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Abstract. Let Tn denote the set of triangulations of a convex polygonK with n sides. We
study functions that measure very natural “geometric” features of a triangulationτ ∈ Tn,
for example,1n(τ )which counts the maximal number of diagonals inτ incident to a single
vertex of K . It is familiar thatTn is bijectively equivalent toBn, the set of rooted binary
trees withn− 2 internal nodes, and also toPn, the set of nonnegative lattice paths that start
at 0, make 2n− 4 stepsXi of size±1, and end atX1+ · · · + X2n−4 = 0.1n and the other
functions translate into interesting properties of trees inBn, and paths inPn, that seem not
to have been studied before. We treat these functions as random variables under the uniform
probability onTn and can describe their behavior quite precisely. A main result is that1n is
very close to logn (all logs are base 2). Finally we describe efficient algorithms to generate
triangulations inTn uniformly, and in certain interesting subsets.
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1. Introduction and Summary

Consider a convex polygonK with n sides. We label the verticesvi = i , i = 0, . . . ,n−
1, in clockwise order. A triangulation is a set ofn − 3 noncrossing diagonalsvi vj

which partitionsK into n− 2 triangles. You can imagine constructing a triangulationτ

recursively: taking the polygon edgev0vn−1 as base, just choose the apex of the triangle
of τ that it belongs to, sayvi , 0< i < n− 1, and now continue in the same way on the
two polygonsv0, . . . , vi with v0vi as base andvi , . . . , vn−1 with vi vn−1 as base (Fig. 1
hasn = 8 andvi = 2, 4, and 5, respectively). This shows thattn, the number of such
triangulations, satisfies

tn = t2tn−1+ t3tn−2+ · · · + tn−1t2 t2 = t3 = 1,

the recursion of the Catalan numbers. Therefore

tn = Cn−2 = 1

n− 1

(
2n− 4

n− 2

)
(0)

is the size ofTn, the set of triangulations ofK .
It is natural to consider certain “geometric” features of a triangulationτ ∈ Tn. Let di

denote thedegreeof vertexvi , the number of diagonals ofτ incident withvi . It is easy
to see [10] thatτ is characterized by this sequence of degrees. In this paper we study

1n(τ ) = max(di , i = 0, . . . ,n− 1), (1)

themaximal degreeof the vertices.1n = 2 whenτ is azigzagandn− 3 when it is a
fan (di = n− 3 for some vertex), as in Fig. 1.

Define the length of a diagonalvi vj with i > j to be‖vi vj ‖ = min(i − j,n− i + j ),
the (fewest) number of successive edges ofK between the endpoints. Another geometric
feature ofτ that we look at is

λn(τ ) = max(‖vi vj ‖ : vi vj ∈ t), (2)

the length of the longest diagonalin the triangulation. It is clear thatn/3≤ λn ≤ n/2.

Fig. 1. Three triangulations:18 = 5,2, and 3, respectively;λ8 = 4,4, and 3, respectively.
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To see how these functions behave across the family of triangulations we treat them
as random variables under the uniform probability onTn. By symmetry, eachdi has the
same distribution, but they are not independent because, e.g.,d0+· · ·+dn−1 = 2(n−3).
In view of the fact that the expected degree of eachvi is 2(1−3/n), it may be somewhat
surprising that1n is close to logn (all logs are base 2). The main result is

Theorem 1. As n→∞,

E(1n)/ logn→ 1.

In fact1n is strongly concentrated. For all c > 0, as n→∞,

Prob{|1n(τ )− logn| ≤ (1+ c) log logn} → 1.

The upper bound is based on computing the distribution ofdi .

Lemma 1. For each vertexvi , the probability that its degree is k is given by

Prob(di = k) =
(

k+ 1

2

)(
n− 1

2n− 5

) k∏
i=1

n− 2− i

2n− 5− i
. (3)

Remark 1. Since Prob(di = k) ≤ (k + 1)2−(k+1) whenn > 3 (which we assume
throughout), this says thatdi has tails that decrease geometrically fast. Theorem 1 in-
dicates that their maximum is logarithmic, like the max ofn independentgeometric
random variables (see also Final Remark 1). The proof makes these connections more
explicit. It is interesting to wonder about the variance of1n. Simulation indicates that it
could be constant.

