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Abstract 

We consider the Horton-Strahler number S, for random equiprobable binary trees with n nodes. We give a 
simple probabilistic proof of the well-known result that ES, = log,n + O(1) and show that for every x > 0, 
P{ 1 S, - log,n ( > x} Q D/4x, for some constant D > 0. 
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1. Introduction 

Originally used to classify river systems [4,121, 
the Horton-Strahler number has also been ap- 
plied to binary trees. Let T be a binary tree with 
II nodes such that each node has at most one left 
and one right node. For example, with n = 3 
there are exactly five different trees. Let 1 T I be 
the number of nodes in T. Similarly, let I u I be 
the number of nodes in the subtree rooted at 
node u in T. For a node u in the binary tree T, 
let the Horton-Strahler number S(U) be defined 
as 

(0 if (~1 =O, 

S(u) = I m=(W% S(w)) ~~~~~~~~~~~~~ 
if I u I a 1 and u has children 
u and w, 
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where IA is the indicator of the event A. We 
define S(T) as the Horton-Strahler number of 
the root of tree T. For example, Fig. 1 shows a 
tree with Horton-Strahler number three. At 
times, we use S(U) and S(T) interchangeably, 
even though u is a node and T is a tree. 

The two extreme values for the Horton- 
Strahler number are immediately apparent. At 
the one extreme is a single chain of n nodes and 
Horton-Strahler number one (see Fig. 2). This is 
sometimes called a “gourmand de la vigne” by 
Viennot [15], because when viewed with its exter- 

Fig. 1. A binary tree with Horton-Strahler number three. 
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Fig. 2. A “gourmand de la uigne” with five nodes and Hor- 

ton-Strahler number one. 

nal nodes (01, the chain resembles the bottom 
part of a vine which is cut to improve the quality 
and quantity of the wine. 

At the other extreme is the complete tree with 
k levels, 2k - 1 nodes and Horton-Strahler num- 
ber k (see Fig. 3). Generalizing this, it is clear 
that, for each binary tree T with n nodes, S(T) G 
log,n + 1 [6]. 

The Horton-Strahler number arises in com- 
puter science because of its relationship to ex- 
pression evaluation. Often in a computer, an 
arithmetic expression is evaluated by micro-oper- 
ations using registers. To facilitate this process, 
the expression is stored as an expression tree with 
the operators in the internal nodes and the 
operands in the external nodes. The arithmetic 
expression is evaluated by traversing the corre- 
sponding tree. In 1958, Ershov [l] showed that by 
always traversing the child node with the lower 
Horton-Strahler number first, the corresponding 
register use is minimal. Furthermore, the mini- 
mum number of registers required to evaluate an 
expression tree T is exactly S(T) + 1. As expres- 
sion evaluation is a specialized type of postorder 
traversal, this can be generalized so that the 
minimum stack size required for a postorder 
traversal of binary tree T is S(T) + 1 [3]. In fact, 

A 
Fig. 3. A complete tree with seven nodes and Horton-Strahler 

number three. 

the Horton-Strahler number occurs in almost 
every field involving some kind of natural branch- 
ing pattern. More recently, the Horton-Strahler 
number has been used to draw trees [6,16]. Vien- 
not [151 provides a thorough overview. See also 
[131, [141 and [16]. 

2. The Horton-Strahler number for equiprobable 
binary trees 

Let an equiprobable binary tree (EBT) with IZ 
nodes be a binary tree with n nodes drawn uni- 
formly and at random from all possible binary 
trees with II nodes. Let S, be the Horton- 
Strahler number of a random EBT with IZ nodes 
so that ES,, and Var S, are the corresponding 
expected value and variance. 

The result is well-known. Under the assump- 
tion that the corresponding expression trees with 
IZ internal nodes and 12 + 1 external nodes are 
equiprobable, the expected minimum number of 
registers needed to evaluate an arithmetic expres- 
sion with n operators is ES, + 1. 

