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§1. Sid’s contributions to noisy optimization

From the early days in his career, Sid Yakowitz showed interest in noisy function optimization. He

realized the universality of random search as an optimization paradigm, and was particularly interested

in the minimization of functions Q without making assumptions on the form of Q. Especially the noisy

optimization problem appealed to him, as exact computations of Q come often at a tremendous cost,

while rough or noisy evaluations are computationally cheaper. His early contributions were with Fisher

(Fisher and Yakowitz, 1976; Yakowitz and Fisher, 1973). The present paper builds on these fundamental

papers and provides further results along the same lines. It is also intended to situate Sid’s contributions

in the growing random search literature.

Always motivated by the balance between accurate estimation or optimization and efficient com-

putations, Sid then turned to so-called bandit problems, in which noisy optimization must be performed

within a given total computational effort (Yakowitz and Lowe, 1991).

The computational aspects of optimization brought him closer to learning and his work there

included studies of game playing strategies (Yakowitz, 1989; Yakowitz and Kollier, 1992), epidemiology

(Yakowitz, 1992; Yakowitz, Hayes and Gani, 1992) and communication theory (Yakowitz and Vesterdahl,

1993). Sid formulated machine learning invariably as a noisy optimization problem, both over finite and

infinite sample spaces: Yakowitz (1992), Yakowitz and Lugosi (1990), and Yakowitz, Jayawardena and Li

(1992) summarize his main views and results in this respect.

Another thread he liked to follow was stochastic approximation, and in particular the Kiefer-

Wolfowitz method (1952) for the local optimization in the presence of noise. In a couple of technical

reports in 1989 and in his 1993 siam paper, Sid presented globally convergent extensions of this method

by combining ideas of random search and stochastic approximation.

We have learned from his insights and shared his passion for nonparametric estimation, machine

learning and algorithmic statistics. Thank you, Sid.





§2. Formulation of search problem

We wish to locate the global minimum of a real-valued function Q on some search domain X , a

subset of Rd. As we pose it, this problem may have no solution. First of all, the function Q may not have

a minimum on X (consider X = (0, 1) and Q(x) = x), and if a minimum exists, it may not be unique

(consider the real line and Q(x) = sin(x)), and if it exists and is unique, it may be nearly impossible

to find it exactly, although we can hope to approximate it in some sense. But is even that possible?

Take for example the function on Rd defined by ||x||2 everywhere except on a finite set A on which the

function takes the value −1. Without a priori information about the location of the points of A, it is

impossible to locate any point in A, and thus to find a global minimum. To get around this, we take a

probabilistic view. Assume that we can probe our space with the help of a probability distribution µ such

as the uniform density on [0, 1]d or the standard normal distribution on Rd. If X is a random variable

with probability distribution µ, we can define the global minimum by the essential infimum:

qµ = ess inf Q(X) .

This means that P(Q(X) < qµ) = 0 and P(Q(X) < qµ + ε) > 0 for all ε > 0. The value of

qµ depends heavily on µ. It is the smallest possible value that we can hope to reach in a search process

if the search is carried out at successive independent points X1, . . . , Xn, . . . with common probability

distribution µ. For example, if µ is the uniform distribution on Rd, then qµ is the (Lebesgue) essential

infimum of Q in the unit cube. To push the formalism to an extreme, we could say that a couple (Q,µ)

defines a search problem if

(i) Q is a Borel measurable function on Rd.

(ii) µ is a probability measure on the Borel sets of Rd.

(iii) qµ > −∞.

Formally, a search algorithm is a sequence of mappings gn+1 from Xn to X , n ≥ 0, where

Xn+1 = gn+1(X1, . . . , Xn) is a place at which Q(Xn+1) is computed or evaluated. The objective is have

min(Q(X1), . . . , Q(Xn)) tend to qµ, and if possible, to assure that the rate of this convergence is fast.