The key fact about the longest diagonal is

Lemma 2. The distribution of the length of the longest diagonal is given by

Prob(λn = k) = nCk−1

Cn−2

2k(∗)∑
i=n−k

(∗)Ci−k−1Cn−i−1, (4)

where(∗) means “multiply the summand by12 when i = 2k and i = n − k, unless
3k = n, when we multiply by13.”

This enables us to find the limit distribution ofλn.

Theorem 2. For each x∈ ( 1
3,

1
2), as n→ ∞, Prob(λn ≤ nx) → to the distribution

with density

w(x) = 1

π
x−2(1− x)−2(3x − 1)(1− 2x)−1/2.
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In addition E(λn)/n→ α, where

α =
√

3
π
+ 1

3 − log(2+√3)
π= 0.4654615104. . . .

A motivation for the present work—along with deep curiosity about how typical
triangulations look—is the inherent interest of binary trees. It is familiar thatTn is
bijectively equivalent toBn, the set of rooted binary trees withn − 2 internal nodes,
each triangulationτ ∈ Tn corresponding to a particular treeb(τ ) ∈ Bn. The two features
of triangulations that we study translate into interesting and natural properties of the
corresponding trees. For example,1n(τ ) measures a property ofb(τ ) that we call the
external-node separation, χn(b(τ )): this is the maximal distance in the tree between
successive external nodes.λn(τ ) measures a property ofb(τ ) that we call thenearly
half measure,Hn(b(τ )): it is the size of the largest subtree with not more than half the
external nodes. Though trees have been studied intensively (e.g., [3], [4], [8], [11], and
[12]), we are unaware of any previous work on these two features. Theorems 1 and 2
and Lemmas 1 and 2 thus appear to express interesting, new facts about trees, as well as
about triangulations. In Section 2 we translate the functions1n andλn into the context
of binary trees. We also exploit the correspondence betweenTn and nonnegative lattice
pathsPn; we interpret our functions in this set as well, to help with the proofs, which
appear in Section 3.

In Section 4 we describe some linear-time algorithms to generate elements ofTn

randomly. In addition letTn(k) denote the subset of triangulations inTn with λn(τ ) = k.
We show how to generate quickly triangulations restricted toTn(k). Finally, if di = 0,
the vertexvi is calledan ear of the triangulation. We show how to generate quickly
triangulations with a given number of ears. This may be of some interest because ears
of τ correspond to leaves ofb(τ ).

Remark 2. If we regard the trees inBn as binary-search trees generated by per-
mutations of 1, . . . ,n − 2, each permutation being equally likely, the bijection gives
the (binary-search tree) probabilityβ, on Tn. Trees in Bn are well studied in this
model (e.g., [4], [6], [11], and [13]). In contrast to the situation in the uniform dis-
tribution, the vertex degrees in this model are not identically distributed. Actually
Eβ(d0) = Eβ(dn−1) = 2(logn) as is familiar from [4] and [6]. We can prove that
in this distribution1n/ logn→ c > 1 in probability. It seems difficult to analyzeλn in
this model.

2. Preliminaries

We first describe the explicit correspondences between triangulations, trees, and paths
that we use. The standard way to associate a tree with a triangulation uses the dual graph
of τ ∈ Tn. This gives a binary tree withn− 2 internal nodes, one for each triangle ofτ ;
adjacent triangles ofτ correspond to nodes joined by an edge of the tree. The triangle
with edgev0vn−1 is associated with the root of the tree. Ifvi is the apex of this triangle in
τ , label the root withi . The left subtree hasi − 1 internal nodes (the number of vertices
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Fig. 2. A triangulation ofK and two equivalent representations.

of K betweenv0 andvi ) and corresponds to the triangulation of subpolygonv0, . . . , vi

in τ ; the right subtree hasn− 2− i internal nodes and corresponds to the triangulation
of subpolygonvi , . . . , vn−1 in τ , and now continue recursively in the two subpolygons
(subtrees). Once then−2 internal nodes are placed, external nodes are added so internal
nodes have outdegree 2. Call this (binary-search) treeb(τ ). It hasn− 1 external nodes
whoseinorder traversal corresponds to the edgesvi−1vi , i = 1, . . . ,n − 1. The root
misses an external node corresponding tov0vn−1. We label themxi , i = 1, . . . ,n− 1,
and the missing external node,x0 (see Fig. 2). This scheme defines a bijectionTn ↔ Bn.

