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Abstract. In this paper, we study random minimax trees of the incremental type .
These are complete b--ary trees with n levels of edges, in which we associate independent
identically distributed random variables with the edges . The value of a leaf is the sum
of the edge values on the path to the root . The value of each internal node is obtained
at alternating levels by taking the minimum or maximum value of the values of the
children . We are interested in the behavior of the value of the root, Vn . For bounded
generic edge random variable X, we show that Vn/n tends to a limit almost surely as
n --- oo. The limit is a highly nonlinear function of the distribution of X . For the case
of a Bernoulli random variable with parameter p, the limit is a continuous function that
is zero for p near zero, one for p near one, 1/2 for p in an interval around 1/2, and
nonlinear inbetween . A comparison is made, with a random xninimax tree model studied
by Pearl, in which the leaf values are independent .

Keywords and phrases . Game tree. Minimax tree . Probabilistic analysis .
Asymptotic behavior . Random trees .

1 . Introduction . Random MIN-MAX trees play a major role in the
understanding of search strategies in game trees . They can be used to
explain why certain search algorithms are preferable in some situations.
For example, Pearl [Pearl8O] considered a complete b-any tree T with r
levels of edges and associated with the leaves independent random variables
all distributed as a given random variable X . To each internal node u with
A its set of children, he associated a value V(u) according to the standard
MIN-MAX rule :

f m~ear {V(v)}(1)

	

v (u) ~

	

t
m1nvEA,~

{V(v)}

The parity of a level is with respect to distance from the root, not the leaves .
The root is thus a maximizing node in all cases . The values of the nodes
thus obtained should be thought of as values obtained by an evaluation
function in a game . The trees obtained in this manner will be called Pearl
trees. Pearl continued the study of this model in his book {Pearl84], in
which several search alorithms are compared with respect to their average
case behavior. The simplicity of Pearl's model leads to a beautiful and
uncluttered analysis. Some results are quite striking : for example, if Vn is
the value of a root node n levels removed from the leaf level, and if the
generic random variable X is uniformly distributed on [4, 1], then

lim V2n = 1 --- b almost surely ;

lim V,+1 --- b almost surely ,
n --~ oa
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where b is the positive solution of x b + x -- 1 = 0 . For b = 2, eb
- 1)f2 = 0 .518 . . . is related the golden ratio . If X has distribution~

function ', one can obtain the correct limit result from this by applying
the probability integral transform .

The limiting behavior of Vn depends upon whether the bottommost
operation is a MIN or MAX . Hence the disturbing bi-asymptotic result
mentioned above . If we had always started with a MIN operation from the
leaf level up, then V, would not have oscillated. Nau [Nau82a,Nau82b]
pointed out this pathology in Pearl's model. It can all be traced back to
the independence assumption for the leaf values . Incremental models are
more responsive to this criticism . They effectively incorporate the notion
that siblings in the tree should have highly correlated values : for an early
survey, we refer to Newborn [Newb77] . Knuth and Moore {KM75J and
Fuller [Newb77] have studied particular models of this kind . In this paper,
we follow the model developed by Nau {Nau82a,Nau82b,Nau83] : with every
edge in a b--ary complete tree T with n levels of edges, we associate an
independently drawn random variable distributed as X . A leaf is given as
value the sure of the edge values found on the path from the leaf to the
root. Values of internal nodes are obtained by the rules laid out in (1) . We
take the liberty of calling our trees incremental trees, even though authors
such as Nau [Nau82a,Nau82b] reserve this terminolgy for broader classes
of trees .

The main question here is : how does the root's value (1J) vary with
n? The answer is both interesting and to some extent surprising . In dis-
covering the answer, we will learn a lot about the rich structure of the
tree. In any case, even for the simplest kind of edge random variable X,
the analysis is much more involved than for the Pearl trees . Besides the
general incremental tree with edge random variable X, we will also study
the informative Bernoulli tree, which is an incremental tree in which . ` is .
a Bernoulli random variable with

P{X= 1}=1--P{X-o}=p .

The first reassuring observation is that the oscillatory behavior of Vn seen
for Pearl trees has disappeared. Our main result states that for all non-
negative edge variables X, there exists a constant V(X) such that

lam - = V(X) almost surely .
n-+oo n

This result confirms that the root's value increases linearly with n, the
number of levels . This was to be expected, since with X .. 1, we would
have V, n . We would of course like to know how V(X) is related to
X . The relationship with the distribution of X is spectacularly nonlinear .
For example, for Bernoulli trees with X Bernoulli (p), it is not true that
V(X) p, even though nearly all leaf values are very close to np . Consider
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now Pearl trees with n levels and in which leaf values are i .i.d . binomial
(n, p) with p E (0,1) fixed . We have seen above that the root's value is
either the eb or 1 --- b quantile of the leaf distribution . For the binomial
( n, p) distribution, both converge rapidly to rap, and therefore, Vn 1n is very
close to p. This difference in behavior shows that incremental models are
much more colorful and structurally interesting .

For the Bernoulli model in particular, we will give more details about
the nonlinear behavior of V(X) as a function of p . For example, when p
is near zero, v(X) = 0 . In this case, it will be shown that V has a limit
distribution function F00

lira P{ V2ri C i} = F00 (i) , i ~ O .fl-+00
For p > c, which is a fixed threshold depending upon b only, the behavior of
V changes abruptly, as Vn starts to grow linearly with n : V(X) > Q . The
limit value v(X) varies nonlinearly with p . While the limit is continuous
in p, it is constant and equal to 112 on [/3, 1 -- /3], an interval centered at
112 . As b --- co, this central interval extends to (4, 1), making the root's
value basically independent of p .

