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Lemma 5: For a givenk, QD is a concave function ofQF .
Proof: It suffices to show thatd Q

dQ
� 0. Recalling from the

proof of Lemma 1, we have

dQD

dQF

=
dQD

d�

dQF

d�
= er(�; k):

Therefore,

d2QD

dQ2
F

=
der(�; k)

dQF

=
der(�; k)

d�

dQF

d�

= er(�; k) �
dr(�; k)

d�

dQF

d�
:

SincedP

d�
� 0, we havedQ

d�
� 0. Recalling thatdr(�; k)

d�
� 0, we

haved Q

dQ
� 0.

The concavity of the ROC for a fixedk-out-of-n fusion rule ensures
that the Lagrange multiplier method can be used to uniquely determine
the optimal threshold in the case considered here.

V. SUMMARY

We considered the problem of distributed binary hypothesis testing
with independent identical sensors. The goal was to find the optimal
k-out-of-n fusion rule and the optimal likelihood ratio threshold test
for the sensors according to a performance criterion.

For the Bayesian detection problem, we showed that the objective
function possesses the property of quasi-convexity, which secures the
unique (global) optimum. We then developed a SECANT type of al-
gorithm to efficiently compute the optimum. For Neyman–Pearson de-
tection problem, we showed that the quasi-convexity exists and gives
good reason for the use of the Lagrange multiplier method.
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A Note on Robust Hypothesis Testing

Luc Devroye, László Györfi, Fellow, IEEE, and
Gábor Lugosi, Member, IEEE

Abstract—We introduce a simple new hypothesis testing procedure,
which, based on an independent sample drawn from a certain density,
detects which of nominal densities is the true density closest to, under
the total variation ( ) distance. We obtain a density-free uniform
exponential bound for the probability of false detection.

Index Terms—Robust detection, robust hypotheses testing.

I. RESULT

A model of robust hypothesis testing may be formulated as follows:
let f (1); . . . ; f (k) be fixed densities ond which are the nominal den-
sities underk hypotheses. We observe independent and identically dis-
tributed (i.i.d.) random vectorsX1; . . . ; Xn according to a common
densityf . Under the hypothesisHj (j = 1; . . . ; k) the densityf
is a distorted version off (j) . This notion may be formalized in var-
ious ways. In this correspondence, we assume that the true density lies
within a certain total variation distance of the underlying nominal den-
sity. More precisely, we assume that there exists a positive number�
such that for somej 2 f1; . . . ; kg

f � f (j) � �j � �

where

�j
def
= (1=2)min

i 6=j
kf (i) � f

(j)k:

Herekf � gk = jf � gj denotes theL1 distance between two den-
sities. Thus, we formally define thek hypotheses by (see Fig. 1)

Hj = f : f � f
(j) � �j � � ; j = 1; . . . ; k:

The goal is to construct tests which, with high probability, assign to
the observed sample the indexj of the correct nominal density, that is,
determines to which hypothesisHj the densityf belongs to.
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Fig. 1. The hypothesis classes are illustrated here for = 9 with = 0

on the left and 0 on the right. The centers of the balls represent the nominal
densities .

Perhaps the most standard testing method is maximum likelihood,
which accepts thejth nominal densityf (j) if

n

`=1

f (j)(X`)

f (i)(X`)
> 1; for all i 6= j:

It is easy to see that this method is not robust in the sense that arbitrarily
small deviations from the nominal density may cause a catastrophic
behavior. We provide a simple example in Section II. In the special
case whenk = 2, a remarkable result of Huber [11] shows that a simple
modification of the maximum-likelihood test is optimal in the minimax
sense, that is, it minimizes the worst case probability of error in the
given model. More precisely, Huber’s test uses the modified likelihood
ratio

n

`=1

max c; min c0;
f (1)(X`)

f (2)(X`)

for constantsc; c0 which depend on the nominal densities. The disad-
vantage of Huber’s test is that the values of these constants are given
implicitly only and determining them may be problematic, especially
whend > 1. Also, Huber’s result does not cover the casek > 2 and it
does not provide nonasymptotic bounds for the probability of error.