For τ ∈ Tn construct a pathp(τ ) ∈ Pn as follows (we think of elements ofPn

as upright rectilinear paths joining points in the integer lattice inR2 contained in the
triangle bounded by thex-axis,x = n− 2, andy = x). Paths start at(1,0) and end at
(n− 2,n− 3). Supposeτ has j0 internal diagonals incident tov0; then the path moves
right j0 steps. In general, letji denote the number of diagonals fromvi to a higher
number vertex. We are currently at vertexv0. We move clockwise inK to the next vertex
vi with ji > 0. The path movesup to the liney = i and then movesright for ji steps.
It is easy to see that this procedure gives a path inPn and that every such path comes
from a distinct triangulation. These bijections are frequently exploited when studying the
combinatorics in one of these sets (see especially [15]), and also for the task of randomly
generating elements from one of the sets (e.g., [2], [5], and [13]).

To understand what1n says about trees, imagine the diagonalvi vj in τ as directed
from the smaller numbered vertex ofK to the larger one. Take 0< i < n − 1 and
move counterclockwise along the circumference of a sufficiently small circle centered at
vertexvi from edgevi−1vi to edgevi vi+1. First we meet diagonals (if any) coming from
lower verticesinto vi and then we meet diagonals (if any) goingout fromvi to higher
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vertices. This shows that the degree ofvi in τ is the number of nodes inb(τ ) between
xi andα, and the number of nodes betweenxi+1 andα, α being the root of the smallest
subtree containingxi andxi+1; thus it is the path distance inb(τ ) (number of internal
nodes) fromxi to xi+1, minus 1. Similarly, and becausex0 is missing from rooted binary
trees,d0 anddn−1 count the number of internal nodes between the root andx1 and the
root andxn−1, respectively.

Given a rooted binary treebwith n−2 internal nodes and external nodesx1, . . . , xn−1,
tack an external nodexn (≡ x0) onto the root and define theexternal-node separationby

χn(b) = max(‖xi xi+1‖ , i = 0, . . . ,n− 1), (5)

where‖xi xi+1‖ counts the path distance minus 1 between the external nodes. We just
argued that

Lemma 3. Givenτ ∈ Tn,1n(τ ) = χn(b(τ )).

It is more difficult to interpret1n on paths. From the construction ofp(τ ) the width
ji of the step alongy = i is the outdegree of vertexvi , i = 0, . . . ,n− 3 ( ji = 0 means
the path has no step at leveli ). The outdegrees ofvn−2 andvn−1 are zero. Similarly,
the indegrees ofv0 andv1 are zero. The other indegrees are more complicated, except
for vn−1, where the indegree equalsdn−1, and both count the number of times the path
meetsy = x, from x = 1 to x = n− 3. Also bothdn−2 and the indegree ofvn−2 can be
determined from the intersections of the path withy = x − 1. However, in general,di

seems not to be an easily “seen” feature of the path.
Given a pathp ∈ Pn, define its step-width by

sn(p) = max( ji , i = 0, . . . ,n− 3), (6)

where ji is the width of the step ofp at heighty = i . Sincedi ≥ ji ,

Lemma 4. Given a triangulationτ ∈ Tn,1n(τ ) ≥ sn(p(τ )).

Therefore probabilistic lower bounds for step-width imply lower bounds for the maxi-
mum degree.

It is straightforward to interpretλn. From the construction ofb(τ ) from τ , each
internal node in the tree other than the root corresponds to the part ofτ restricted to
some subpolygonvi , . . . , vj , i < j − 1. Therefore‖vi vj ‖ corresponds to the number of
external nodes in the subtree rooted at that particular internal node. Given a treeb ∈ Bn,
denote its nonroot internal nodes byνi and define‖νi ‖ as the number of external nodes
in the subtree rooted atνi . The “nearly-half measure” ofb is defined by

Hn(b) = max(min(‖νi ‖,n− ‖νi ‖ ) , i = 1, . . . ,n− 3). (7)

Its the size of the largest subtree with not more than half the external nodes. Because
λn(τ ) = Hn(b(τ )), Lemma 2 gives the distribution of this random variable on trees.
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3. Proofs