We will also establish how close V is to ET/ .. The results in this paper
are based upon the thesis of the second author [Karn92] . They are a first
limited step towards the understanding of incremental models . Hopefully,
the methods used below will be useful in the study of the performance of
search algorithms on incremental trees . For more details and more elabo-
rate simulations than those reported here, we refer to the thesis .

2. Another construction of the incremental model . We can
look at the incremental model with edge random variable X in an equiva-
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lent manner that is better suited for analysis . Again, we consider an n-level
complete b-ary tree T . Let u be an internal node, and let A u be the set
of its children . For all v E Au , we associate with the edge (u, v ) an in-
dependent drawing E(u, v ) of a given random variable X . Let F be the
distribution function of X

F(x) - P{X < x} .

With each node u we associate a value according to the following recurrence :
if u is a leaf, then V (u) - 0 . The level of a node is determined by its
distance from the leaf level . For an internal node u we define

(2) V(u) - max„Eq u {V(v) + E(u, v)} if a at even level
min„Equ {V(v) -F E(u, v)} if u at odd level

All nodes at path distance n from the leaf level are independent and iden-
tically distributed. A generic random variable of this kind is denoted by
• . It is easy to see that this is the value of the root of a tree of height
n which follows an incremental model with edge distribution F . Thus,
•

	

4 . Clearly, we have the following distributional identities :

z m ax1

	

b {V_1, j + X5} if n is even
mine < b {V _ 1 ,1 + X~ } if n is odd

where X, denotes an independent copy of the random variable X, and
• _ i j denotes an independent copy of V_1 . Let F„ be the distribution
function of V

Fn (x)- P{V„ < x} .

Clearly, we see that

Fc(z)= l o ifi<Q
1 rf2~ o

When X is a continuous random variable, the distribution function of
V2,_1,-+-X1 is the convolution of F and Fen _ 1 . Thus, we have the following
relations :

(3)

F2(x)

	

_ (fF2_1(x_t)dF(t)) b ,n
F2 +1(x) = 1 - (l - fF2(x„- t)dF(t)) b .

When X is an integer-valued random variable, and f is the discrete prob-
ability density (f(j) = P {X =

b
F2 (i)

	

_ (

	

f(j)~j ~~~ 1'2n-1(z - i))
b

(4)

	

F21(i) =1 - (1 - ~~ f(j) F2ri(i - j)) .
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3 . Limit of Fz,.i (O) as n tends to infinity. The behavior of incre-
mental trees when the edge random variables are mostly zero is peculiar
and forms the basis of further analysis in future sections . We assume that
X is an integer-valued random variable . Let F be the distribution func-
tion of X and /c be the smallest non-zero value taken by X. We define
p = P {X > 9} = F (k) . Then V is clearly stochastically bigger than k
where 1ri is the root's value of the Bernoulli tree with parameter p . We
prove the following theorem .

THEOREM 1 . For all b there exists a E (0,1) such that, for p E [0 ,a],

urn F2(0) > 0,Ti -oO

lira F2+1(0) > 9 .

lim F2(O) = lim F2 +1(O) = 0 .
n --; cv

	

n -* oo

a C 1 ---- $~` 1 b+ 1 b-p o .

Proof. We first prove Theorem 1 for X Bernoulli(p) . Then using the remark
given at the beginning of the chapter the theorem follows immediately for
general discrete positive random variable . Let p E [0,1) . Use recurrences
(4) for i = 0 :

Fo (o) = 1,

F'2n(4)
= C

(1 -P)F'2 ri -1(0)J b ,

F'2n+1(0) _

	

(1-(1-p)F2(o))n
b

Combining all this, we note that for n > 1,

a
F2(O) _ (1 _) b 1 - (1 -(1 - p)F2ri _2(0)} b l

b
where Go(x) _ (1 - p) b (1 - (1 - (1 - p)x) b ) . This is a simple functional
iteration, the solution of which depends upon the behavior of the mapping

Go . Go(x) is an order b2 polynomial that is a strictly increasing mapping :

[0,1] -a [0, 1], since Go(0) = 0 and Go(1) < 1 . Then F2s (0) is decreasing
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and converges to Lo, the greatest fixed point on [0,1] . Define the set of p
such that Go(x) has a non-zero fixed point on [0,1] :

r = {p E I~~ 1)ILo > 4} .

Define also

(x,p) =
Go(x

x
) - x

h

As Go(0) = 0, h is a (b2 -- 1)-th order polynomial function of p and x . As
G~ (0) = 0, the derivative of Go (x) -- x is equal to --1 at x = D, and thus
zero is a simple root of Go (x) - x and it is not a root of h . Thus we have,

I' ={p E [0,1] Jh (x, p) has a root in [0 , 1]} .
Since h is continuous, the inverse image of {0} is a closed set of ~2 , and
I' too is a closed set. Since Go is decreasing in p, h is also decreasing in
p . We also have that 0 E I' since h(1, 0) = 0 . We will prove that there
exists a E RJR such that I' _ [0, a] . We already know that I' is a closed set
containing zero . Thus, we just have to prove that I' is convex . Assume
that p E I' . Thus there exists Lo > 0 such that h(Lo, p) = 0 . Then for all
p' E (0, p] we have,

h(Lo, p') ? 0, h(1, p') C 0 .