Other attempts for constructing robust tests involve nonparametric
estimates of the underlying densityf and decisions based on its dis-
tance from the nominal densities (see, e.g., [8], [14]). However, due
to the fact that theL1 error of any density estimate is bounded away
from zero for some densities at any sample size (see [2]), it seems un-
likely that the error of these tests can be bounded uniformly for any
f 2 k

j=1 Hj , or at least such a result seems to be very difficult to
prove.

The purpose of this correspondence is to introduce a new, simple,
explicit testing procedure with a uniform nonasymptotic exponential
bound for the probability of error. For surveys on robust statistics we
refer the reader to [11] and [9].

In order to define the proposed test, introduce the empirical measure

�n(A) =
1

n

n

i=1

X 2A

where denotes the indicator function andA is a Borel set. LetA
denote the collection ofk(k � 1)=2 sets of the form

Ai; j = x: f (i)(x) > f (j)(x) ; 1 � i < j � k:

The proposed test is the following: accept hypothesisHj if

max
A2A A

f (j) � �n(A) = min
i=1; ...; k

max
A2A A

f (i) � �n(A) :

(In case there are several indexes achieving the minimum, choose the
smallest one.) The main result of this correspondence is as follows.

Theorem 1: For anyf 2 k
j=1 Hj

ferrorg � 2k(k � 1)2e�n� =2:

Proof: Without loss of generality, assume thatf 2 H1. Recall
that by Scheffé’s theorem half of theL1 distance equals the total vari-
ation distance

kf � gk =2 sup
A� A

f �
A

g

=2
fx: f(x)>g(x)g

f �
fx: f(x)>g(x)g

g

where the supremum is taken over all Borel sets ofd. By Scheffé’s
theorem

2max
A2A A

f �
A

f (1) � f � f (1)

��1 � �

� 1
2

f (1) � f (j) � �

= max
A2A A

f (1) �
A

f (j) � �

� max
A2A A

f �
A

f (1)

+max
A2A A

f �
A

f (j) � �

by the triangle inequality. Rearranging the obtained inequality, we get
that

max
A2A A

f �
A

f (1) � max
A2A A

f �
A

f (j) � �:

Therefore,

ferrorg = 9 j > 1: max
A2A A

f (j) � �n(A)

< max
A2A A

f (1) � �n(A)

� (k � 1)max
j>1

max
A2A A

f (j) � �n(A)

< max
A2A A

f (1) � �n(A)

= (k � 1)max
j>1

max
A2A A

f (j) � �n(A)

�max
A2A A

f �
A

f (1) < max
A2A A

f (1) � �n(A)

� max
A2A A

f �
A

f (1)

� (k � 1)max
j>1

max
A2A A

f (j) � �n(A)

�max
A2A A

f�
A

f (j) + � < max
A2A A

f (1)��n(A)

� max
A2A A

f �
A

f (1)

(by the inequality derived above)

� (k � 1)max
j>1

max
A2A A

f (j) � �n(A)

� max
A2A A

f �
A

f (j) >
�

2
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+ (k � 1) max
A2A A

f (1) � �n(A)

� max
A2A A

f �
A

f (1) >
�

2

� 2(k� 1) max
A2A A

f � �n(A) >
�

2

(by a double application of the triangle inequality)

� 2(k� 1)jAjmax
A2A A

f � �n(A) >
�

2

� 2k(k� 1)2e�n� =2;

where in the last step we used Hoeffding’s inequality [10].

II. DISCUSSION

Methodology: The methodology of the proposed test is close in
spirit to Yatracos’ minimum distance parametric density estimate, see
[13], [5]–[7].