We sketch the proofs of the results mentioned previously. A main tool is the ballot
theorem (see p. 73 of [7]) which says that the number of lattice paths that start at(0,0),
makei unit steps to the right,j ≤ i unit steps up, and preservey ≤ x is

Ni j = i + 1− j

i + 1+ j

(
i + 1+ j

j

)
. (8)

Proof of Lemma1. Since the degrees are identically distributed, we only have to con-
sider vertexv0. If d0 = k in τ , the corresponding path (a good path) must start at(1,0),
pass through(k+ 1,0) and then(k+ 1,1), and finally continue to(n− 2,n− 2). The
number of ways a path can continue through(k+ 1,1) to (n− 2,n− 2) is

N = k+ 1

2n− 5− k

(
2n− 5− k

n− 2

)
,

by the ballot theorem. Since there is only one way a path inPn can get from(1,0) to
(k + 1,0), N is also the number of good paths. Therefore Prob(d0 = k) = N/Cn−2.
Simplification gives (3).

We prove Theorem 1 in two steps. For the upper bound we want to determine ak
so Prob(1n ≥ k)→ 0. Observe that Prob(1n ≥ k) = Prob(

⋃n−1
i=0 {di ≥ k}) which, by

Bonferroni’s inequality [7, p. 110] is bounded byn Prob(d0 ≥ k). Lemma 1 shows

Prob(1n ≥ k) ≤ n(k+ 1)2−k

which→ 0 for k ≥ logn+ c log logn, c > 1.
The lower bound is

Lemma 5. For any c> 0, Prob(1n ≤ k)→ 0 for k ≤ logn− (1+ c) log logn.

Proof. This is the only tricky part, because thedi are dependent. From Lemma 4,1n

is larger than the size of the largest horizontal step,sn, in the corresponding path, so we
just need to determinek so that Prob(1n(τ ) ≤ k) ≤ Prob(sn(p(τ )) ≤ k)→ 0.

Let U1, . . . ,U2n−4 be a sequence of i.i.d. uniform random variables on [0,1]. We
describe(Xm,Ym), the coordinates of a point on a random path inPn, afterm< 2n− 4
steps of size 1, each up or right, starting from(1,0) ≡ (X0,Y0). Of theCn−2 paths in
Pn, Cn−3 pass through(1,1), the rest through(2,0). Therefore, lettingI [ A] denote the
indicator ofA, if

X1 = I [U1≤Cn−3/Cn−2],

Y1 = 2− X1,

(X1,Y1) will be (1,1) or (2,0) with the correct probabilities. Next suppose(Xm,Ym) =
(i, j ) is a point onp after m = i + j − 1 < 2n − 5 steps from(1,0). By the ballot
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theorem there are

Ni, j = i − j + 1

2n− 3− i − j

(
2n− 3− i − j

n− 1− j

)

continuations from(i, j ) to (n − 2,n − 2), of which Ni+1, j go through(i + 1, j ).
Therefore the probability that the path at(Xm,Ym) = (i, j ) moves right at stepm is

pm = Ni+1, j

Ni, j
=
(

i + 2− j

i + 1− j

)(
n− 2− i

2n− 4− i − j

)
, (9)

which is 0 wheni = n− 2, and 1 wheni = j , as required. If we define

Xm+1 = Xm + I [Um+1≤pm],

Ym+1 = Ym + (1− I [Um+1≤pm])

our path will move from(i, j ) to (Xm+ 1,Ym) or (Xm,Ym+ 1) with the correct proba-
bilities. We usem= i + j − 1 in the equation forpm and simplify to seepm ≥

1

2

(
1− 1+m− 2 j

2n− 5−m

)
≥ 1

2

(
1− 1+m

2n− 5−m

)
≥ 1

2

(
1− 1+m∗

2n− 5−m∗

)
, (10)

wherem∗ > m is a bound on the number of steps taken.
Disregarding truncations we definek = logn − (1 + c) log logn, c > 0, m∗ =

n/(2 logn), and

p = 1

2

(
1− 1

3 logn

)
.