Thus h(x, p') has a non-zero root in [Lo , l] and p' E r . This implies that r
is convex. Thus Theorem alphatheo is proved for p C a .

G0(x) for b=2 and p between 0 an 0 .1 . F2n(O) far p =O to p=O. l, b=2 .

If p > a then Go has only zero as fixed point . Thus F2i (0) converges
to zero . We get similar results with F2s +1(0) . It tends to a positive limit
if an only if p E [0, a] . These facts can be shown using

F'2n+1(0) = 1 - (1 - (1 - p)F2„(0 )) b .

We still have to prove that a > 0 . For p = 0, we have

Go(x) = (1-(1-x),b~ b Go(1)=1, G(1)=0<

	

o1.

4



As Go is differentiable and Go(1) = o, there exists 0 C y C 1 such that
Go (y) > y . And by continuity of Go in p, there exists an e > a such that
for all p C e, Go (y) > y . This implies that for p C e, Go has a fixed point
on (0, 1) and then we have a > e > o . Thus the first part of Theorem 1 is
proved .

For general b ~ 2, we derive an upper bound for a . We have

O(x) = Qb 1 1 -(1- qx) b 1

~ qb (l - (1 - qx) b )
< qb (l - (1 - bqx))

bqb+ 1 x .

Thus if bqb+l < 1, Go(x) < x for all x > 0 . This implies that it
have a non-zero fixed point and thus p .> a . Thus we have

a C 1 --

This implies that a tends to zero when b tends to infinity.

	

0
REMARK 1 . For b=2,

4. The main theorem of convergence . THEOREM 2 . For the in-.
cremental tree with bounded edge variable X, EV /rz converges to a finite
Brit V(X) as n tends to infinity .

The proof will be spread over the next two sections . Assume without
loss of generality that for some finite p, 0 C X p . It is helpful to
introduce an associated tree T' in which we introduce new node values
V' (u) . However, at every node, we force V' (u) ~ V(u) . First fix the
integers N ~ 1 and k ~ 1 . The leaves of T' have value zero . At any level
i that is not a multiple of N, we follow the standard rules (2) as for an
incremental tree with edge variable ' . If i is a multiple of N, say i =.. IN,
then we set for any node u at level i

and,

W(u) _

RANDOM MINIMAX GAME TREES
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f max„ E A~ {V'(v) -I' E(u, v)}
1 minvEAu {V'(v) + E(u, v)}

b

cannot

if i is even
if i is odd '

(1EVN + (21- 1)kµ if LV(u) < IEVN + (21- 1)kµ
0o if W(u) > lEVnr + (21- 1)kµ
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Note that many nodes may have the value infinity, we call T' the (k, N)
associated tree . Let be the random variable defined as the root value
of such a tree with n levels of edges. Note that for all nodes at levels
that are multiple of N, the values of V'(u) are either ao or a given fixed
finite value that is the same at that level . This device already hints at the
behavior of incremental trees : all nodes at a given level have approximately
equal values no serious imbalances occur . The entire paper rests on three
technical inequalities that deserve of a section of their own .

5 . The fundamental inequalities . The first result states that it is
"doubly exponentially" unlikely that the root of a Pearl tree with Bernoulli
leaf values takes the value one, if the Bernoulli parameter is small enough .

LEMMA 1 . Let T be a b ..ary Pearl tree with Bernoulli (q) leaf values,
where

def 1

	

bq<~ . 2 b-

Then, regardlesss of whether we begin with either MIN or MAX nodes, and
regardless of the parity of n,

P'{Vn = 1} C

Proof. Vn is maximal if we begin with a MAX level. For a leaf value Vo,
we have P {Vo = 1 } = q . Define p,. = P { Vn = 1} . Then the following
recursion holds : pa = q, and

This yields

P2n = (1 1
-(1 - p2n_2) b ) C

(bp2_2) b .
n

b'h+ l b'~pen C b

	

q

For per+ 1 we get

r-~ bn ~

	

bn-~1 bnpen+1 C 1 -- 1 - b
b

1 q

	

C bb

	

q .

Let q such that bb q C i . Then2

pen C 2` bn , and Pen-i-1

and in general, regardless of whether we start with a MIN or a MAX level,

Pn C

0
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The second technical result establishes quite simply that V / is close to
EVn in all circumstances .

LEMMA 2 . Let 0 C X C p in a random incremental tree . For all E > 0,

P {(V~ ---- EVn ~ E C 2e_2t2/'n~`~ .

.Proof. At the ith level of edges, starting from the topmost level, we find
b= independent edge values . These are collected in a random vector U1 .
Clearly then, V (u) = f(U1, . . ., U,) for some function f . Furthermore, if
Uz . is replaced by a different vector U3 , V(u) changes by at most p . Thus,
we can apply the McDiarmid's inequality (1989) [McDi89} : for all e > 0,

(5)

	

P {IVn - EVn ? } ~ 2e~ ~~
21 ' 3

0
Our third inequality is fundamental in proving that Vn increases about

linearly in n . It states that a node at level IN has a value not much larger
than I times the value of a node at level 11 . The explicit non-asymptotic
nature of the bound will be helpful as well .

