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Lemma 5: For a givenk, (Jp is a concave function af . [13] Y. I. Han and T. Kim, “Randomized fusion rules can be optimal in dis-
Proof: It suffices to show thangZD < 0. Recalling from the tributed Neyman—Pearson detectol&EE Trans. Inform. Theoryol.
Q% — 43, pp. 1281-1288, July 1997.

proof of Lemma 1, we have [14] Q. Zhang, “Efficient computational algorithms for the design of dis-

tributed detection networks,” Ph.D. dissertation, Syracuse Univ., Syra-

dQp _ dQp /dQp ) cuse, NY, 2000.
dQr —  dA dx ’
Therefore,
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Abstract—We introduce a simple new hypothesis testing procedure,
Since% <0, we have‘f% < 0. Recalling thatd'“(d’\ik’k) > 0,we Wwhich, based on an independent sample drawn from a certain density,
20 ¢ @ - detects which of& nominal densities is the true density closest to, under
have Q2 <0. L' the total variation (L,) distance. We obtain a density-free uniform
exponential bound for the probability of false detection.

The concavity of the ROC for a fixefekout-of-» fusion rule ensures i ]
that the Lagrange multiplier method can be used to uniquely determin&dex Terms—Robust detection, robust hypotheses testing.
the optimal threshold in the case considered here.

. RESuLT

V. SUMMARY A model of robust hypothesis testing may be formulated as follows:

We considered the problem of distributed binary hypothesis testi _f(l)’ ..., f*) be fixed densities OR(_I which are the no_mlna_l den- .
with independent identical sensors. The goal was to find the optinfa| > und_e_k hypotheses. We observe |nfjependerjt and identically dis-
k-out-of fusion rule and the optimal likelihood ratio threshold tesV'bUt,ed (i.1.d.) random vectoer, A’ according to a common
for the sensors according to a performance criterion. fjensn_yf. Under the hy??thes'gf (]_ =1,.... k) the _dengltyf

For the Bayesian detection problem, we showed that the object|ve? distorted version of”” . This notion may be formalized in var-
function possesses the property of quasi-convexity, which secures fiyes Ways. In.thls corregpqndepce, we assume that the true Qen3|ty lies
unique (global) optimum. We then developed a SECANT type of a\{\_{lthln a certaln_total variation distance of the upderlylng p_omlnal den-
gorithm to efficiently compute the optimum. For Neyman—Pearson qally: More preusel’y, we assume that there exists a positive number
tection problem, we showed that the quasi-convexity exists and giv%ﬁCh that for somg € {1, ..., k}
good reason for the use of the Lagrange multiplier method.
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@i : Proof: Without loss of generality, assume thatc H,. Recall

(In case there are several indexes achieving the minimum, choose the
smallest one.) The main result of this correspondence is as follows.

Theorem 1: For anyf € |J\_, H

P{error} < 2k(k — 1)26_“62/2.
lf = gll =2 sup

Fig. 1. The hypothesis class&g; are illustrated here foe = 9 withe = 0 ACRY
onthe leftand > 0 ontheright. The centers of the balls represent the nominal
densitiesf7.

® that by Scheffé’'s theorem half of tHg distance equals the total vari-

® ation distance
A=

{z: f(=)>g(=)} {z: f(#)>g9(>)}

Chere the supremum is taken over all Borel set&®f By Scheffé’

Perhaps the most standard testing method is maximum likelihoo
which accepts thgth nominal densityf?) if

theorem
9 (X0) : / e )
L2 5, forall i 2max || f— [ f -f
L 70X ’ #J- A f, -\
S Al — €
Itis easy to see that this method is not robust in the sense that arbitrarily < f(1> — N e

small deviations from the nominal density may cause a catastrophic
behavior. We provide a simple example in Section Il. In the special

max

x / f(l) / f(]b)