In random search methods, the mapping gn+1 is replaced by a distribution on X that is a function of

X1, . . . , Xn, and Xn+1 is a random variable drawn from that distribution. The objective remains the

same. Noisy optimization problems will be formally defined further on in the paper.

§3. Random search: a brief overview

Random search methods are powerful optimization techniques. They include pure random search,

adaptive random search, simulated annealing, genetic algorithms, neural networks, evolution strategies,

nonparametric estimation methods, bandit problems, simulation optimization, clustering methods, prob-

abilistic automata and random restart. The ability of random search methods to locate the global ex-

tremum made them indispensable tool in many areas of science and engineering. The explosive growth of

random search is partially documented in books such as those by Aarts and Korst (1989), Ackley (1987),

Ermoliev and Wets (1988), Goldberg (1989), Holland (1992), Pintér (1996), Schwefel (1977, 1981), Törn

and Žilinskas (1989), Van Laarhoven and Aarts (1987), Wasan (1969) and Zhigljavsky (1991).

Random search algorithms are usually easy and inexpensive to implement. Since they either

ignore the past or use a small collection of points from iteration to iteration they are easily parallelizable.

Convergence of most random search procedures is not affected by the cost function, in particular its





smoothness or multimodality. In a minimax sense, random search is more powerful than deterministic

search: this means it is nearly the best method in the worst possible situation (discontinuities, high di-

mensionality, multimodality) but possibly the worst method in the best situation (smoothness, continuity,

unimodality) (Jarvis, 1975). The simplest random search method the pure random search can be used to

select a starting point for more sophisticated random search techniques and also can act as a benchmark

against which the performance of other search algorithms are measured. Also, random search is much

less sensitive than deterministic search to function evaluations perturbed by the additive noise and that

motivates the present paper.

In ordinary random search, we denote by X∗
n the best estimate of the (global) minimum after n

iterations, and by Xn a random probe point. In pure random search, X1, . . . , Xn are i.i.d. with a given

fixed probability measure over the parameter space X . The simple ordinary random search algorithm is

given below:

X∗
n+1 =

{
Xn+1 if Q(Xn+1) < Q(X∗

n)

X∗
n otherwise.

In local random search on a discrete space, Xn usually is a random neighbor of X∗
n, where the definition

of a neighborhood depends upon the application. In local random search in a Euclidean space, one might

set

Xn+1 = X∗
n +Wn ,

where Wn is a random perturbation usually centered at zero. The fundamental properties of pure random

search (Brooks, 1958) are well documented. Let F (u)
def
= P {Q(X1) ≤ u} be the distribution function of

Q(X1). Then F (Q(X∗
n)) is approximately distributed as E/n, where E is an exponential random variable.

This follows from the fact that if F is nonatomic,

P {F (Q(X∗
n)) > t/n} = (1− t/n)n → e−t , t > 0 .

Note first of all the distribution-free character of this statement: its universality is both appealing and

limiting. We note in passing here that many papers have been written about how one could decide to

stop random search at a certain point.

To focus the search somewhat, random covering methods may be considered. For example, Lip-

schitz functions may be dealt in the following manner (Shubert, 1972): at the trial points Xi, we know

Q and can thus derive piecewise linear bounds on Q. The next trial point Xn+1 is given by

Xn+1 = argmin
x∈X

max
i≤n

{Q(Xi)− C‖x−Xi‖}

where C is the Lipschitz constant. This is a beautiful approach, whose implementation for large d seems

very hard. For noisy problems, or when the dimension is large, a random version of this was proposed in

Devroye (1978). If X is compact, X∗
n+1 is taken uniformly in X minus the union of the n balls centered

at the Xi’s (1 ≤ i ≤ n) with radius (Q(Xi) − Q(X∗
n))/C. If C is unknown, replace it in the formula

for the radius by Cn and let Cn → ∞ such that Cd
n/n → 0 and (Cn+1/Cn)

d = 1 + o(1/n) (example:

Cn = exp((log n)p) for p ∈ (0, 1)). Then Q(Xn) → minQ almost surely.