LEMMA 3 . Let 0 C X C p in a random incremental tree . For N large
enough and for all I > 9,

2/a

	

defP {VIN ~ IEVN + (2l -- 1)kp} C b~1T-213 b 2_'+2e 2 '13

	

N -- R(b, N),

where k = 1N2"31 . Finally for all e > 0 there exists an N such that for all
n>N,

P { IVn 1EVN I ~(2l- 1)kp + Np} C 6,

where 1 = [n/Nj and Ic = 1N2/31 .
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Proof. Assume that the tree has n . IN levels. We consider the (k, N) as-
sociated tree with k _ 1N2/31 . Let N be so large that R(b, N) < (1/2)b' .b
We prove by induction that for such N and for all i > 1,
(6)

	

P{1' 11 - oo} < R(b, N) .
For i = 1, we obtain

P {VN = oo} - P {VN > EVN+ kµ} ,
< 2e-2µ)21N (according to (5))
< 2e-2N113

R(b, N) .

Now we assume that p _ _ 1)N = cx C R(b, N) . The nodes at level iN~
are i .i .d . distributed as N . Let T' be an associated tree with iN levels
and s its root node. Then look at the in C N levels of this tree from depth
N - m to depth N . This part consists of bN ~` rn--level subtrees as shown
in the next figure . Let T, be one of these subtrees and let Vm be its root .
Thus V' (vm ) is distributed as V i_ 1 N m . The leaves w of Tm are nodes of
T at level (i - 1)N . Thus their values (V'(w)) are bi-valued i .i .d. random
variables distributed as Va ~ l .

f

We assign to each leaf node w of T,,, a value V"(w) as follows :

cxo if V'(w) = o0
IO if V'(w) < oo

And to each internal node u of T,,, we assign a value V"(u) using the
MIN-MAX rules 1 :

V"(u)

V"(w) _

f max„EgY {V"(v)J' if u is a MAX node of T'
1 minvEA„ {V"(v)} if u is a MIN node of T'
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Then V"(v,,,) is distributed as the root of a m-level b-ary Pearl tree, where
the leaves take value oo with probability q = P {V"(w) = co}. The bottom
level is a NtIty or a MAX according to the parity of (i - 1)N . Thus as q -
P {V"(w) - oo} = P {v_ 1)N

	

~== oo} < R(b, N) < (1/2)b_b, by Lemma 1
about Pearl trees,

P {V"(v)m = cx C b2_
blm12J

Let u be an internal node of Tm . As it is not at a level that is a multiple
of N in T', V' (u) is computed with the standard rules of the incremental
model . Thus V' (u) is infinity if and only if V" (u) is infinity . If V "(Vm ) - a ,
then

(7)

Thus,

V'(v,,,) < (i - 1)EVN -F (2i - 3)kµ + mµ.

P {V'(v)m = oo} <

Furthermore we have
def

Qim -= P { V ' (Vm ) -= OD for at least one node v„ at depth N -- m from the top of T'

C bNrm b2_b
~m/2l .

Now we take rra = k = 1N2/31 . If there is no infinity node at depth
N - k in T', then each V'(v,) is less than (i - 1)EVN + (2i --- 3)k1u + k ,Lc,
and V'(s) is stochastically less than V' (v) + VN . Thus

P {V11 = oo} P {V'(s) > iEVN + (2i - 1)kµ}

•

	

Qk + P{(i - 1)EVN +(2i - 3)kp+kµ + VN

> iEVrr + (2i - 1)kµ}

•

	

Qk+P{VN>EVN+kp}
2/3

•

	

bN-Na"3 b 2-b-1 +2e-2Nl'g

= R(b, N)

C

Thus the induction proof of (6) is finished and we have

P {VEN > IEVN + (21- 1)kµ} < R(b, N) .

Next, we are left with a minor cleanup to handle the case when n is
not a multiple of N . Now we consider 6-ary incremental trees with n levels,
n not a multiple of N, and we set 1 = Lr] . Using 7 with m = n -1 N < N
we get

P {U„ > IEVN + (21- 1)kµ -}- mµ} < P {v"(v) „+= oo} < b2-b1"`12~
.
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Thus if N >m> N114 we have,

(8)

	

{Vn - lEVN + (2l1)kp + Np} C b2

If m C N 1/ 4 the probability that Vn ~ 1.E VN + (21 - 1 k + N is less
than the probability that there is at least an infinity node at level IN of
the associated tree. Thus,

P {Vn > lEV1v + (21- 1)kµ +Nµ} < btzR(b, N)

(9)

	

< b"'R(b, N) .

Finally using (8) and (9) we have for all n,

P {Vn > 1EVN + (21- 1)kµ + Nµ} < b2 -blNl/! -}- bN1l'4 R(b, N) .

The right hand side tends to zero when N tends to infinity . Thus, for all
e > a, there exists an N such that for n > N,

P {V„ > IEVN+ (2d - 1)kµ +Nµ} < e,

where k = 1N2 13 1 and 1 - jn/Nj .

	

p

6. Convergence : proof of Theorem 2 . We show that

.

