

Properties of Random Triangulations and Trees*

L. Devroye,¹ P. Flajolet,² F. Hurtado,³ M. Noy,³ and W. Steiger⁴

¹School of Computer Science, McGill University, Montreal, Quebec, Canada H3A 2K6 luc@kriek.cs.mcgill.ca

²INRIA, Rocquencourt, France Philippe.Flajolet@inria.fr

³Universitat Politecnica de Catalunya, Spain {hurtado,noy}@ma2.upc.es

⁴Department of Computer Science, Rutgers University, New Brunswick, NJ 08903, USA steiger@cs.rutgers.edu

Abstract. Let T_n denote the set of triangulations of a convex polygon K with n sides. We study functions that measure very natural "geometric" features of a triangulation $\tau \in T_n$, for example, $\Delta_n(\tau)$ which counts the maximal number of diagonals in τ incident to a single vertex of K. It is familiar that T_n is bijectively equivalent to B_n , the set of rooted binary trees with n - 2 internal nodes, and also to P_n , the set of nonnegative lattice paths that start at 0, make 2n - 4 steps X_i of size ± 1 , and end at $X_1 + \cdots + X_{2n-4} = 0$. Δ_n and the other functions translate into interesting properties of trees in B_n , and paths in P_n , that seem not to have been studied before. We treat these functions as random variables under the uniform probability on T_n and can describe their behavior quite precisely. A main result is that Δ_n is very close to log n (all logs are base 2). Finally we describe efficient algorithms to generate triangulations in T_n uniformly, and in certain interesting subsets.

^{*} Part of the work of W. Steiger was supported by a grant from the Generalitat de Catalunya to UPC and part by NSF Grant CCR-9111491. The work of L. Devroye was supported by NSERC Grant A3456. The work of Philippe Flajolet was supported by the L.T.R. Project Alcom-IT (# 20244) of the European Union.

1. Introduction and Summary

Consider a convex polygon K with n sides. We label the vertices $v_i = i, i = 0, ..., n - 1$, in clockwise order. A triangulation is a set of n - 3 noncrossing diagonals $v_i v_j$ which partitions K into n - 2 triangles. You can imagine constructing a triangulation τ recursively: taking the polygon edge v_0v_{n-1} as base, just choose the apex of the triangle of τ that it belongs to, say $v_i, 0 < i < n - 1$, and now continue in the same way on the two polygons v_0, \ldots, v_i with v_0v_i as base and v_i, \ldots, v_{n-1} with v_iv_{n-1} as base (Fig. 1 has n = 8 and $v_i = 2$, 4, and 5, respectively). This shows that t_n , the number of such triangulations, satisfies

$$t_n = t_2 t_{n-1} + t_3 t_{n-2} + \dots + t_{n-1} t_2$$
 $t_2 = t_3 = 1$,

the recursion of the Catalan numbers. Therefore

$$t_n = C_{n-2} = \frac{1}{n-1} \binom{2n-4}{n-2} \tag{0}$$

is the size of T_n , the set of triangulations of K.

It is natural to consider certain "geometric" features of a triangulation $\tau \in T_n$. Let d_i denote the *degree* of vertex v_i , the number of diagonals of τ incident with v_i . It is easy to see [10] that τ is characterized by this sequence of degrees. In this paper we study

$$\Delta_n(\tau) = \max(d_i, \ i = 0, \dots, n-1),\tag{1}$$

the **maximal degree** of the vertices. $\Delta_n = 2$ when τ is a *zigzag* and n - 3 when it is a *fan* ($d_i = n - 3$ for some vertex), as in Fig. 1.

Define the length of a diagonal $v_i v_j$ with i > j to be $||v_i v_j|| = \min(i - j, n - i + j)$, the (fewest) number of successive edges of *K* between the endpoints. Another geometric feature of τ that we look at is

$$\lambda_n(\tau) = \max(\|v_i v_j\| : v_i v_j \in t), \tag{2}$$

the length of the longest diagonal in the triangulation. It is clear that $n/3 \le \lambda_n \le n/2$.

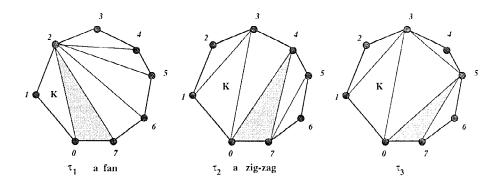


Fig. 1. Three triangulations: $\Delta_8 = 5$, 2, and 3, respectively; $\lambda_8 = 4$, 4, and 3, respectively.