Global random search is a phrase used to denote many methods. Some of these methods proceed

in a local manner, yet find a global minimum. Assume for example that we set

Xn+1 = X∗
n + σnNn+1 ,

where N1, N2, . . . are i.i.d. normal random vectors, and σn → 0 is a given deterministic sequence. The

new probe point is not far from the old best point, as if one is trying to mimic local descent algorithms.





However, over a compact set, global convergence takes place whenever σn
√
logn → ∞. This is merely

due to the fact that N1, N2, . . . , Nn form a cloud that becomes dense in the expanding sphere of radius√
2 logn. Hence, we will never get stuck in a local minimum. The convergence result does not put any

restrictions on Q. The above result, while theoretically pleasing, is of modest value in practice as σn

must be adapted to the problem at hand. A key paper in this respect is by Matyas (1965), who suggests

making σn adaptive and setting

Xn+1 = X∗
n + σnNn+1 +Dn+1 ,

where Dn+1 is a preferred direction that is made adaptive as well. A rule of thumb, that may be found

in several publications (see Devroye, 1972, and more recently, Bäck, Hoffmeister and Schwefel, 1991),

is that σn should increase after a successful step, and decrease after a failure, and that the parameters

should be adjusted to keep the probability of success around 1/5. Schumer and Steiglitz (1968) and others

investigate the optimality of similar strategies for local hill-climbing. Alternately, σn may be found by a

one-dimensional search along the direction given by Nn+1 (Bremermann, 1968; Gaviano, 1975).

In simulated annealing, one works with random probes as in random search, but instead of

letting X∗
n+1 be the best of Xn+1 (the probe point) and X∗

n (the old best point), a randomized decision

is introduced, that may be reformulated as follows (after Hajek and Sasaki, 1989):

X∗
n+1 =

{
Xn+1 if Q(Xn+1)−Q(X∗

n) ≤ tnEn

X∗
n otherwise.

where tn is a positive constant depending for now on n only and E1, E2, . . . is an i.i.d. sequence of positive

random variables. The best point thus walks around the space at random. If tn, the temperature, is

zero, we obtain ordinary random search. If tn = ∞, X∗
1 , X

∗
2 , . . . is a random walk over the parameter

space. If tn > 0 and En is exponentially distributed, then we obtain the Metropolis Markov chain or

the Metropolis algorithm (Metropolis et al, 1953; Kirkpatrick, Gelatt and Vecchi, 1983; Meerkov, 1972;

Cerny, 1985; Hajek and Sasaki, 1989). Yet another version of simulated annealing has emerged, called

the heat bath Markov chain (Geman and Hwang, 1986; Aluffi-Pentini et al, 1985), which proceeds by

setting

X∗
n+1 =

{
Xn+1 if Q(Xn+1) + tnYn ≤ Q(X∗

n) + tnZn

X∗
n otherwise,

where now Y1, Z1, Y2, Z2, . . . are i.i.d. random variables and tn is the temperature parameter. If the Yi’s

are distributed as the extreme-value distribution (with distribution function exp(e−x)) then we obtain

the original version of the heat bath Markov chain. Note that each Yi is then distributed as log log(1/U)

where U is uniform [0, 1], so that computer simulation is not hampered.

The two schemes are not dramatically different. The heat bath Markov chain as we presented it

here has the feature that function evaluations are intentionally corrupted by noise. This clearly reduces

the information content and must slow down the algorithm. Most random search algorithms take random

steps but do not add noise to measurements; in simulated annealing, one deliberately destroys valuable

information. It should be possible to formulate an algorithm that does not corrupt expensive function

evaluations with noise (by storing them) and outperforms the simulated annealing algorithm in some

sense. One should be careful though and only compare algorithms that occupy equal amounts of storage

for the program and the data.

