(|Ogn>

The second term i© (log®~2/2 /. /n) and the fourth term is(1) as well. We finish the
proof by showing that the third term &1). To boundE{M lo_n.m}, We note first that,
deterministicallyM In-o < Z?:l NJ-*, whereN* is the number of data points that are
maxima in the(d — 1)-dimensional subspace that does not includejthecomponent.
Thus, by Hilder’s inequality, if we pick

1+ O(log*1n)

1y, 971 L1
"= d_2 T1-1u

(sothatu, A > 1, /1 + 1/u = 1), then there exists a const@honly depending upon
d (Lemma 2) such that

E{Mloonm} < (E{M*In=oD™*(E{I§_HY*

1/
(d ZE{NJ-*A}) (P{N < mp¥/»
j=1

d¥*(CEMN;HY*(P{V < K} 4 P{Nx < mp¥/»
k+d
n+1

/n
—Hi + P{Nk < m})

IA

IA

IA

iy
(CHY*E{N]) ( + P{Nk < m})

= O(log®~ 2n)(
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1
— O(log®2n) x <o ) +P{Ng — E{Ng} <m— E{Nk}}> :

Sk &le

IA

1
= O(log®2n) x (o ( ) + P{Ng — E{Ny} < —1E{Nk}}> ’

4o 1 AVar{N} \ V"
ot 0= (o( ) 3081

(by Chebyshev’s inequality)

1 ac’ M+
O(log®2n) x <O (—) + —)
? /n) T ENG
(by Lemma 3, wher€’ depends upod only)

O(log®—2?n)
|Og(d_l)/ﬂ n

= O(log~¥2* n)

= O(log@-2/@=3 ),

IA

This concludes the proof of the theorem. O

Appendix A. Left Tail Bounds for Number of Extrema When d Equals 2

LEMMA 1. Let N be the number of extrema for X. ., Xp, an ii.d. sample drawn
uniformly and at random frorf0, 1]2. Then for integer m> 0,

PIN < m] < 1 (elog(n+1))
n+1 m

ProOF Ford = 2, we recall from Devroye (1988) that

NEY Y,
i=1

whereYs, ..., Y, are i.i.d. Bernoulli random variables afdY;} = 1/i. This follows

by first ordering the first components of thg's, and then noting that the corresponding
second components define an extremum if and only if they correspond to records. Thus,
by Chernoff's bounding method (Chernoff, 1952; Hoeffding, 1963)t fer0,

P{N <m} < eME{e"'N}

= e"“ﬁE{e*tY‘}
= H(l——+ Ze” )

=1
E (@ e /i)

IA

em
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< etm—(l—e*‘) log(n+1)

1 (elog(n + 1))m

0 +1 m
(if we takee' = (log(n + 1))/m).

This concludes the proof of Lemma 1. O

Appendix B. Auxiliary Results on the Number of Maxima. Let N be the number

of maxima ofXu, ..., X, i.i.d. points uniformly distributed on [@]. Then
d n-1
E{N} = nEl(l— ]_[Ui> }
i=1
whereUy, ..., Uq are i.i.d. uniform [0 1] random variables. Settild = ]_[id:l Ui, we

note thatU has density

_ log"*(1/u)
f(u)—w, O<u<l
Thus,
1 |Ogd71 n
_ _ n-1 ~
E{N}_n/o(l w"f(udu d D

The asymptotic expression Bf N} goes back at least to Barndorff-Nielsen and Sobel
(1966). One useful result is the following.

LEMMA 2 (Devroye, 1983). For all a > 1, there exists a constant C depending upon a
and d only such that

E{N%} < C(E{N)H™.

LEMMA 3. Let Xy, ..., X, beii.d. random vectors uniformly distributed ¢@, 1]°. If
N denotes the number of maxirttzen there exists a universal constant C only depending
upon d such that

Var{N} < CE{N}.

PROOF Let X4, ..., Xn41 be i.i.d. random vectors uniformly distributed on JQ°.
Let N; denote the cardinality of the collection of maxima among these poirXs i
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first removed. Note thall = Npn;1. Let N; j denote the cardina_lity of the collection of
maxima among these pointsX andX; are first removed. LeN denote the average

(1/(n+ 1)) " Ni. Then we have

ntl
Var(Npy1) < ZE{(Ni - N3
i—1

(this is the Efron—Stein inequality (Efron and Stein, 1981))

el

i=1 j£i

1 n+1 2
| () |

(N + DE{(N; — Np)?}
4(n + DE{(Ny — N1 )%}
4(n 4+ DE{(Np+1 — Nnns1)?).

IAIA

Let Z; be the indicator of the event th¥f is a maximum among;, ..., X,_; dominated
in all components byX,,. Let W, be an indicator of the event thaf is a maximum.
Then, forn > 3,

n-1 2
E{(Nns1 — Nnnp2)?) = E{vvn x (1— ZL) }
i=1

n—1 2
2E{Wn}+2E{Wn( zi> }
i=1

NnJrl = . . 7.
ZE{ . }+2ZE{an.}+2 > E(WhZiZj}

i=1 i#j:l<i.j<n-1

IA

2E { N:}“ } +2(n — DE{W,Z4)
+2(n — 1)(n — 2)E{WhZ1Z,}.

We compute the two expected values on the right-hand side separately; lhetve
componentg1 — Uy, ..., 1 — Uy), where theU;’s are i.i.d. uniform [Q1] random

variables. Then
d d n-2
j=1 j=1

E(VA-W)"?)
(whereV = ]_[?:l Uj)

! _logdt(1/v)
_ n—2
= /0 v(1—v) 7((1 i dv

E{WhZ1}



A Note on the Expected Time for Finding Maxima by List Algorithms 107

logd~1n
-0 ( g ) .
n
For the product term, we also introduce the componéhts Vi, ..., 1—Vy) of Xo.

It is handy to represent; and X, slightly differently by introducing two i.i.d. uniform
[0, 1] sequence@my, ..., mg) and(My, ..., My), and noting that

(min(U;, Vi), max(U;, Vi)) £ (miv/Mi. VM.

Then

d d d d n-2
E{WnZ1Z5} = E{[[min;, v (1—]‘[Uj -1V +]_[min(uj,vj)> }
j=1 j=1 j=1 j=1

<E ]i[mj\/ﬁj(l—z\’m+ﬁmj\/mj) }

(sincea+ b > 2+/abfora, b > 0)
d d n-2
E Hmj,/Mj (1— ./I’ﬂdej) }
j=1 j

j=1
= E[VVW(1 - VWW)" 3
(whereV = 1_[?:1 m; andW = H?:l M;)

1 d—1
_ E{V/ V(1 — V)2 g &/ dw}
0
N

IA

(d—-1)!

_ v aw? a2 2logt(V/u?)
=&l [ a-o S|

1 o, o Alogf 1 (1/u)
E{W}X/o 2u°(1—u) Wdu

d—1
=O(Iog n).
n3

Collecting bounds, we see that

IA

Var{Nn1} < 4(n+1) {w

log?tn
+2(n—1)0< — )

logn
+2(n—1)(n—2)0< 3 )}

= O(E{Nni1}). O
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