To see how these functions behave across the family of triangulations we treat them as random variables under the uniform probability on T_n . By symmetry, each d_i has the same distribution, but they are not independent because, e.g., $d_0 + \cdots + d_{n-1} = 2(n-3)$. In view of the fact that the expected degree of each v_i is 2(1-3/n), it may be somewhat surprising that Δ_n is close to log *n* (all logs are base 2). The main result is

Theorem 1. As $n \to \infty$,

 $E(\Delta_n)/\log n \to 1.$

In fact Δ_n is strongly concentrated. For all c > 0, as $n \to \infty$,

$$\operatorname{Prob}\{|\Delta_n(\tau) - \log n| \le (1+c)\log\log n\} \to 1.$$

The upper bound is based on computing the distribution of d_i .

Lemma 1. For each vertex v_i , the probability that its degree is k is given by

$$\operatorname{Prob}(d_i = k) = \left(\frac{k+1}{2}\right) \left(\frac{n-1}{2n-5}\right) \prod_{i=1}^k \frac{n-2-i}{2n-5-i}.$$
 (3)

Remark 1. Since $\operatorname{Prob}(d_i = k) \leq (k + 1)2^{-(k+1)}$ when n > 3 (which we assume throughout), this says that d_i has tails that decrease geometrically fast. Theorem 1 indicates that their maximum is logarithmic, like the max of *n* **independent** geometric random variables (see also Final Remark 1). The proof makes these connections more explicit. It is interesting to wonder about the variance of Δ_n . Simulation indicates that it could be constant.

The key fact about the longest diagonal is

Lemma 2. The distribution of the length of the longest diagonal is given by

$$\operatorname{Prob}(\lambda_n = k) = \frac{nC_{k-1}}{C_{n-2}} \sum_{i=n-k}^{2k_{(*)}} (*)C_{i-k-1}C_{n-i-1},$$
(4)

where (*) means "multiply the summand by $\frac{1}{2}$ when i = 2k and i = n - k, unless 3k = n, when we multiply by $\frac{1}{3}$."

This enables us to find the limit distribution of λ_n .

Theorem 2. For each $x \in (\frac{1}{3}, \frac{1}{2})$, as $n \to \infty$, $\operatorname{Prob}(\lambda_n \le nx) \to to$ the distribution with density

$$w(x) = \frac{1}{\pi} x^{-2} (1-x)^{-2} (3x-1)(1-2x)^{-1/2}.$$

In addition $E(\lambda_n)/n \to \alpha$, where

$$\alpha = \frac{\sqrt{3}}{\pi} + \frac{1}{3} - \frac{\log(2+\sqrt{3})}{\pi}$$

= 0.4654615104....

A motivation for the present work—along with deep curiosity about how typical triangulations look—is the inherent interest of binary trees. It is familiar that T_n is bijectively equivalent to B_n , the set of rooted binary trees with n-2 internal nodes, each triangulation $\tau \in T_n$ corresponding to a particular tree $b(\tau) \in B_n$. The two features of triangulations that we study translate into interesting and natural properties of the corresponding trees. For example, $\Delta_n(\tau)$ measures a property of $b(\tau)$ that we call the *external-node separation*, $\chi_n(b(\tau))$: this is the maximal distance in the tree between successive external nodes. $\lambda_n(\tau)$ measures a property of $b(\tau)$ that we call the *nearly* half measure, $H_n(b(\tau))$: it is the size of the largest subtree with not more than half the external nodes. Though trees have been studied intensively (e.g., [3], [4], [8], [11], and [12]), we are unaware of any previous work on these two features. Theorems 1 and 2 and Lemmas 1 and 2 thus appear to express interesting, new facts about trees, as well as about triangulations. In Section 2 we translate the functions Δ_n and λ_n into the context of binary trees. We also exploit the correspondence between T_n and nonnegative lattice paths P_n ; we interpret our functions in this set as well, to help with the proofs, which appear in Section 3.

In Section 4 we describe some linear-time algorithms to generate elements of T_n randomly. In addition let $T_n(k)$ denote the subset of triangulations in T_n with $\lambda_n(\tau) = k$. We show how to generate quickly triangulations restricted to $T_n(k)$. Finally, if $d_i = 0$, the vertex v_i is called *an ear* of the triangulation. We show how to generate quickly triangulations with a given number of ears. This may be of some interest because ears of τ correspond to leaves of $b(\tau)$.

Remark 2. If we regard the trees in B_n as binary-search trees generated by permutations of $1, \ldots, n - 2$, each permutation being equally likely, the bijection gives the (binary-search tree) probability β , on T_n . Trees in B_n are well studied in this model (e.g., [4], [6], [11], and [13]). In contrast to the situation in the uniform distribution, the vertex degrees in this model are not identically distributed. Actually $E_{\beta}(d_0) = E_{\beta}(d_{n-1}) = \Theta(\log n)$ as is familiar from [4] and [6]. We can prove that in this distribution $\Delta_n / \log n \rightarrow c > 1$ in probability. It seems difficult to analyze λ_n in this model.