Computation: The hypothesis-testing method proposed above is
computationally quite simple. The setsAi; j and the integrals

A
f (j)

may be computed and stored before seeing the data. Then one merely
needs to calculate�n(A) for all A 2 A and compute the test statistics
requiringO(nk2 + k2 log k) time. In many applicationsk = 2. In
these cases, the test becomes especially simple as the classA contains
just one set.

Robustness:Note that the theorem does not require any assumption
for the nominal densities. (In fact, the result may be formulated in a
similar fashion without even assuming the existence of the densities.)
The test is robust in a very strong sense: we obtain uniform exponential
bounds for the probability of failure under the sole assumption that the
distorted density remains within a certain total variation distance of the
nominal density.

Additive Noise: We illustrate the power of the proposed method on
a very simple example showing that the test has an exponentially small
probability of error if the nominal density is corrupted by an arbitrary
additive noise of a sufficiently small support. Considerk nominal den-
sitiesf (1); . . . ; f (k) and assume that the observations are distributed
according to one of the nominal densities corrupted by an additive
noise. Thus, assume that theXi ’s are distributed according to density
f = f (1) ? g, where the nominal densityf (1) is now assumed to be
Lipschitz (i.e.,jf (1)(x)� f (1)(y)j � cjx � yj for somec > 0 for all
x; y 2 ), supported on the bounded set[�M; M ], and the densityg
of the additive noise is assumed to have support in the interval[�r; r],
wherer is thought of as a small number. The otherk� 1 nominal den-
sities are arbitrary. Then, according to the theorem, the proposed test is
correct with probability larger than1� 2k(k� 1)2e�n� =2 as long as
kf � f (1)k � �1 � �. But

f � f (1) = f (1)(x� y)g(y) dy � f (1)(x)g(y) dy dx

� f (1)(x� y)� f (1)(x) g(y) dy dx

�
M+r

�M�r

cjyjg(y) dy dx
� 2c(M + r)r:

Thus, the condition is satisfied ifr is so small that

r � (�1 � �)=2c(M + r):

This is the only assumption on the noise densityg, otherwise it may be
completely arbitrary! (Note that boundedness of the support ofg is not
a necessary condition; we assumed it to simplify the example.)

Maximum Likelihood Does Not Work:Here we show a simple ex-
ample to demonstrate that the maximum-likelihood test does not share
the proved property of the proposed test. Indeed, consider the case
whenk = 2, and the two nominal densities are standard normal and
standard Cauchy densities, that is,

f (1)(x) =
1p
2�

e�x =2 and f (2)(x) =
1

�(1 + x2)
:

Assume that the data are distributed according tof = f (1) ? gc, where
the density of the additive noise is Cauchy

gc(x) =
1

�c(1 + (x=c)2)

wherec is a small positive constant. It is well known (see, e.g., [4]) that
kf (1)�f (1)?gck ! 0 asc! 0, and, therefore, for a sufficiently small
c, theL1 distance betweenf andf (1) can be made arbitrarily small, in
particular,kf (1) � fk < kf (1) � f (2)k=2� �. Nevertheless, it is easy
to show that for any smallc, the probability of error of the maximum-
likelihood detector converges to one. Indeed, on the one hand

1

n

n

`=1

log f (1)(X`) = f(x) log f (1)(x) dx

=� log
p
2� � 1

2
f(x)x2 dx

=�1

and on the other hand

1

n

n

`=1

log f (2)(X`) = f(x) log f (2)(x) dx

=� log � � f(x) log(1 + x2) dx

>�1:

Therefore, the strong law of large numbers implies that for sufficiently
largen, the maximum-likelihood detector errs with probability one.