We now turn to the choice of tn. In view of the representation given above, it is clear that

E{Q(X∗
n) − minQ} is bounded from below by a constant times tn as tn is the threshold we allow in

steps away from the minimum. Hence the need to make tn small. This need clashes with the condition of





convergence (typically, tn must be at least c/ logn for some constant c > 0). The condition of convergence

depends upon the setting (the space X and the definition of Xn+1 given X∗
n). We briefly deal with the

specific case of finite-domain simulated annealing below. In continuous spaces, progress has been made by

Vanderbilt and Louie (1984), Dekkers and Aarts (1991), Bohachevsky, Johnson and Stein (1986), Gelfand

and Mitter (1991), and Haario and Saksman (1991). Other key references on simulated annealing include

Aarts and Korst (1989), Van Laarhoven and Aarts (1987), Anily and Federgruen (1987), Gidas (1985),

Hajek (1988), and Johnson, Aragon, McGeoch and Schevon (1989).

Further work seems required on an information-theoretic proof of the inadmissibility of simulated

annealing and on a unified treatment of multistart and simulated annealing, where multistart is a random

search procedure in which one starts at a randomly selected place at given times or whenever one is stuck

in a local minimum.

On a finite connected graph, simulated annealing proceeds by picking a trial point uniformly

at random from its neighbors. Assume the graph is regular, i.e., each node has an equal number of

neighbors. If we keep the temperature t > 0 fixed, then there is a limiting distribution for X∗
n, called

the Gibbs distribution or Maxwell-Boltzmann distribution: for the Metropolis algorithm, the asymptotic

probability of node i is proportional to e−Q(i)/t. Interestingly, this is independent of the structure of

the graph. If we now let tn → 0 then with probability tending to one, X∗
n belongs to the collection of

local minima. With probability tending to one, X∗
n belongs to the set of global minima if additionally,∑

n e
−∆/tn = ∞ (for example, tn = c/ log(n+1) for c ≥ ∆ will do). Here ∆ is the maximum of all depths

of strictly local minima (Hajek, 1988). The only condition on the graph is that all connected components

of {x : Q(x) ≤ c} are strongly connected for any c. The slow convergence of tn puts a severe lower bound

on the convergence rate of simulated annealing.

Let us consider optimization on a compact of Rd, and let Q be bounded there. If we letXn+1−X∗
n

have a fixed density f that is bounded from below by a constant times the indicator of the unit ball, then

X∗
n in the Metropolis algorithm converges to the global minimum in probability if tn ↓ 0, yet tn logn → ∞.

Bohachevsky, Johnson and Stein (1986) adjust tn during the search to make the probability of accepting

a trial point hover near a constant. Nevertheless, if tn is taken as above, the rate of convergence to the

minimum is bounded from below by 1/ logn, which is much slower than the polynomial rate we would

have if Q were multimodal but Lipschitz.

Several ideas deserve more attention as they lead to potentially efficient algorithms. These

are listed here in arbitrary order. In 1975, Jarvis introduced competing searches such as competing

local random searches. If N is the number of such searches, a trial (or time unit) is spent on the i-th

search with probability pi, where pi is adapted as time evolves; a possible formula is to replace pi by

αpi + (1− α)(c/Q(Xi))
b, where α ∈ (0, 1) is a weight, c and b are constants, and Xi is the trial point for

the i-th competing search. More energy is spent on promising searches.

This idea was pushed further by several researchers in one form or another. Several groups

realized that when two searches converge to the same local minimum, many function evaluations could

be wasted. Hence the need for on-line clustering, the detection of points that belong somehow to the

same local valley of the function. See Becker and Lago (1970), Törn (1974, 1976), de Biase and Frontini

(1978), Boender et al (1982), and Rinnooy Kan and Timmer (1984, 1987).

The picture is now becoming clearer—it pays to keep track of several base points, i.e., to increase

the storage. In Price’s controlled random search for example (Price, 1983), one has a cloud of points of

size about 25d, where d is the dimension of the space. A random simplex is drawn from these points, and





the worst point of this simplex is replaced by a trial point, if this trial point is better. The trial point is

picked at random inside the simplex.