2. Preliminaries

We first describe the explicit correspondences between triangulations, trees, and paths that we use. The standard way to associate a tree with a triangulation uses the dual graph of $\tau \in T_n$. This gives a binary tree with n - 2 internal nodes, one for each triangle of τ ; adjacent triangles of τ correspond to nodes joined by an edge of the tree. The triangle with edge v_0v_{n-1} is associated with the root of the tree. If v_i is the apex of this triangle in τ , label the root with *i*. The left subtree has i - 1 internal nodes (the number of vertices

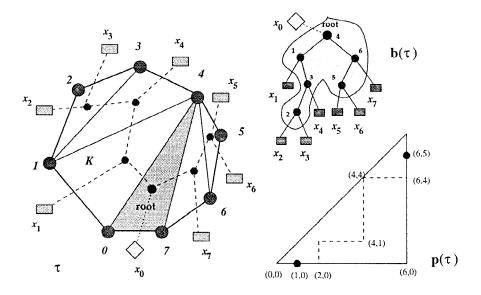


Fig. 2. A triangulation of K and two equivalent representations.

of *K* between v_0 and v_i) and corresponds to the triangulation of subpolygon v_0, \ldots, v_i in τ ; the right subtree has n - 2 - i internal nodes and corresponds to the triangulation of subpolygon v_i, \ldots, v_{n-1} in τ , and now continue recursively in the two subpolygons (subtrees). Once the n - 2 internal nodes are placed, external nodes are added so internal nodes have outdegree 2. Call this (binary-search) tree $b(\tau)$. It has n - 1 external nodes whose *inorder* traversal corresponds to the edges $v_{i-1}v_i$, $i = 1, \ldots, n - 1$. The root misses an external node corresponding to v_0v_{n-1} . We label them x_i , $i = 1, \ldots, n - 1$, and the missing external node, x_0 (see Fig. 2). This scheme defines a bijection $T_n \leftrightarrow B_n$.

For $\tau \in T_n$ construct a path $p(\tau) \in P_n$ as follows (we think of elements of P_n as upright rectilinear paths joining points in the integer lattice in R^2 contained in the triangle bounded by the *x*-axis, x = n - 2, and y = x). Paths start at (1, 0) and end at (n - 2, n - 3). Suppose τ has j_0 internal diagonals incident to v_0 ; then the path moves *right* j_0 steps. In general, let j_i denote the number of diagonals from v_i to a higher number vertex. We are currently at vertex v_0 . We move clockwise in K to the next vertex v_i with $j_i > 0$. The path moves *up* to the line y = i and then moves *right* for j_i steps. It is easy to see that this procedure gives a path in P_n and that every such path comes from a distinct triangulation. These bijections are frequently exploited when studying the combinatorics in one of these sets (see especially [15]), and also for the task of randomly generating elements from one of the sets (e.g., [2], [5], and [13]).

To understand what Δ_n says about trees, imagine the diagonal $v_i v_j$ in τ as directed from the smaller numbered vertex of K to the larger one. Take 0 < i < n - 1 and move counterclockwise along the circumference of a sufficiently small circle centered at vertex v_i from edge $v_{i-1}v_i$ to edge v_iv_{i+1} . First we meet diagonals (if any) coming from lower vertices *into* v_i and then we meet diagonals (if any) going *out from* v_i to higher vertices. This shows that the degree of v_i in τ is the number of nodes in $b(\tau)$ between x_i and α , and the number of nodes between x_{i+1} and α , α being the root of the smallest subtree containing x_i and x_{i+1} ; thus it is the path distance in $b(\tau)$ (number of internal nodes) from x_i to x_{i+1} , minus 1. Similarly, and because x_0 is missing from rooted binary trees, d_0 and d_{n-1} count the number of internal nodes between the root and x_1 and the root and x_{n-1} , respectively.

Given a rooted binary tree *b* with n-2 internal nodes and external nodes x_1, \ldots, x_{n-1} , tack an external node $x_n (\equiv x_0)$ onto the root and define the *external-node separation* by

$$\chi_n(b) = \max(\|x_i x_{i+1}\|, i = 0, \dots, n-1),$$
(5)

where $||x_i x_{i+1}||$ counts the path distance minus 1 between the external nodes. We just argued that

Lemma 3. Given $\tau \in T_n$, $\Delta_n(\tau) = \chi_n(b(\tau))$.