	

EV,~

	

EVE,
(l0)}

	

lim sup -r-- G lim inf
n

	

n-+oo n

by showing that for given e > o,

ET/ EVN
l1m sup	C	- - 3~
n av n

	

N

for all N large enough . Then, by definition of the limit inf mum we can
find an N so large that

.EVN
<rnmf

	

+e,
. . .E Vn

N

	

n ---~ oo

	

fl

so that we may conclude (10) by the arbitrary nature of c .
We use the notation of the preceding part: u is the root of an n-

level complete b-ary incremental tree with edge variable X, and V'(u) is
its value for the (k, N) associated tree . Define 1 - Ln/N] . If V'(u)
Nµ + 1EVN + (2d - 1)kµ then

V(u) < Nµ+ l NJ EVN + C2 L N~ - 1) kµ

n

	

nk
C Np .+ -.-E VN -+- 2 p,

N

	

N
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so that (recalling k = 1N 2131),

C
EVN
N

far N large enough and n N/ps . Using Lemma 3, we can find N large
enough such that

P {V„ > IEVN +(21- l)kp+Nµ} G E

for all p and for n > N . Thus we have,

E Vn

	

Vn E VN

	

E VN
n

	

n N

	

N

~ P {VI < lEV1v -f- (21- 1)kµ + Nµ} -}-N
EVN

;

	

+3eN
for N large enough and n > N/µs . This implies that

.

	

E Vn E VNlam sup ---- C .~ T +3e
n --}

	

n

as required . Thus EV„/n has a limit V(X) when n tends to infinity . D
7. A law of large numbers . THEOREM 3. If X E [0, µ] and

P {X > O}> a, where a is defied in Theorem 1, we have

Eon
lYm -- =- V(X) on ---} oo n

and

•

	

vn Vn
lim --~--- -- Iim
nEV

	

nv(X)

almost surely as n tends to infinaty .

Proof. We first prove this lemma for Bernoulli trees with parameter p .
Let vu be a node of T in an n-level complete b-ary incremental tree with
parameter p. We associate with u the value V'(u) related to V (u) by
monotonicity : V'(u) < V(u) . The idea is to cut the tree into pieces of N
levels each, and for every second piece, we force all edge values to be zero .

On those pieces, we use results about Pearl trees . The exact definition of

67

'(u) N EVN k
n ~" n N N

N EVN 2 (N2/3 +1)
"n N N
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V'(u) is given below . We denote by Vri the value of the root of the n-level
model . We will show that lim infn_+~ EVn/n > 0 .

Let N be a large fixed positive integer . For all nodes u at level i, we
determine V'(u) from V'(v), v E Au as follows for 1 -

(n/(2N)11) If (21- 2)N < i < (21- 1)N,then V'(u) is determined from V'(v), v E
Au as in the incremental tree with parameter p .

2) If i - (21- 1)N, then first W(u) is determined from V'(v), v E Au , by
MIN-MAX rules as in the incremental tree with parameter p, and
we set

V'(u)

	

°O if W(u) < 1
1

	

ifW(u)>1'

(Thus, at this level, V'(u) is hi-valued!)
3) If (21- 1)N < i < 21N, then the edge values are considered to be zero

and thus V'(u ) is determined by the MIN-MAX rules

(12) V'(u)

	

m~vEAu {V'(v)} if u at even level in T
minvEAu {V'(v)} if u at odd level in T

It is easy to verify by induction that V'(u) < V(u) for every node . Now
we prove by induction that if p > a, for all e > 0 we can find N such that
for all integer 1 > 0 we have

(13)

	

P{V~, _ -oo} < min e, 2b -b

For 1 - 1, this is true since

P{VT,=-oo}=P{WN =O}=Frr(0)

where FN is the distribution function of the value of the root of an N-level
incremental tree with parameter p, and WN - W (u) is the value of the
root of this tree . (Recall that for p > a, FN(0) -+ 0 as N -+ oo .) Thus we
choose N so large that

FN(0) < 2 min(E, tb_b) .

For the induction we have to distinguish between two cases . First we
consider a node u at a level 21N . We assume (13) to be true for all 1' < 21 .
All nodes v at level (21 - 1)N have a value V'(v) equal to 1 or -ox. We

consider the N-level subtree TN rooted at the node u and in which the leaf
values are the V'(v) from level (21 - 1)N of T . Also V'(u) is distributed
as the root of a Pearl tree where the leaves have value 1 or -oo. By the

induction hypothesis the value -oo occurs with probability q < (1/2)b_ b .

Thus by Lemma 1 we have,

P {V'(u) _ -oo} < b2< min C, 2b-b i s far N large enough .

E
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P{V2IN-gym <l} < min s,

This concludes the first part . Let us now consider a node u at level (21 -
1)N . According to the hypothesis, at level (21 - 2)N, there are nodes
with value (1 - 1) and nodes with value -oo . The probability that at
least one node v at level (21 - 2)N has value V'(v) - -oo is less than
bNb2 - b lN ~2L If the bN nodes at level (21- 2)N have the value 1 - 1, then
P {V'(u) --oo} - P {Wjy = 0} = FN(0) . Thus if we choose N such that

< 2 min(, 2b -b),

P {V'(u) - -oo} < bN+12-b~N~~~ + FN(O)
1

	

1C -- min

min (e ~b
,
1
-b

Thus the induction is shown and we have for all integer 1,

P {V = --oo} C e .

Thus for all l > o,

P {V2trr > 1} > P {V21N - 1} > 1-&.

We now generalize the result for incremental trees with a number of levels
that is not a multiple of N . Let u be the root of T, an n--level b-ary
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incremental tree with parameter p > a . Let 1-
[n/2NJ

. Using (14), with
m = n - 21N, we have

P{V(u) < 1} < min
C
e, tb_ b) .