With this choice ofm∗ the right-hand side of (10) is at leastp, if n is large enough.
Consider the Bernoulli sequenceZ1, Z2, . . ., whereZi = I [Ui≤p] , 1 ≤ i ≤ m∗, and

let L1, L2, . . . be the lengths of its runs of consecutive ones. EachZj = 0 ends such a
run and sinceI [Uj>pj ] implies Zj = 0,1n ≥ maxLi , i ≤ m∗. Therefore

Prob(1n < k) ≤ Prob

( ⋂
i≤m∗/3

(Li < k)

)
= [Prob(L1 < k)]m∗/3 ≤ (1− pk

)m∗/3
≤ e−pkm∗/3 = e−r (logn)c

for some constantr > 0.
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Proof of Lemma2. First observe that there areCk−1Ci−k−1Cn−i−1 triangulations in
Tn containing4v0vkvi , i > k. To count the number of triangulations withλn = k,
supposev0vk is a diagonal inτ (its length isk) and thatvi is the apex of its triangle.
If n − k ≤ i ≤ 2k neither‖v0vi ‖ nor ‖vi vk‖ exceedsk. So we sum the products
Ck−1Ci−k−1Cn−i−1 over i , from n − k to 2k, and multiply this sum byn to reflect the
fact that the longest diagonal could as well bev1vk+1, v2vk+2, . . . , vn−1vk−1. Finally the
* in 6(∗) in (4) means “multiply the summand by12 wheni = 2k and wheni = n− k
(these triangles have two edges of lengthk and would be counted twice), unless 3k = n,
when we multiply by1

3.” This counts each good triangulation only once.

Proof of Theorem2. The first observation is that sum (disregarding the meaning of (*))
in (4) has the closed form

2k∑
i=n−k

Ci−k−1Cn−i−1 = (n− 2k)(3k+ 1− n)

(n− k)(n− k− 1)(2n− 4k− 1)

(
2k

k

)(
2n− 4k

n− 2k

)
,

which can be verified easily. Multiply this sum bynCk−1/Cn−2, approximate
(2m

m

)
by

4m/
√
πm, and observe thatw(x) is the limit ask andn→∞, with k/n→ x ∈ ( 1

3,
1
2).

The use of6 in place of6(∗) has no effect on this analysis. The constantα arises from
direct evaluation of ∫ 1/2

1/3
xw(x)dx.

It is also possible to compute higher moments exactly.

The proofs of the statements in Remark 2 are omitted.

4. Algorithms

There already exist algorithms for the uniform generation of elements ofTn, Bn, andPn

and which have complexityO(n) in the RAM model of computation. In this section we
give a new, extremely simple algorithm, based on the proof of Theorem 1, to generate
elements ofPn uniformly. From a random path it is then straightforward to obtain the
corresponding trangulation inTn and tree inBn in O(n) time. Using this as a building
block we can uniformly generate triangulations with maximum diagonal of a given length
and triangulations with a given number of ears, both in linear time. Throughout we use
“uniform” to mean “generate a uniform [0,1] random number” and “uniform[i, i +
1, . . . , j ]” to mean “generate an integer in [i, j ], each being equally likely.”

4.1. Generating Paths

Givenn, the following algorithm generates a random path from(1,0) to (n− 2,n− 3)
which is described byj0, . . . , jn−3, ji giving the width of the step made by the path at
level y = i , and j0+ · · · + jn−3 = n− 3.
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Algorithm 1. Rand-Path(n; j 0, . . . , j n−3).

1. (initialize:) m ← 0; (Xm,Ym)← (1,0); i ← 0; j i ← 0
2. pm+1← [(Xm + 2− Ym)(n− 2− Xm)]/[(Xm − 1− Ym)(2n− 4− Xm − Ym)]
3. Um+1← uniform; X m+1← Xm + I [Um+1≤pm+1]

Ym+1← Ym + (1− I [Um+1≤pm+1])

4. IF Ym+1 > Ym THEN (i ← i + 1; j i ← 0) ELSE j i ← j i + 1
5. m← m+ 1; IF m < 2n− 5, → 2.

The algorithm is correct. Step 2, given that(Xm,Ym) = (i, j ), computespm+1 as
in (9). Therefore(Xm+1,Ym+1) is either(Xm + 1,Ym) or (Xm,Ym + 1), each with the
correct probability. By the remark immediately following (9), this gives a path inPn. By
induction each path has equal probability.