It is more difficult to interpret Δ_n on paths. From the construction of $p(\tau)$ the width j_i of the step along y = i is the outdegree of vertex v_i , $i = 0, \ldots, n-3$ ($j_i = 0$ means the path has no step at level i). The outdegrees of v_{n-2} and v_{n-1} are zero. Similarly, the indegrees of v_0 and v_1 are zero. The other indegrees are more complicated, except for v_{n-1} , where the indegree equals d_{n-1} , and both count the number of times the path meets y = x, from x = 1 to x = n - 3. Also both d_{n-2} and the indegree of v_{n-2} can be determined from the intersections of the path with y = x - 1. However, in general, d_i seems not to be an easily "seen" feature of the path.

Given a path $p \in P_n$, define its step-width by

$$s_n(p) = \max(j_i, i = 0, \dots, n-3),$$
 (6)

where j_i is the width of the step of p at height y = i. Since $d_i \ge j_i$,

Lemma 4. Given a triangulation $\tau \in T_n$, $\Delta_n(\tau) \ge s_n(p(\tau))$.

Therefore probabilistic lower bounds for step-width imply lower bounds for the maximum degree.

It is straightforward to interpret λ_n . From the construction of $b(\tau)$ from τ , each internal node in the tree other than the root corresponds to the part of τ restricted to some subpolygon $v_i, \ldots, v_j, i < j - 1$. Therefore $||v_i v_j||$ corresponds to the number of external nodes in the subtree rooted at that particular internal node. Given a tree $b \in B_n$, denote its nonroot internal nodes by v_i and define $||v_i||$ as the number of external nodes in the subtree rooted at v_i . The "nearly-half measure" of *b* is defined by

$$H_n(b) = \max(\min(\|v_i\|, n - \|v_i\|), \ i = 1, \dots, n-3).$$
(7)

Its the size of the largest subtree with not more than half the external nodes. Because $\lambda_n(\tau) = H_n(b(\tau))$, Lemma 2 gives the distribution of this random variable on trees.

3. Proofs

We sketch the proofs of the results mentioned previously. A main tool is the ballot theorem (see p. 73 of [7]) which says that the number of lattice paths that start at (0, 0), make *i* unit steps to the right, $j \le i$ unit steps up, and preserve $y \le x$ is

$$N_{ij} = \frac{i+1-j}{i+1+j} \binom{i+1+j}{j}.$$
(8)

Proof of Lemma 1. Since the degrees are identically distributed, we only have to consider vertex v_0 . If $d_0 = k$ in τ , the corresponding path (a good path) must start at (1, 0), pass through (k + 1, 0) and then (k + 1, 1), and finally continue to (n - 2, n - 2). The number of ways a path can continue through (k + 1, 1) to (n - 2, n - 2) is

$$N = \frac{k+1}{2n-5-k} \binom{2n-5-k}{n-2},$$

by the ballot theorem. Since there is only one way a path in P_n can get from (1, 0) to (k + 1, 0), N is also the number of good paths. Therefore $\text{Prob}(d_0 = k) = N/C_{n-2}$. Simplification gives (3).

We prove Theorem 1 in two steps. For the upper bound we want to determine a k so $\operatorname{Prob}(\Delta_n \ge k) \to 0$. Observe that $\operatorname{Prob}(\Delta_n \ge k) = \operatorname{Prob}(\bigcup_{i=0}^{n-1} \{d_i \ge k\})$ which, by Bonferroni's inequality [7, p. 110] is bounded by $n \operatorname{Prob}(d_0 \ge k)$. Lemma 1 shows

$$\operatorname{Prob}(\Delta_n \ge k) \le n(k+1)2^{-k}$$

which $\rightarrow 0$ for $k \ge \log n + c \log \log n$, c > 1.

The lower bound is

Lemma 5. For any c > 0, $\operatorname{Prob}(\Delta_n \le k) \to 0$ for $k \le \log n - (1 + c) \log \log n$.

Proof. This is the only tricky part, because the d_i are dependent. From Lemma 4, Δ_n is larger than the size of the largest horizontal step, s_n , in the corresponding path, so we just need to determine k so that $\operatorname{Prob}(\Delta_n(\tau) \le k) \le \operatorname{Prob}(s_n(p(\tau)) \le k) \to 0$.

Let U_1, \ldots, U_{2n-4} be a sequence of i.i.d. uniform random variables on [0, 1]. We describe (X_m, Y_m) , the coordinates of a point on a random path in P_n , after m < 2n - 4 steps of size 1, each up or right, starting from $(1, 0) \equiv (X_0, Y_0)$. Of the C_{n-2} paths in P_n , C_{n-3} pass through (1, 1), the rest through (2, 0). Therefore, letting $I_{[A]}$ denote the indicator of A, if

$$X_1 = I_{[U_1 \le C_{n-3}/C_{n-2}]},$$

 $Y_1 = 2 - X_1,$

 (X_1, Y_1) will be (1, 1) or (2, 0) with the correct probabilities. Next suppose $(X_m, Y_m) = (i, j)$ is a point on p after m = i + j - 1 < 2n - 5 steps from (1, 0). By the ballot