Based on exact computations of ES, up to 
n = 100, Shreve [ll] conjectured that ES, - 
log,n. Flajolet, Raoult and Vuillemin [2], Kemp 
[5], and Meir, Moon and Pounder [7-91 indepen- 
dently analysed S, via recurrences and generat- 
ing functions. Flajolet, Raoult and Vuillemin [2] 
showed that 

ES,, = log,n + D(log,n) + o( 1) 

where I D(x) I Q 1 for x > 0. Kemp [S] showed 
that for all E > 0, 

ES,, =log,n + C+F(n) + 0(n-“.5+E) 

where C = 0.82574.. . is a constant and F(n) is a 
function with F(n) = F(4n) for all n > 0 and 
-0.574 < F(n) < -0.492. Meir, Moon and 
Pounder [8] showed that S, is very highly concen- 
trated about log,n. In fact, for any s > 0, 

ElS,-log&=O(l). 

The latter result implies that 

ES, - log,n and Var S, = 0( 1). 
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3. A probabilistic analysis 

Almost everything with respect to the Horton- 
Strahler number for EBTs is known. Furthermore 
by Chebyshev’s inequality, the Meir, Moon and 
Pounder result [8] implies that if a, is a sequence 
tending to infinity, then 

P{ I s, - bp I > a,} + 0, 

as II -+ 00. Using probabilistic analysis, we present 
a stronger result. 

Let T be a binary tree with n nodes. Let r be 
the reduction function from binary trees to binary 
trees defined recursively as 

r(n)=( ) (1) 

r do\, = q 
( i 

r( ,/‘,i =r(d”iu) =r(T) 

/O\ 
= r(T,) 0,) 

(2) 

(3) 

(4) 

where ( ) is the empty tree, 0 is an external 
node, 0 is an internal node, and T, TL and TR 
are binary trees with at least one internal node 
each. 

We note that 

S(T) =S(r(T)) + 1. 

We will show that each reduction reduces the size 
of the tree by a factor of about four and increases 
the Horton-Strahler number by one. This obser- 
vation explains why ES, is close to log, n. 

Let T’ = r(T). The number of external nodes 
in T’ is equal to l(T), the number of leaves in T. 
The number of (internal) nodes in T’ is equal to 
the number of external nodes in T’ minus one. 
Thus, I T’ I = l(T) - 1. We note the following fact 
for reductions on EBTs. 

Fact 1. Zf each binary tree T with n nodes is equally 
likely, then given 1 T’ 1 = k < n, each tree T’ is 
equally likely. 

Proof. For any tree T’, we examine the “expan- 
sion” of T’ back to T so that IT I = n and 
r(T) = T’. The internal nodes of T’ result from 
Case 4 of r. The external nodes of T’ result from 
Case 2. Therefore, in any “expansion” each ex- 
ternal node in T’ must expand to a parent node 
of two external nodes 

i 
i.e. 0 + /O\ 

0 0 1 

The remaining n - (k + k + 1) internal nodes of 
T result from Case 3. These pairs of single-parents 
with only-children (external nodes) 

can be re-inserted anywhere in the expansion 
except below the leaves of T. Each combination 
of insertions results in a different tree T. As this 
argument is identical for all T’, we note that for 
all T’ with k nodes there is an equal number of 
expansions to trees with n nodes. q 

Before we use reductions to derive the upper 
and lower converging bounds for ES,, we need 
the mean and variance of L,, the number of 
leaves in a random binary tree. By mimicking the 
argument in [lo] for the average internal path 
length of a random equiprobable binary tree, we 
set up the following double generating function 

Q(w, 2) = c c Q,,P”z~> 
n>O k>O 

where Q,k is the number of trees with n nodes 
and k leaves. This, in turn, may be expressed 
equivalently as 

Q(w,z)= c WITlZ4z) 
all trees T 

l-\/l-4w(wz-w+l) 
= 

2w 

From this, it is straightforward to derive 

n(n+l) n 

ELn= 2(2n - 1) N 4 
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and 

Var L, = 
n(n+l)(n2-3n+2) n 

2(2n - 1)‘(2n - 3) =G S’ 

for n 2 3 [6,171. 
We now can start with the upper bound. 