The algorithm is O(n). Since eachpm is computed in constant time, the 2n− 5 steps
take linear time. Sinceji is the outdegree of vertexvi in the triangulationτ that corre-
sponds to the path just generated, it is straightforward now to obtainτ in linear time,
described, for example, by the list of itsn−3 diagonals. We refer to the process of generat-
ing a path and then obtaining its corresponding triangulation byRand-Tri( v0, . . . , vn−1).

Algorithm 1 is similar to the method of Arnold and Sleep [1] that is mentioned in [5].
A different approach for generating triangulations, paths, or trees appears in [2].

Letk ≥ (n−3)/2. Suppose we takem= 0,(X0,Y0) = (k+1,1), j0← k, i ← 1, and
begin the path algorithm with Step 2, terminating when the path reaches(n− 2,n− 3).
The generated path corresponds to a random triangulation with1n = k and whose max-
degree vertex isv0. To randomize the max-degree vertex we choose integerI uniformly
in [0,n− 1] andRotate(I ), whereRotate(j ) means “change the vertex labeling ofK
sovi → v(i+ j )modn. We now have a random triangulation with max-degreek, each one
being equally likely. It is not clear how to do this efficiently for smallerk.

4.2. Triangulations with Fixedλ

Let Tn(k) ⊂ Tn denote the triangulations whose longest diagonal has lengthk, n/3 ≤
k ≤ n/2. The proofs of Lemma 2 and Theorem 2 suggest an approach for fast uniform
generation of triangulations inTn(k). Suppose thatv0vk is the diagonal of max length (=
k) in the desired triangulation. We generate the apexvi of its triangle, withi ∈ [n−k,2k]
chosen according to the correct probability. The counting argument used for Lemma
2 shows thatvi should be chosen with probabilityCi−k−1Cn−i−1/S2k, where Sm =∑m

j=n−k Cj−k−1Cn− j−1. Finally, using Rand-Tri we randomly triangulate the polygons
defined by(v0, . . . , vk), (vk, . . . , vi ), and(vi , . . . , v0), and then rotateK so diagonal
vj vj+k has probability 1/n to be the longest,j = 0, . . . ,n− 1.

Algorithm 2. Random-max-diag(k; v0, . . . , vn−1).

1. U← uniform
2. i← min(j : Sj ≥ U ∗ S2k)

3. Rand-Tri(v0, . . . , vk); Rand-Tri (vk, . . . , vi); Rand-Tri (vi, . . . , v0).

4. I← uniform (0, . . . ,n− 1)
5. Rotate(I)
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4.3. Triangulations with k Ears

For k ∈ [2, bn/2c] let Tk
n ⊂ Tn denote the triangulations ofK with exactly k ears.

We give anO(n) algorithm to generate these triangulations uniformly. The algorithm
is based on a combinatorial proof of the following formula for the number ofk-ear
triangulations (see [9]):

|Tk
n | =

n

k
2n−2k

(
n− 4

n− 2k

)
Ck−2.

Letτ be a triangulation ofK having ears at verticesvj1, . . . , vjk , and fix j1 = 0. Obviously
| ji − ji+1| ≥ 2. τ hasn− 3 diagonalsincludingv ji−1v ji+1, i = 1 . . . , k. Wecollapseτ
by removing (in any order) every edge ofK that is not incident to an ear ofτ , n − 2k
edges in all. When edgevr vr+1 is removed from, say,vr vr+1vq, we identifyvr+1 with vr

and note that the two diagonalsvqvr andvqvr+1 become one, son− 2k of the diagonals
of τ have also been removed, leaving 2k− 3.

Let K ′ be the resulting collapsed polygon andτ ′ its triangulation. SinceK ′ is a 2k-
gon andτ ′ hask ears, there areCk−2 different possibilities forτ ′; k of its diagonals
(one for each ear) form a convexk-gon whose interior hasCk−2 distinct triangulations.
To count the number of triangulationsτ that collapse to the same triangulation ofK ′,
order then− 3 diagonals ofτ , for example, sovi vj precedesvi vr for diagonals where
i < j < r andvi vj precedesvr vs for diagonals wherei < r exceptd = v0vn−1 is
always last.d remains inτ ′ butn−2k of the othern−4 are eliminated whenτ collapses
to τ ′ (see Fig. 3). There are