—€

case wheit = 2, aremarkable result of Huber [11] shows that a simple A€
modification of the maximum-likelihood test is optimal in the minimax < max / / f(l)
sense, that is, it minimizes the worst case probability of error in the — AcA
given model. More precisely, Huber’s test uses the modified likelihood )
ratio +%§/f—/f —c
A A
ﬁ max {p min <4, F(X) )} by the triangle inequality. Rearranging the obtained inequality, we get
ol FO(Xy) that
for constants:, ¢’ which depend on the nominal densities. The disad- max / f —/ V< hax / f —/ FfO e
vantage of Huber's test is that the values of these constants are given A A ' A A
implicitly only and determining them may be problematic, especiallyherefore,
whend > 1. Also, Huber’s result does not cover the case 2 and it
does not provide nonasymptotic bounds for the probability of error. P{error} = P{EIJ > 1: max / f(“ — ln A)‘

Other attempts for constructing robust tests involve nonparametric
estimates of the underlying densifyand decisions based on its dis-
tance from the nominal densities (see, e.g., [8], [14]). However, due
to the fact that thd., error of any density estimate is bounded away
from zero for some densities at any sample size (see [2]), it seems un-
likely that the error of these tests can be bounded uniformly for any
fe Uﬁ-’:] H;, or at least such a result seems to be very difficult to
prove.

The purpose of this correspondence is to introduce a new, simple,
explicit testing procedure with a uniform nonasymptotic exponential
bound for the probability of error. For surveys on robust statistics we
refer the reader to [11] and [9].

In order to define the proposed test, introduce the empirical measure

1 n
pa(A) = - Z Ix;ca
=1

wherel denotes the indicator function antl is a Borel set. Letd
denote the collection df(k — 1)/2 sets of the form

Ay ={es SO > 0}, 1<i<i<h

The proposed test is the following: accept hypothésjsf

/ﬂ)ﬂz@‘

max
AcA

/ f(]) — un(A4) ‘ . 111111 vIll(LX

A/fm—mmﬂ

< max
/ f(J) = ‘

A€
; ) _ A
< | [ £ =i}
[ 19 =)
A
— max / f—/ ] < max / £ — pn(A)
A€A | [ 4 A A€A | [ 4

B e
w0 [}
/' £ //,n(A)‘
/ /f(]) +e< mcLX
— max

/f()—u (4){
wslf1- [}

(by the inequality derived above)

/ £ = i A)‘
o))

<(k-1) max P{mdx
AeA

=(k — 1) max P{max
i>1 A€A

<(k-1) n_lax P{max

— max
AcA

Hl&}\

<(k-1) max IF"{

- IIId‘(
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+ (k- 1)P{ max / £ #H(A)‘ Maximum Likelihood Does Not Workilere we show a simple ex-
ACA |4 ample to demonstrate that the maximum-likelihood test does not share
o . . . ol s € the proved property of the proposed test. Indeed, consider the case
AcA | [, 4 2 whenk = 2, and the two nominal densities are standard normal and
- F standard Cauchy densities, that is,
<2(k — 1)Pqmax / f=pn(A)| > =
A€A | [ 4 2 1 2 1
by a double application of the triangle inequalit )= = and fPr) = ——
(by a double app |ca‘|on of the triangle inequality) 2 (1 + 22)
) €
<2(k=1)IA| r,?eafp{ /.4 f- ”"(A)‘ > 5} Assume that the data are distributed according to £ x g, where

< 2k(k - 1)26_"(2/2, the density of the additive noise is Cauchy

1
where in the last step we used Hoeffding’s inequality [10]. O gel) = 7e(1+ (v/0)2)

wherec is a small positive constant. Itis well known (see, e.g., [4]) that
_ [1fM = W g || — 0ase — 0, and, therefore, for a sufficiently small
Methodology: The methodology of the proposed test is close ip ther, distance betweefiandf{"’ can be made arbitrarily small, in
spirit to Yatracos’ minimum distance parametric density estimate, sggrticular| f") — f|| < ||f") = F®||/2 — e. Nevertheless, it is easy
[13], [5]-(7]- to show that for any small, the probability of error of the maximum-

Computation: The hypothesis-testing method proposed above fikelihood detector converges to one. Indeed, on the one hand
computationally quite simple. The sets, ; and the integraly, £’

may be computed and stored before seeing the data. Then one merely 1 D o o)

needs to calculate, (A) for all A € A and compute the test statistics £ , Zlo%f (Xe) o = /f(x) log f*7(«) dx
requiring O(nk* + k*log k) time. In many application = 2. In =t X

these cases, the test becomes especially simple as thedotasgains = log V21 — % / Fla)a? de
just one set.