Independently, the German school developed the Evolutionsstrategie (Rechenberg, 1973; Schwe-

fel, 1981). Here a population of base points gives rise to a population of trial points. Of the group of trial

points, we keep the best N , and repeat the process.

Bilbro and Snyder (1991) propose tree annealing: all trial points are stored in tree format, with

randomly picked leaves spawning two children. The leaf probabilities are determined as products of edge

probabilities on the path to the root, and the tree represents the classical k-d tree partition of the space.

Their approach is at the same time computationally efficient and fast.

To deal with high-dimensional spaces, the coordinate projection method of Zakharov (1969) and

Hartman (1973) deserves some attention. Picture the space as being partitioned by a N ×· · ·×N regular

grid. With each marginal interval of each coordinate we associate a weight proportional to the likelihood

that the global minimum is in that interval. A cell is grabbed at random in the grid according to these

(product) probabilities, and the marginal weights are updated. While this method is not fool-proof, it

attempts at least to organize global search effort in some logical way.

Consider a population of points, called a generation. By selecting good points, modifying or

mutating good points, and combining two or more good points, one may generate a new generation,

which, hopefully, is an improvement over the parent generation. Iterating this process leads to the

evolutionary search method (Bremermann, 1962, 1968; Rechenberg, 1973; Schwefel, 1977; Jarvis, 1975)

and a body of methods called genetic algorithms (Holland, 1975). Mutations may be visualized as little

perturbations by noise vectors in a continuous space. However, if X is the space {0, 1}d, then mutations

become bit flips, and combinations of points are obtained by merging bit strings in some way. The

term cross-over is often used. In optimization on graphs, mutations correspond to picking a random

neighbor. The selection of good points may be extinctive or preserving, elitist or non-elitist. It may be

proportional or based on ranks. As well, it may be adaptive and allow for immigration (new individuals).

In some cases, parents never die and live in all subsequent generations. The population size may be

stable or explosive. Intricate algorithms include parameters of the algorithm itself as part of the genetic

structure. Convergence is driven by mutation and can be proved under conditions not unlike those of

standard random search. Evolution strategies aim to mimic true biological evolution. In this respect, the

early work of Bremermann (1962) makes for fascinating reading. Ackley’s thesis (1987) provides some

practical implementations. In a continuous space, the method of generations as designed by Ermakov

and Zhigljavsky (1983) lets the population size change over time. To form a new generation, parents are

picked with probability proportional to
Qk(Xi)∑
j Q

k(Xj)
,

and random perturbation vectors are added to each individual, where k is to be specified. The latter

are distributed as σnZn, where the Zn’s are i.i.d. and σn is a time-dependent scale factor. This tends to

maximize Q if we let k tend to infinity at a certain rate. For more recent references, see Goldberg (1989),

Schwefel (1995) or Banzhaf, Nordin and Keller (1998).





§4. Noisy optimization by random search: a brief survey

Here is a rather general optimization problem: for each point x ∈ X , we can observe a random

process Y1, . . . , Yn, . . . with Yn → Q(x) almost surely, where Q is the function to be minimized. We

refer to this as the noisy optimization model. For example, at x, we can observe independent copies of

Q(x) + ξ, where ξ is measurement noise satisfying Eξ = 0 and E|ξ| < ∞. Averaging these observations

naturally leads to a sequence Yn with the given convergence property. In simulation optimization, Yn may

represent a simulation run for a system parametrized by x. It is necessary to take n large for accuracy, but

taking n too large would be wasteful for optimization. Beautiful compromises are awaiting the analyst.

Finally, in some cases, Q(x) is known to be the expected value or an integral, as in Q(x) =
∫
A q(x, t) dt

or Q(x) = E{q(x, T )} where A is a fixed set and T is a given random variable. In both cases, Yn may

represent a certain Monte Carlo estimate of Q(x), which may be made as accurate as desired by taking

n large enough.