theorem there are

$$N_{i,j} = \frac{i-j+1}{2n-3-i-j} \binom{2n-3-i-j}{n-1-j}$$

continuations from (i, j) to (n - 2, n - 2), of which $N_{i+1,j}$ go through (i + 1, j). Therefore the probability that the path at $(X_m, Y_m) = (i, j)$ moves right at step *m* is

$$p_m = \frac{N_{i+1,j}}{N_{i,j}} = \left(\frac{i+2-j}{i+1-j}\right) \left(\frac{n-2-i}{2n-4-i-j}\right),$$
(9)

which is 0 when i = n - 2, and 1 when i = j, as required. If we define

$$X_{m+1} = X_m + I_{[U_{m+1} \le p_m]},$$

$$Y_{m+1} = Y_m + (1 - I_{[U_{m+1} \le p_m]})$$

our path will move from (i, j) to $(X_m + 1, Y_m)$ or $(X_m, Y_m + 1)$ with the correct probabilities. We use m = i + j - 1 in the equation for p_m and simplify to see $p_m \ge$

$$\frac{1}{2}\left(1 - \frac{1+m-2j}{2n-5-m}\right) \ge \frac{1}{2}\left(1 - \frac{1+m}{2n-5-m}\right) \ge \frac{1}{2}\left(1 - \frac{1+m^*}{2n-5-m^*}\right), \quad (10)$$

where $m^* > m$ is a bound on the number of steps taken.

Disregarding truncations we define $k = \log n - (1 + c) \log \log n$, c > 0, $m^* = n/(2 \log n)$, and

$$p = \frac{1}{2} \left(1 - \frac{1}{3 \log n} \right).$$

With this choice of m^* the right-hand side of (10) is at least p, if n is large enough.

Consider the Bernoulli sequence Z_1, Z_2, \ldots , where $Z_i = I_{[U_i \le p]}, 1 \le i \le m^*$, and let L_1, L_2, \ldots be the lengths of its runs of consecutive ones. Each $Z_j = 0$ ends such a run and since $I_{[U_j > p_j]}$ implies $Z_j = 0, \Delta_n \ge \max L_i, i \le m^*$. Therefore

$$Prob(\Delta_n < k) \le Prob\left(\bigcap_{i \le m^*/3} (L_i < k)\right) = [Prob(L_1 < k)]^{m^*/3} \le (1 - p^k)^{m^*/3}$$
$$\le e^{-p^k m^*/3} = e^{-r(\log n)^c}$$

for some constant r > 0.

Proof of Lemma 2. First observe that there are $C_{k-1}C_{i-k-1}C_{n-i-1}$ triangulations in T_n containing $\Delta v_0 v_k v_i$, i > k. To count the number of triangulations with $\lambda_n = k$, suppose $v_0 v_k$ is a diagonal in τ (its length is k) and that v_i is the apex of its triangle. If $n - k \leq i \leq 2k$ neither $||v_0 v_i||$ nor $||v_i v_k||$ exceeds k. So we sum the products $C_{k-1}C_{i-k-1}C_{n-i-1}$ over i, from n - k to 2k, and multiply this sum by n to reflect the fact that the longest diagonal could as well be $v_1 v_{k+1}, v_2 v_{k+2}, \ldots, v_{n-1} v_{k-1}$. Finally the * in $\Sigma_{(*)}$ in (4) means "multiply the summand by $\frac{1}{2}$ when i = 2k and when i = n - k (these triangles have two edges of length k and would be counted twice), unless 3k = n, when we multiply by $\frac{1}{3}$." This counts each good triangulation only once.

Proof of Theorem 2. The first observation is that sum (disregarding the meaning of (*)) in (4) has the closed form

$$\sum_{i=n-k}^{2k} C_{i-k-1} C_{n-i-1} = \frac{(n-2k)(3k+1-n)}{(n-k)(n-k-1)(2n-4k-1)} \binom{2k}{k} \binom{2n-4k}{n-2k},$$

which can be verified easily. Multiply this sum by nC_{k-1}/C_{n-2} , approximate $\binom{2m}{m}$ by $4^m/\sqrt{\pi m}$, and observe that w(x) is the limit as k and $n \to \infty$, with $k/n \to x \in (\frac{1}{3}, \frac{1}{2})$. The use of Σ in place of $\Sigma_{(*)}$ has no effect on this analysis. The constant α arises from direct evaluation of

$$\int_{1/3}^{1/2} x w(x) \, dx.$$

It is also possible to compute higher moments exactly.

The proofs of the statements in Remark 2 are omitted.