Robustness:Note that the theorem does not require any assumption
for the nominal densities. (In fact, the result may be formulated in
similar fashion without even assuming the existence of the densities.
The testis robust in a very strong sense: we obtain uniform exponentiaIE{

Il. DISCUSSION

n

= -0

d on the other hand

(=1

bounds for the probability of failure under the sole assumption that the

distorted density remains within a certain total variation distance of the )

nominal density. =—logm — / f(2)log(14 2%) dx
Additive Noise: We illustrate the power of the proposed method on

a very simple example showing that the test has an exponentially small

probability of error if the nominal density is corrupted by an arbitrar}’f‘herefore, the strong law of large numbers implies that for sufficiently

additive noise of a sufficiently small support. Considerominal den- largen, the maximum-likelihood detector errs with probability one.
sities 7", ..., f*) and assume that the observations are distributeo(.l.est'S Based on Density Estimatesn alternative way of per-

acc_:ordlng to one of the nomlnal de_nsn_les corrupted_ by an ado_“t'Yc?rming robust tests is based on estimating the density. Indeed, such
nmse.(‘l;?us, assume thatthe.s are dlsFr|b1u)te.d according to denSItymethods have been proposed in the literature, see [8], [14]. These
f. - fﬁ * 9 w?gre the n(cl);mnal densit ) is now assumed to be tests cannot compete with the simplicity of the proposed method,
Lipschitz (i.e. |/ (x) — f*(y)] < c|v — y| for somec > 0 for gll and no uniform exponential bound for their probability of error is
Y€ H),.s..uppor.tedlon the bounded $etM, ], gnd the density available. However, hypothesis testing based on density estimates may
ofthe ac_idltlve noise is assumed to have supportin the mt_{awalr], be necessary if even larger hypothesis classes need to be considered. A
V\(h_erer IS tho_ught of as a small n_umber. The otker 1 nominal den- stronger notion of robust hypothesis testing is obtained if one requires
sities are _arbltrary. Then, according to the theozre[",;fg}‘i proposed te§d8d testing whenever the true density is closer to the nominal density
correct ‘{V'th probability larger thah— 2k(k — 1)"¢ aslongas han to any other density in the finite collection. Formally, this leads

1f = 71 < Ay — e But to the hypotheses

> —o00.

O = (1] D — Vot d D vt du| doe _ : :
Hf—f —/‘/f (»v—y)g(y)dy—/f (x)g(y) dy| da Hj:{f: Hf_f(f> < min ‘f—f(l) } j=1,....k
L1 o — oy — D ot du de _
s // ‘f (@ =y) = f @) gly) dy de that is, the setél ; form a Voronoi partition of the set of all densities.
Mar This problem may be solved by using a nonparametric estithate
< / . V/C|!/|g(l’/) dy dzx f and acceptindd; if || f,, — || is minimal among th¢ f,, — f||,
oo i =1, ..., k. (Break ties by selecting the smallest index.) A suitable

<2c¢(M 4+ r)r. S ) .
<2e(M A1)y choice is the kernel estimate defined by

Thus, the condition is satisfied#fis so small that

1 n
n(x) = — Ky(z - X;
r < (A —€)/2c¢(M + 7). fnle) " ; e :

This is the only assumption on the noise dengijtgtherwise it may be whereK: R? — R™ is a fixed kernel function withf K =1,h > 0is
completely arbitrary! (Note that boundedness of the suppari®fhiot a smoothing factor, anfl;,(-) = (1/h*)K(-/h). If I is chosen such
a necessary condition; we assumed it to simplify the example.) thath — 0 andnh? — o0 asn — oo, then it is well known (see [4])
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that the estimate is universally consistent, thaEisf. — f|| — 0 for
any density. Also, Devroye [3] shows that for any 0

[10] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,”J. Amer. Statist. Assqa:ol. 58, pp. 13-30, 1963.