( n−4
n−2k

)
choices for which diagonals are eliminated, each of

which corresponds to a triangulation that collapses toτ ′. Finally, suppose the diagonal

Fig. 3. (i) An example of collapse withn=13 andk=5. The dotted diagonals ofτ disappear in the collapse.
(ii) Two distinct ways the predecessor ofvi vj could be removed in collapse, or precedevi vj in insertion.
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immediately precedingvi vj in τ is eliminated in the collapsing. There are two distinct
ways this can arise for each eliminated diagonal (see Fig. 3), and thus, 2n−2k

( n−4
n−2k

)
distinct

triangulationsτ collapse to each triangulationτ ′ of K ′. Finally the termn/k comes from
the fact thatv0 was made to be an ear; every one of then vertices could play this role
but then each triangulation would be countedk times, once for each ear.

This argument underlies the following simple linear-time algorithm to generate ak
ear triangulation.

Algorithm 3. Rand-ears(k; v0, . . . , vn−1).

1. Rand-Tri(v0, . . . , vk−1)

2. τ ′ ← Add k ears
3. S← uniform

(
(1,...,n−4)

2k−4

) ; label τ ′ with S
4. τ ← insert diagonals from Sc

5. I← uniform (0, . . . ,n− 1)
6. Rotate(I)

To sketch some details, Step 1 randomly triangulates ak-gon. In Step 2 renumbervi →
v2i+1, i = 1, . . . , k, add verticesv2i , i = 1, . . . , k, and diagonalsv2i−1v2i+1, i =
1, . . . , k; this puts ears at thek even number vertices ofτ ′, the other diagonals being
random. In Step 3 diagonalv1v2k−1 is labeledn− 3, the others are labeled by 1≤ j1 <
· · · < j2k−4 ≤ n−4, the 2k−4 elements inS, randomly chosen from 1, . . . ,n−4. Step
4 is done bymerging Sc into S∪ (n− 3). If the current elementr ∈ Sc is larger than the
current elements ∈ S, we advance to the next element ofS. Otherwise an edge isinserted
into τ ′ immediately precedings = vi vj , i < j . Specifically, ifU ← uniform is less
than 0.5 we create a new vertex betweenvi−1 andvi and the corresponding diagonal to
vj ; otherwise a new vertex appears betweenvj−1 andvj and the corresponding diagonal
from vi (see Fig. 3). The details are easily managed inO(n).

5. Final Remarks

This paper studied the behavior of two properties of a random triangulation of a convex
n-gon: (1)1n, the maximal degree; (2)λn, the length of the longest diagonal. The
functions1n andλn correspond to interesting features of binary trees and our results on
triangulations give new information about random trees. Some other points are:

1. Following the idea in Remark 1, asn→∞,

Prob(di = k)→ (k+ 1)2−(k+2) ,

the distribution ofG2, the sum of two independent geometric (1
2) random vari-

ables. It is interesting to wonder whether1n converges in distribution to the limit
distribution of the maximum ofn independent copies ofG2.

2. According to Remark 2,E(di ) = 2(1 − 3/n) for uniform triangulations but
Eβ(d0) = Eβ(dn−1) = 2(logn) in search-tree probability, a real difference be-
tween the two distributions. At the same time, however,E(1n/ logn) → 1 in
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the uniform case and toc > 1 in the other. For the purpose of comparison, some
known properties of random binary trees in the two distributions are:
(a) Height hn, the maximal depth of a node.E(hn) is asymptotic to 2

√
πn in the

uniform case [8] and concentrated about 4.31107 lnn in the other [4].
(b) Leaves. In the limit one expectsn/4 leaves for uniform trees andn/3 for binary

search trees (see [14]).
3. We note that it is easy to generate random triangulations in the search-tree proba-

bility. When constructing the triangulation as in the opening paragraph, just choose
vi uniformly from 1, . . . ,n− 2, etc. The complexity isO(n).

4. An outstanding question concerns the setT(K ) of triangulations of a setK of n
points not necessarily in convex position. As opposed to (0), it is not known how
to count or even to approximate|T(K )|.
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Note added in proof. Gao and Wormald (preprint) recently proved the conjecture in
point 1 of the Final Remarks (Section 5) and sharpened the statements in Theorem 1.