4. Algorithms

There already exist algorithms for the uniform generation of elements of T_n , B_n , and P_n and which have complexity O(n) in the RAM model of computation. In this section we give a new, extremely simple algorithm, based on the proof of Theorem 1, to generate elements of P_n uniformly. From a random path it is then straightforward to obtain the corresponding trangulation in T_n and tree in B_n in O(n) time. Using this as a building block we can uniformly generate triangulations with maximum diagonal of a given length and triangulations with a given number of ears, both in linear time. Throughout we use "uniform" to mean "generate a uniform [0, 1] random number" and "uniform[$i, i + 1, \ldots, j$]" to mean "generate an integer in [i, j], each being equally likely."

4.1. Generating Paths

Given *n*, the following algorithm generates a random path from (1, 0) to (n - 2, n - 3) which is described by $j_0, \ldots, j_{n-3}, j_i$ giving the width of the step made by the path at level y = i, and $j_0 + \cdots + j_{n-3} = n - 3$.

Algorithm 1. Rand-Path $(n; j_0, \ldots, j_{n-3})$.

- 1. (initialize:) $m \leftarrow 0$; $(X_m, Y_m) \leftarrow (1, 0)$; $i \leftarrow 0$; $j_i \leftarrow 0$
- 2. $p_{m+1} \leftarrow [(X_m + 2 Y_m)(n 2 X_m)]/[(X_m 1 Y_m)(2n 4 X_m Y_m)]$
- 3. $\begin{array}{ll} U_{m+1} \leftarrow \text{uniform; } X_{m+1} \leftarrow X_m + I_{[U_{m+1} \leq p_{m+1}]} \\ Y_{m+1} \leftarrow Y_m + (1 I_{[U_{m+1} \leq p_{m+1}]}) \end{array}$
- 4. IF $Y_{m+1} > Y_m$ THEN $(i \leftarrow i+1; j_i \leftarrow 0)$ ELSE $j_i \leftarrow j_i + 1$
- 5. $m \leftarrow m+1$; IF m < 2n-5, $\rightarrow 2$.

The algorithm is correct. Step 2, given that $(X_m, Y_m) = (i, j)$, computes p_{m+1} as in (9). Therefore (X_{m+1}, Y_{m+1}) is either $(X_m + 1, Y_m)$ or $(X_m, Y_m + 1)$, each with the correct probability. By the remark immediately following (9), this gives a path in P_n . By induction each path has equal probability.

The algorithm is O(n). Since each p_m is computed in constant time, the 2n - 5 steps take linear time. Since j_i is the outdegree of vertex v_i in the triangulation τ that corresponds to the path just generated, it is straightforward now to obtain τ in linear time, described, for example, by the list of its n-3 diagonals. We refer to the process of generating a path and then obtaining its corresponding triangulation by **Rand-Tri** (v_0, \ldots, v_{n-1}) .

Algorithm 1 is similar to the method of Arnold and Sleep [1] that is mentioned in [5]. A different approach for generating triangulations, paths, or trees appears in [2].

Let $k \ge (n-3)/2$. Suppose we take m = 0, $(X_0, Y_0) = (k+1, 1)$, $j_0 \leftarrow k, i \leftarrow 1$, and begin the path algorithm with Step 2, terminating when the path reaches (n-2, n-3). The generated path corresponds to a random triangulation with $\Delta_n = k$ and whose maxdegree vertex is v_0 . To randomize the max-degree vertex we choose integer *I* uniformly in [0, n-1] and **Rotate**(*I*), where **Rotate**(*j*) means "change the vertex labeling of *K* so $v_i \rightarrow v_{(i+j) \mod n}$. We now have a random triangulation with max-degree *k*, each one being equally likely. It is not clear how to do this efficiently for smaller *k*.

4.2. Triangulations with Fixed λ

Let $T_n(k) \subset T_n$ denote the triangulations whose longest diagonal has length k, $n/3 \le k \le n/2$. The proofs of Lemma 2 and Theorem 2 suggest an approach for fast uniform generation of triangulations in $T_n(k)$. Suppose that v_0v_k is the diagonal of max length (= k) in the desired triangulation. We generate the apex v_i of its triangle, with $i \in [n-k, 2k]$ chosen according to the correct probability. The counting argument used for Lemma 2 shows that v_i should be chosen with probability $C_{i-k-1}C_{n-i-1}/S_{2k}$, where $S_m = \sum_{j=n-k}^{m} C_{j-k-1}C_{n-j-1}$. Finally, using Rand-Tri we randomly triangulate the polygons defined by (v_0, \ldots, v_k) , (v_k, \ldots, v_i) , and (v_i, \ldots, v_0) , and then rotate K so diagonal v_jv_{j+k} has probability 1/n to be the longest, $j = 0, \ldots, n-1$.