[11] P.J. HuberRobust Statistics New York: Wiley, 1981.

[12] L. Le Cam, “Convergence of estimates under dimensionality restric-
tions,” Ann. Statist.vol. 1, pp. 38-53, 1973.

[13] Y. G. Yatracos, “Rates of convergence of minimum distance estimators
and Kolmogorov's entropy,Ann. Statist.vol. 13, pp. 768-774, 1985.
S. M. Zabin and G. A. Wright, “Nonparametric density estimation and
detection in impulsive interference channels—Part II: DetectdEE£E
Trans. Communvol. 42, pp. 1698-1711, Feb./March/Apr. 1994.

P{llfo — fll — Ellfn — fl| > €} < 0_7752/2.

Using these properties, itis easy to see that the testing method based
the kernel density estimate is consistent in the sense that the probabili
of error converges to zero exponentially for AlE Ule H;.Inorder

to show this, suppose thgte H 1, and put

€ = min f—f(j) \ — Hf—f(l) \
Ji>1
Then Linear MMSE Multiuser Receivers: MAI Conditional
- Weak Convergence and Network Capacit
Plersor} <P{3 > 1: ||fu — 7 > | - 1|} J pacty

B ) ) Junshan ZhangMember, IEEE,and

< (k l)r?ffp{‘ fn =1 \ = Hf" f ‘} Edwin K. P. ChongSenior Member, IEEE

< (k= DmaxP {|If = 71+ | £ = 5|

G) Abstract—We explore the performance of minimum mean-square error
> Hf -7 \ —fn — f||} (MMSE) multiuser receivers in wireless systems where the signatures

are modeled as random and take values in complex space. First we study
the conditional distribution of the output multiple-access interference
(MAI) of the MMSE receiver. By appealing to the notion of conditional
weak convergencewe find that the conditional distribution of the output
MAI, given the received signatures and received powers, converges in
probability to a proper complex Gaussian distribution that does not
depend on the signatures. This result indicates that, in a large system, the
. . ) ) _ output interference of the MMSE receiver is approximately Gaussian with
where the last inequality follows from the previously mentioned imigh probability, and that systems with MMSE receivers are robust to the
equality of Devroye [3]. The consistency 6f assures that for a suf- randomness of the signatures. Building on the Gaussianity of the output
ficiently large n, E||f, — f|| < e/4 and for suchu, P{error} < interf_erence, we then t_ake the qualitylof service (QoS_) requirerr_\ents_ as

o —ne2/32 H inceE _ tend t ¢ meeting the S|gna_|-to-|nt¢rference ratio (SIR)'constramts and |_dent|fy
(k ] 1)_6 - However, sincé|| f» — f|| may .en 0 zgro a _an the network capacity of single-class systems with random spreading. The
arbitrarily slow rate (see [2]), the error exponent is not uniform: it devetwork capacity is expressed uniquely in terms of the SIR requirements
pends onf. It is known (see [1], [12]) that for the hypothesHs itis and received power distributions. Compared to the network capacity
impossible to construct a test with a uniform error exponent. corresponding to the optimal signature allocation, we conclude that at
the cost of transmission power, the gap between the network capacity
corresponding to optimal signatures and that corresponding to random
signatures can be made arbitrarily small. Therefore, from the viewpoint
of network capacity, systems with MMSE receivers are robust to the
The authors wish to thank the reviewers for drawing their attentioandomness of signatures.

to relevant literature.

< (B =DP{2[lfn — fll = €}
= (7’4’ - 1>P{||fn - f” - |E||fn - f”

>e/2—E|fn = flI}
< (k- 1)677’/2([6/27"5”f77,*fH]+)2
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