Thus,

E V~ ~1(l-e

As a consequence,
E Vri

	

n i ! > 1
~ - o(1)n ~ (1

	

2N

	

) n `~ 2N
so that

and finally

Thus for n >

P{
l

o,

V,&

Elf
I

EVn 1 -- ~
liminf --

	

> ----ren

	

2Nn --* OC3

E Vm
lam --- >0.

We now consider X to be a positive random variable bounded by p
such that

def P fX>Ofl
>
a

1

Then there exists 5 > 0 such that
P{X>b}>a .

Then

V(X) ~ 6V(p) > 0 .

The theorem follows immediately . In particular, whenever X is continuous,
P {X > 0}= 1, and thus V(X) >0 .

For all p > a there exist c > 0 and no > 1 such that for all n > no,
E V,~ > cn . According to Lemma 2, for any p, and any e > 0

P Vn - EVn ~ } C 2e_ 2f 2/ 2 .

P { I V -- E Vn 1 ~ eE Vn }

; P{IVn - EVnI?ecn}

< 2 -2c2c2n/jig

Thus by the Borel-Cantelli Lemma, V /EVn -- 1 when n ---~ oo almost
surely .

	

a
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8. Robustness, continuity, and embedding. A natural question
is to ask what happens for two incremental trees that are very much alike .
Clearly, if the incremental model is to be widely accepted, it should have
a certain robustness property with respect to small changes in the edge
random variable .X . In this section, a simple method is introduced for
analyzing this sort of situation . For starters, we give the key technical
result .

LEMMA 4 . Consider a complete b-ary tree with n levels of edges . With
each edge e of this tree we associate a uniform [0, 1] random variable TTe .
Denote by Pn the collection of all bn paths from the root to the leaves. Let
Sa

	

(€) be defined as follows :

c~ ; inf x :1> x ~ e, b

Then, for all e > 0,

1lim sup ~--

	

j ,x
~
mi>2 I[u~ <E] C so() .

eEP

Furthermore, cp(e) ---i o as € - + o . For e

	

l/b, cp(€) = 1, while for € C 1/b,
(p(e) < 1 .

REMARK : BRANCHING RANDOM WALKS . We need the explicit bound
of the previous Lemma in what follows . However, note that by the theory
of maxima in branching random walks, it easily follows that

.

	

1
lim -- E mix >2 '[Ue<El

n --~ oo n

	

P~ p n
eEP

See for example the work by Hammersley [Ha74], Kingman [Ki75] or Big-
gins [Bi76,Bi77] .

Proof. For e } lib the statement is trivial . We assume & C 1/b . For
every P E 7',,, B = EeEP I(U~ <E} is binomial (n, e) distributed . Thus, by
Bonferroni's inequality, for 1 > x

	

,

P mix

	

I[u~ < E } ~ x fl
PEPn

C
eEP

	

PEP,L

( 1_€ )

x1-2

(x)
<1 .- x

	

- J

C bn

>2 P{B > xn}

where we use Chernoff's bound for the tail of a binomial distribution (see
for example Hoeffding, [Hoeff63], Theorem 1) . We denote

H(€, x) --	
I-x

	

(;)

n
1-r E xf1- €

\ 1 - x( ;))
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Thus ~o(e) is the smallest solution greater than e and smaller than 1 of

H(E, x) - 1/b .

It is a simple analytical exercise to show that H(e, x) is monotonically
decreasing from 1 at x = e to e at x - 1 (see figure below) .

0 .8

0 .6

0 .4

0 .2
F

1 ∎

	

a

	

~

	

1

E 0 .2

	

0 .4

	

0 .6

	

0 .8 1
H(E,x), for E=0 .1

x

We see that Sp(e) is well-defined and that for e < 1/b, e < So(e) < 1 .
Furthermore,

because

H(e, f(e)) ^' Ef -' 0 as e -+ 0

for any increasing function 1(e) with f(e)log(1/e) -i oo, and 1(e) -* 0, as
s -~ 0 (f(e) = 1/4og(1/e) will do) . For e small enough, cp(E) < 1(e) -f 0 .
We have for all b > 0,

E max >CEP	I[U`~E) } < P ix

	

I[u< <] > _ (S(e)O-f- b)n + ~) + SE

	

~P~
PET', rt

	

PEP" eEP

0(1) + ~o(e) + b .

By the arbitrary nature of S, Lemma 4 follows .

	

D

We can use this Lemma in a variety of ways .
EXAMPLE 1 . Assume that we have two incremental trees with random edge
variables X and Y respectively, where P { X Y } = p, and D C X, Y C .

~o(e) -+ 0 as e -p 0

4
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The case of interest is when p is small . Then we may consider the complete
b-ary tree with n levels of edges, in which we we give every edge e a value
Ze according to the rule

Z -- fo if X = Y
e -- if X Y

Call V(X) and V(Y) the root values in both incremental trees. By
Lemma 4,

1V(X)

	

n - Vn (Y)I < Eon ~ Ze < (SA(1~ ) + o(l))nµ
eEp

almost surely. By a trivial argument,

Iv(X) - V(Y) I <p(p)p. .