Theorem 2. For a random EBT with n nodes and 
for every x > 0, 

P{S, > [log,n +x1} < l/4”. 

Proof. Let T, be a random EBT with n nodes. 
Let T, = r(T,), let T2 = r(T,), etc. Then, 

EIG+l I 

Iterating the preceding inequality, we have 

VarIT,,, I 

=S(l.t,.-$ VarIT,_,I 

<y ( 1+-+-+*. 1 1 . 4k 4 42 +- 1 4k i 
1 

+- 
16k+’ 

Var I To I 

4 cn 
=T*$ (sinceVarIT,I =O). 

We note by inspection E I Tk+ l  I 2 E,, ,/4 - 1. 
Iterating this, we obtain 

(by 161) E I T, I 
EiT/c++qkfl- I-$- . . . -L@ 

Therefore by this inequality and Fact 1, E{lT, 11 
inequality, G E, T, ,/4k = 12/4~. So by Markov’s 

P{ I Tk I a l} G E I Tk I G n/4k. Thus since [S, - k 
> 0] = [ I Tk I > 01, we have PIS, > k] = P{ I Tk I 2 
1). Consequently, if k = rlog,n +x1 then P{S, > 
k} < n/4k < l/4’. q 

Theorem 3. For a random EBT with n nodes and 
foreueryxa 1, 

P{S, < [log,n -xl} <C/4”, 

where C > 0 is a suitable constant. 

Proof. Let T,, T,, T,, . . . be a sequence of ran- 
dom binary trees obtained by successive reduc- 
tions and ) T, I = n. Then by Fact 1 and the 
bound on the variance of the leaves, 
Var( I Tk+l I I Tk) G c I Tk I, where c = l/8. Also, 
E{ 1 Tk+ 1 I 1 T& G I Tk I /4. Therefore, 

<s+& Var ITkl. 

+- g’=&-;. 
j=(J 4J 

We have 

P{S,<k) 

= P{ I Tk I = 0} 

=P{IT,I-EIT,I < -ElT,I} 

Var I Tk I 
6 E2 l T I (by Chebyshev’s inequality) 

k 

4 cn 1 

’ 3 ’ 4k ’ (n/4k - 4/3)2 ’ 

If k = llog,n -xl then 

c4 x+1 

P{S,<k} < 
(4x-1 _ 4,3j2 ’ & = & 

when x2 2. 0 

We combine the upper and lower bounds. 

Theorem 4. For a random EBT with n nodes and 
for every x > 0 

P{ I S, - log,n I ax} G D/4”, 

for some constant D > 0. 
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Proof. This follows directly from Theorems 2 and 

3. 0 

From this theorem, we have the following 
corollaries. 

Corollary 5. For a random EBT with n nodes and 
for all s > 0, 

E{ I S, - log,n I “} = 0( 1). 

Corollary 6. For a random EBT with n nodes and 
for all A E (0, log 41, 

EIe ~l.%-bfll 1 . 
< 00 

Furthermore, Corollary 5 implies that Var S, 
= O(1). In conclusion, we remark that the results 
from Theorems 2, 3 and 4, and Corollaries 5 and 
6 are all non-asymptotic in nature. That is, the 
results hold for all n. Finally, we see that while 
the trivial upper bound S, < log,n + 1 assumed 
that every node in the tree successfully con- 
tributed to the Horton-Strahler number, Theo- 
rem 4 implies that in EBTs only approximately 
half the nodes actually do contribute. 

Generalizations of the present results to suit- 
ably defined m-ary Horton-Strahler numbers for 
random m-ary trees would be interesting. For 
tree-drawing purposes, it would also be of inter- 
est to introduce new classes of random trees 
indexed by a real number c E (0, 11, such that 

ES, - c log,n. The EBT just corresponds to c = 
l/2. 
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