Tests Based on Density Estimates:An alternative way of per-
forming robust tests is based on estimating the density. Indeed, such
methods have been proposed in the literature, see [8], [14]. These
tests cannot compete with the simplicity of the proposed method,
and no uniform exponential bound for their probability of error is
available. However, hypothesis testing based on density estimates may
be necessary if even larger hypothesis classes need to be considered. A
stronger notion of robust hypothesis testing is obtained if one requires
good testing whenever the true density is closer to the nominal density
than to any other density in the finite collection. Formally, this leads
to the hypotheses

Hj = f : f � f (j) < min
i6=j

f � f (i) ; j = 1; . . . ; k

that is, the setsHj form a Voronoi partition of the set of all densities.
This problem may be solved by using a nonparametric estimatefn of
f and acceptingHj if kfn� f (j)k is minimal among thekfn� f (i)k,
i = 1; . . . ; k. (Break ties by selecting the smallest index.) A suitable
choice is the kernel estimate defined by

fn(x) =
1

n

n

i=1

Kh(x�Xi)

whereK: d ! + is a fixed kernel function with K = 1,h > 0 is
a smoothing factor, andKh(�) = (1=hd)K(�=h). If h is chosen such
thath! 0 andnhd ! 1 asn ! 1, then it is well known (see [4])
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that the estimate is universally consistent, that is,kfn � fk ! 0 for
any density. Also, Devroye [3] shows that for any� > 0

fkfn � fk � kfn � fk � �g � e�n� =2:

Using these properties, it is easy to see that the testing method based on
the kernel density estimate is consistent in the sense that the probability
of error converges to zero exponentially for allf 2 k

j=1Hj . In order
to show this, suppose thatf 2 H1, and put

� = min
j>1

f � f (j) � f � f (1) :

Then

ferrorg � 9 j > 1: fn � f (1) � fn � f (j)

� (k � 1)max
j>1

fn � f (1) � fn � f (j)

� (k � 1)max
j>1

kfn � fk+ f � f (1)

� f � f (j) � kfn � fk

� (k � 1) f2kfn � fk � �g

=(k � 1) fkfn � fk � kfn � fk

� �=2� kfn � fkg

� (k � 1)e�n=2([�=2� kf �fk] )

where the last inequality follows from the previously mentioned in-
equality of Devroye [3]. The consistency offn assures that for a suf-
ficiently largen, kfn � fk < �=4 and for suchn, ferrorg �

(k � 1)e�n� =32. However, since kfn � fk may tend to zero at an
arbitrarily slow rate (see [2]), the error exponent is not uniform: it de-
pends onf . It is known (see [1], [12]) that for the hypothesesHj it is
impossible to construct a test with a uniform error exponent.
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Linear MMSE Multiuser Receivers: MAI Conditional
Weak Convergence and Network Capacity
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Abstract—We explore the performance of minimum mean-square error
(MMSE) multiuser receivers in wireless systems where the signatures
are modeled as random and take values in complex space. First we study
the conditional distribution of the output multiple-access interference
(MAI) of the MMSE receiver. By appealing to the notion of conditional
weak convergence, we find that the conditional distribution of the output
MAI, given the received signatures and received powers, converges in
probability to a proper complex Gaussian distribution that does not
depend on the signatures. This result indicates that, in a large system, the
output interference of the MMSE receiver is approximately Gaussian with
high probability, and that systems with MMSE receivers are robust to the
randomness of the signatures. Building on the Gaussianity of the output
interference, we then take the quality of service (QoS) requirements as
meeting the signal-to-interference ratio (SIR) constraints and identify
the network capacity of single-class systems with random spreading. The
network capacity is expressed uniquely in terms of the SIR requirements
and received power distributions. Compared to the network capacity
corresponding to the optimal signature allocation, we conclude that at
the cost of transmission power, the gap between the network capacity
corresponding to optimal signatures and that corresponding to random
signatures can be made arbitrarily small. Therefore, from the viewpoint
of network capacity, systems with MMSE receivers are robust to the
randomness of signatures.

Index Terms—Central limit theorem, conditional weak convergence,
martingale difference array, minimum mean-square error (MMSE)
receiver, proper complex random variable, random signature.

I. INTRODUCTION

Consider aK-user communication system equipped with linear
minimum mean-square error (MMSE) multiuser receivers.1 We focus
primarily on the following discrete-time synchronous baseband model
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