EXAMPLE 2 . Assume that X and Y are Bernoulli edge variables with pa-
rameters p and q respectively . We may couple these on a common probabil-
ity space. For example, we could consider a uniform [0, 1] random variable
•

	

associated with each edge in a complete b-ary tree . Set X = IU<p and
•

	

= 'U~ q Clearly, X V with probability I p - q( . Therefore, by Example
1

Iv(X) - v(I')I < <P(IP - 4'I)

The properties of So insure that V(X) is a uniformly continuous function of
p for Bernoulli trees .

EXAMPLE 3 . For general random variables X and Y, having distribution
functions F and G respectively, we may construct a common probability
space based upon a uniform [0,1] random variable U once again . Note that
• is distributed as Fi°"(U) and Y as G"'"(U) . However, there are other
kinds of couplings as well . Associate with each edge e in a complete b-ary
tree a random variable Zef where

fp if Ix-Y I >a ;

is if IX-Y I <b,

where S > 0, and X and Y are coupled as above . A little thought shows
that

LV(X)-V(Y)1 ~ max>Ze+n5

eEP
nµ(~p(P{ IX - Y I > b}) + 0(1)) + nb

almost surely, where we use Lemma 4 . Therefore, collecting things,

IV(X)-V(Y)I < inf µcp

	

inf

	

P{IX -Y1 > a}~ + 5 I

	

.
>o I (all couplings of X and Y

Ze -~~
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This indeed shows the robustness of V(X) with respect to small changes in
the distribution of X .
EXAMPLE 4 . Given an arbitrary unbounded positive edge variable X with
finite moment generating function ( .E exp (t X) Coo for some t > 0) . Define
a coupled random variable ` = min(X, p), where p is large but fixed . The
root values of the trees based upon Y and X may be limed in a simple
manner . Using arguments not unlike those above, one can establish that
EV12 /n --} V(X) C oo . Thus, the boundedness condition in our main
convergence theorem is not required after all .

9. Asymptotic behavior of the Bernoulli tree with parameter
p. We first give a result stronger then Theorem 1 on the asymptotic be-
havior of V12 for Bernoulli trees when p is small . For more details, we refer
to [Kam92] .

LEMMA 5 . For p E [0, a], there exist bona fide distribution ,functions
F00 and H00 with finite expected values that put positive mass on all the
nonnegative integers, such that

lien Fen (i) = F00 (i)
n --~ ov

and

lim F21 +1(i) = H00(i) .
n-oo

Furthermore, ,for p a, we have ,for all fixed i ~ D,

lim F2,2 (i) = lim F2 12 i (i) = 0
n--~vQ

	

n-~oo

and Vn r-+ oo almost surely when n --+ oo . Finally,

a C 1 - 1 /(b+1 )
b=~°° 0.

s

We recall that if X is Bernoulli (p) and Y is Bernoulli (q), then

Iv(X) - V(Y)I 5 w(In- a)

Then using Theorem 3, the following lemma is trivial .
LEMMA 6 . In a Bernoulli free with parameter p, EVn /n converges

to a finite limit V(p), where V is a uniformly continuous function of p .
Furthermore if a < p < 1 - a then 0 < V(p) < 1 and V„/EVn -+ 1 almost
surely when n -~ oo .
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p

The above figure shows V(p) for b - 10, the flat parts closee to 0 and 1
are explained by Theorem 1 . Computations show that V(X) is flat around
p = 1/2 as well whenever b > 2 . In this respect, we offer the following
theorem .

THEOREM 4 . For all b, V(1/2) - 1/2 and for all p,

V(1 - p) _ 1- V(p) .

Furthermore there exists ,0 E (0, 1/2] such that

= 2 of pE [,Q,1- 13]

V(p)

	

< .

	

if pE[0,/3)

> 2 if p E (1 -,0,1]

When ,0 < 1/2, the range [,Q,1 - ,0] is called the flat part around p - 1/2 .
For p E (0, 1/2), let L(p, b) be the largest root of 1-(1-pxb)b = x on [0, 1] .
If L(p, b) ~ 0, then

L 2 ] - ~n log n < EVn < L 2 j -F- ~n log n , (n >

,Q > p, and Vn /n --> 1/2 almost surely. Furthermore, Q tends to zero as b
tends to infinity. Thus the flat part exists and tends to the full range as
b -* oo . Finally, for b > 8, we have 0 <j3 < 1/2 .

75
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Proof. We first show that

l2J
The symmetric inequality is easily obtained by considering a tree with MAX
nodes at the bottom (see [Kam92J) . We consider a random 2n-level b-ary
incremental tree with parameter p . The nodes in the tree are marked good
or bad. The leaves are all good . Consider a node at an odd level 2n + 1
with b children at level 2n . Such a node corresponds to a MIN node in
the tree . We mark it good only if all the children are good ; otherwise, it
is marked bad . For a node at level 2n (a MAX node) with b children, we
mark it good if there exists at least one good child whose edge value is one .
Thus, the root u is good if and only if there is a path from the root to the
bottom level where all the MAX nodes provide at least one "1" .

If the value V(u) of the root of the tree is good, then V(u) ~ n . Also,
for a node v at level 2n+ 1 we have V(v) n . Let pn denote the probability
that a node at level n is marked as good . Then, by the previous discussion,

P {U2„ 1 n} >pn .

Furthermore, we have a simple recursion :

and

- /nlogn < EV„ .