Algorithm 2. Random-max-diag(k; v_0, \ldots, v_{n-1}).

- 1. $U \leftarrow uniform$
- 2. $\mathbf{i} \leftarrow \min(\mathbf{j} : \mathbf{S}_{\mathbf{j}} \ge \mathbf{U} * \mathbf{S}_{2\mathbf{k}})$
- 3. Rand-Tri (v_0, \ldots, v_k) ; Rand-Tri (v_k, \ldots, v_i) ; Rand-Tri (v_i, \ldots, v_0) .
- 4. I \leftarrow uniform $(0, \ldots, n-1)$
- 5. Rotate(I)

4.3. Triangulations with k Ears

For $k \in [2, \lfloor n/2 \rfloor]$ let $T_n^k \subset T_n$ denote the triangulations of K with exactly k ears. We give an O(n) algorithm to generate these triangulations uniformly. The algorithm is based on a combinatorial proof of the following formula for the number of k-ear triangulations (see [9]):

$$|T_n^k| = \frac{n}{k} 2^{n-2k} \binom{n-4}{n-2k} C_{k-2}.$$

Let τ be a triangulation of *K* having ears at vertices v_{j_1}, \ldots, v_{j_k} , and fix $j_1 = 0$. Obviously $|j_i - j_{i+1}| \ge 2$. τ has n - 3 diagonals *including* $v_{j_i-1}v_{j_i+1}$, $i = 1 \ldots, k$. We *collapse* τ by removing (in any order) every edge of *K* that is not incident to an ear of τ , n - 2k edges in all. When edge v_rv_{r+1} is removed from, say, $v_rv_{r+1}v_q$, we identify v_{r+1} with v_r and note that the two diagonals v_qv_r and v_qv_{r+1} become one, so n - 2k of the diagonals of τ have also been removed, leaving 2k - 3.

Let K' be the resulting collapsed polygon and τ' its triangulation. Since K' is a 2kgon and τ' has k ears, there are C_{k-2} different possibilities for τ' ; k of its diagonals (one for each ear) form a convex k-gon whose interior has C_{k-2} distinct triangulations. To count the number of triangulations τ that collapse to the same triangulation of K', order the n-3 diagonals of τ , for example, so $v_i v_j$ precedes $v_i v_r$ for diagonals where i < j < r and $v_i v_j$ precedes $v_r v_s$ for diagonals where i < r except $d = v_0 v_{n-1}$ is always last. d remains in τ' but n-2k of the other n-4 are eliminated when τ collapses to τ' (see Fig. 3). There are $\binom{n-4}{n-2k}$ choices for which diagonals are eliminated, each of which corresponds to a triangulation that collapses to τ' . Finally, suppose the diagonal

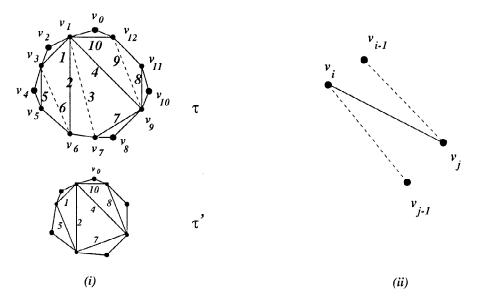


Fig. 3. (i) An example of collapse with n=13 and k=5. The dotted diagonals of τ disappear in the collapse. (ii) Two distinct ways the predecessor of $v_i v_i$ could be removed in collapse, or precede $v_i v_i$ in insertion.

immediately preceding $v_i v_j$ in τ is eliminated in the collapsing. There are two distinct ways this can arise for each eliminated diagonal (see Fig. 3), and thus, $2^{n-2k} \binom{n-4}{n-2k}$ distinct triangulations τ collapse to each triangulation τ' of K'. Finally the term n/k comes from the fact that v_0 was made to be an ear; every one of the *n* vertices could play this role but then each triangulation would be counted *k* times, once for each ear.

This argument underlies the following simple linear-time algorithm to generate a k ear triangulation.

Algorithm 3. Rand-ears(k; v_0, \ldots, v_{n-1}).

To sketch some details, Step 1 randomly triangulates a *k*-gon. In Step 2 renumber $v_i \rightarrow v_{2i+1}$, i = 1, ..., k, add vertices v_{2i} , i = 1, ..., k, and diagonals $v_{2i-1}v_{2i+1}$, i = 1, ..., k; this puts ears at the *k* even number vertices of τ' , the other diagonals being random. In Step 3 diagonal v_1v_{2k-1} is labeled n-3, the others are labeled by $1 \le j_1 < \cdots < j_{2k-4} \le n-4$, the 2k-4 elements in *S*, randomly chosen from 1, ..., n-4. Step 4 is done by *merging* S^c into $S \cup (n-3)$. If the current element $r \in S^c$ is larger than the current element $s \in S$, we advance to the next element of *S*. Otherwise an edge is *inserted* into τ' immediately preceding $s = v_i v_j$, i < j. Specifically, if $U \leftarrow uniform$ is less than 0.5 we create a new vertex between v_{i-1} and v_i and the corresponding diagonal to v_j ; otherwise a new vertex appears between v_{j-1} and v_j and the corresponding diagonal from v_i (see Fig. 3). The details are easily managed in O(n).

5. Final Remarks

This paper studied the behavior of two properties of a random triangulation of a convex *n*-gon: (1) Δ_n , the maximal degree; (2) λ_n , the length of the longest diagonal. The functions Δ_n and λ_n correspond to interesting features of binary trees and our results on triangulations give new information about random trees. Some other points are:

1. Following the idea in Remark 1, as $n \to \infty$,

$$Prob(d_i = k) \to (k+1)2^{-(k+2)}$$
,

the distribution of G_2 , the sum of two independent geometric $(\frac{1}{2})$ random variables. It is interesting to wonder whether Δ_n converges in distribution to the limit distribution of the maximum of *n* independent copies of G_2 .

2. According to Remark 2, $E(d_i) = 2(1 - 3/n)$ for uniform triangulations but $E_{\beta}(d_0) = E_{\beta}(d_{n-1}) = \Theta(\log n)$ in search-tree probability, a real difference between the two distributions. At the same time, however, $E(\Delta_n/\log n) \rightarrow 1$ in

the uniform case and to c > 1 in the other. For the purpose of comparison, some known properties of random binary trees in the two distributions are:

- (a) *Height* h_n , the maximal depth of a node. $E(h_n)$ is asymptotic to $2\sqrt{\pi n}$ in the uniform case [8] and concentrated about 4.31107 ln *n* in the other [4].
- (b) *Leaves*. In the limit one expects n/4 leaves for uniform trees and n/3 for binary search trees (see [14]).
- 3. We note that it is easy to generate random triangulations in the search-tree probability. When constructing the triangulation as in the opening paragraph, just choose v_i uniformly from $1, \ldots, n-2$, etc. The complexity is O(n).
- 4. An outstanding question concerns the set T(K) of triangulations of a set K of n points not necessarily in convex position. As opposed to (0), it is not known how to count or even to approximate |T(K)|.

Acknowledgments

We thank Imre Bárány, Alistair Sinclair, and Jean-Marc Fédou for valuable conversations.

References

- D. Arnold and M. Sleep. Uniform Random Number Generation of n Balanced Parenthesis Strings. ACM Trans. Prog. Languages Systems 2, 122–128, 1980.
- 2. M. Atkinson and J. Sack. Generating Binary Trees at Random. Inform. Process. Lett. 41, 21-23, 1992.
- 3. N. Dershowitz and S. Zaks. Patterns in Trees. Discrete Appl. Math. 25, 241-255, 1989.
- 4. L. Devroye. A Note on the Height of Binary Search Trees. J. Assoc. Comput. Mach. 33, 489-498, 1986.
- 5. L. Devroye. Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986.
- L. Devroye. Application of the Theory of Records in the Study of Random Trees. Acta Inform. 26, 123–130, 1988.
- 7. W. Feller. An Introduction to the Theory of Probability and Its Applications, Vol. 1, 3rd Edn., Wiley, New York, 1968.
- P. Flajolet and A. Odlyzko. The Average Height of Binary Trees and Other Simple Trees. J. Comput. System. Sci. 25, 171–213, 1982.
- 9. F. Hurtado and M. Noy. Ears of triangulations and Catalan Numbers. Discrete Math. 149, 319-324, 1996.
- F. Hurtado and M. Noy. The Graph of Triangulations of a Convex Polygon. Proc. Twelfth ACM Symposium on Computational Geometry, N C7–8, 1996.
- 11. H. Mahmoud. Evolution of Random Search Trees. Wiley, New York, 1992.
- 12. A. Meir and J. Moon. On the Altitude of Nodes in Random Trees. Canad. J. Math. 30, 997-1015, 1978.
- 13. B. Pittel. On Growing Random Binary Trees. J. Math. Anal. Appl. 103, 461-480, 1984.
- R. Sedgewick and P. Flajolet An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading, MA, 1996.
- D. Sleator, R. Tarjan, and W. Thurston. Rotation Distance, Triangulations, and Hyperbolic Geometry. J. Amer. Math. Soc. 1, 647–681, 1988.

Received August 18, 1997, and in revised form November 5, 1997.

Note added in proof. Gao and Wormald (preprint) recently proved the conjecture in point 1 of the Final Remarks (Section 5) and sharpened the statements in Theorem 1.