P2n = f(p2n-2) ~
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fl
, x, def

Z - (1 - TJx b ) bI

The function f is continuous and increases monotonically from 0 to 1(1) -
1 - (1 - p)' . We note therefore that p 2i decreases monotonically in i to
a limit which is either zero or a positive number . The limit is the largest
root on [0, 1) of the equation f(x) - x . Let us call this limit L(p, b) . Thus,
the following interesting inequalities are true :

inf„ P{V2i > n} > L(p, b),
info P{V21 > it} > L b (p, b) .

Therefore,

inf P {V„ > []}> ~

	

Lb (p, b) .

Continuing this discussion, we consider the set of all p for which L(p, b) > 0 .
We know by McDiarmid's inequality that

P I V,~ -- E Vn I > /niogn} C

Therefore, if 2/n 2 < L(p, b), we see that

EVn > [ 2 ] - ./nlogn .

For the remainder of the proof, we refer to [Kam92] .

	

0
REMARK . Numerical computations show that the distribution of the

root's value is even more concentrated than this Lemma shows .

10. Concluding remarks . Although we have discovered many prop-
erties of the limit V(X), we have been unable to provide a precise analytic
formulation of this limit function . Many inequalities are available however .
If V(p) denotes the limit for-a Bernoulli tree with parameter p, we see that
for any positive random variable X, since X > aIx>a,

V(X) > sup aV(P{X > a}) .
Q

(We hope the reader will permit this abusive notation.) In particular, if
ac is the median of a continuous random variable , this inequality shows
that

median (X)V(X) >	2	

If X < µ, we see that V(µ - X) = µ - V(X) > aV(P{jc X > a }) . Thus,

V(X) < µ - sup aV(P{X < JA--a}) .
a
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For example, when X is uniform on [o, 1], and we take a = 1/2, we obtain
the inequalities

4 < V(X) < 4 .

This was of course predictable, as we know that V(X) - 1/2 by aa relatively
simple symmetry argument .

Another inequality follows from V(1 ) 1 : we obtain for any positive
x,

V(X) ~ X~~~ ,

where X(~) is the a quantile of X.
Note that V(a + bX) = a -- bV(X). Assume that X is bounded and

positive, and that Y is independent of X, bounded, and positive . Then,
one would be tempted to infer that

V(X +Y) - V(X) +V(Y) ,

where V (X + Y) refers to the incremental tree with edge values distributed
as X +Y . This is clearly false : just take X and Y Bernoulli with parameter
a . Then X + Y is stochastically greater than a Bernoulli with parameter
1 - (1 - a)2 = 2a - a2 . From our results,

V(2a - a2) > 0 ,

while

V(X)=V(Y)=0 .

The lack of linearity seen throughout our analysis and experiments makes
it difficult to get a good grip on the limit function except in special cases .

In the Bernoulli model, if the ones were represented in the minimax
path in proportion to their frequency in the tree, we would have V(p) = p.
Clearly, we do not have this the tree's behavior depends upon more than
just frequencies or averages . Also, in general, we do not have V(X) = EX .
The Bernoulli model shows that V(X)/EX can be zero!

A comparison with the Pearl tree with the same distribution on the
leaf values is helpful . In the Bernoulli model, we associate with the leaves
i.i.d . binomial (n, p) random variables . Pearl's result implies that the root
value V of his tree satisfies

---} p = EX
rZ

almost surely: the ones are proportionally represented in the minimax path .
For game tree searching strategies, the incremental modell is very

promising, as it incorporates different behaviors for different values of the
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edge parameters such as p in the Bernoulli model . The incremental trees
are teeming with different sorts of life, perhaps modeling both very easy and
very hard search problems for different choices of edge distributions . For p
near zero, the zeroes overwhelm the ones, even more than their proportions
would suggest .

The natural continuation of this study is the consideration of search
heuristics . Here we note that algorithms that expand an edge have access
to the edge's value. The purpose is to find strategies that expand few
nodes (relatively speaking) in an incremental tree, yet lead to an n-level
path of value close to n in some sense . For example, if we were to take
a random child and if the opponent were infinitely smart (knowing the
entire tree) , we would end up with a path of total value less than about
np (as this would be obtained against a random opponent), and less than
about nV(p) (as we ourselves are not infinitely smart) . The true path
value thus concentrates around nS(p), where o C S(p) C min(p, V(p)) .
For more interesting heuristics based upon backtracking and pruning, the
model promises to be exciting .

Finally, one may wonder what happens with random edge variables
that have large infinite tails . This may occur for example for the nor-
mal distribution. More specifically, we may consider edge variables with a
symmetric stable distribution with parameter a E (0, 2] (these have char-
acteristic function exp (--- ~t 1a)) . Consider first a Pearl tree, in which we
associate with each leaf independently a sum of n independent symmetric
stable random variables, to b e able to make a fair comparison with our
model . We can prove that Vn /'%/ oscillates on alternating levels between
a positive value c and its negative counterpart ---c, when the stable distri-
bution is normal (a = 2), and when new levels are added at the bottom of
the tree. For the Caucby distribution (a = 1), ri l n I tends to a positive
constant c almost surely, while the sign of V n alternates on different levels .
For a C 1, we have distributions with very big tails, and IV n/nl --} c
almost surely . For these distributions, the swings in the oscillatory pendu-
lum are unbearably big. In the incremental model, there are distributions
for which lim sup n~~ In /n = oo almost surely if we add new levels at the
root .
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