By additive noise, we mean that each Q(x) is corrupted by an independent realization of a

random variable Z, so that we can only observe Q(x) + Z. The first question to ask is whether ordinary

random search is still convergent. Formally, if Z1, Z2, . . . are independent realizations of Z, the algorithm

generates trials X1, X2, . . ., and at Xi observes Yi = Q(Xi) + Zi. Then X∗
n is defined as the trial point

among X1, . . . , Xn with the lowest value Yi. Assume that with probability at least α > 0, Xn is sampled

according to a fixed distribution with support on X . Even though the decisions are arbitrary, as in

simulated annealing, and even though there is no converging temperature factor, the above algorithm

may be convergent in some cases, i.e., Q(X∗
n) → inf Q in probability. For stable noise, i.e., noise with

distribution function G satisfying

lim
x↓−∞

G(x − ε)

G(x)
= 0, all ε > 0 ,

such as normally distributed noise, or indeed, any noise with tails that decrease faster to zero than

exponential, then we have convergence in the given sense. The reader should not confuse our notion

of stability which is taken from the order statistics literature (Geffroy, 1958) with that of the stable

distribution. Stable noise is interesting because an i.i.d. sequence η1, . . . , ηn drawn from G, satisfies

min(η1, . . . , ηn)−an → 0 in probability for some sequence an. See for example Rubinstein and Weissman

(1979). Additional results are presented in this paper.

In noisy optimization in general, it is possible to observe a sample drawn from distribution Fx at

each x, with Fx possibly different for each x. The mean of Fx is Q(x). If there are just two x’s, and the

probe points selected by us are X1, . . . , Xn, where each of the Xi’s is one of the x’s, then the purpose in

bandit problems is to minimize

An =
1

n

n∑
i=1

Q(Xi)

in some sense (by, e.g., keeping E{An} small). This minimization is with respect to the sequential choice

of the Xi’s. Obviously, we would like all Xi’s to be exactly at the best x, but that is impossible since

some sampling of the non-optimal value or values x is necessary. Similarly, we may sometimes wish to

minimize

Bn =

n∑
i=1

1[Xi �=x∗]





where x∗ is the global minimum of Q. This is relevant whenever we want to optimize a system on the fly,

such as an operational control system or a game-playing program. Strategies have been developed based

upon certain parametric assumptions on the Fx’s or in a purely nonparametric setting. A distinction is

also made between finite horizon and infinite horizon solutions. With a finite number of bandits, if at

least one Fx is nondegenerate, then for any algorithm, we must have EBn ≥ c logn for some constant

c > 0 on some optimization problem (Robbins, 1952; Lai and Robbins, 1985).

In the case of bounded noise, Yakowitz and Lowe (1991) devised a play-the-leader strategy in

which the trial point Xn is the best point seen thus far (based on averages) unless n = 	aek+ b
 for some

integer k (a and b are fixed positive numbers), at which times Xn is picked at random from all possible

choices. This guarantees EBn = O(logn). Thus, the optimum is missed at most logn times out of n.

Another useful strategy for parametric families Fx was proposed by Lai and Robbins (1985).

Here confidence intervals are constructed for all Q(x), x ∈ X . The x with the smallest lower confidence

interval endpoint is sampled. Exact lower bounds were derived by them for this situation. For two

normal distributions with means µ1 < µ2 and variances σ21 and σ22 , Holland (1973) showed that EBn ≥
(2σ21/(µ2 − µ1) + o(1)) log n.

Yakowitz and Lugosi (1989) illustrate how one may optimize an evaluation function on-line in

the Japanese game of gomoku. Here each Fx represents a Bernoulli distribution and Q(x) is nothing but

the probability of winning against a random opponent with parameters x.

In a noisy situation when X is uncountable, we may minimize Q if we are given infinite stor-

age. More formally, let X1, X2, . . . be trial points, with the only restriction being that at each n, with

probability at least αn, Xn is sampled from a distribution whose support is the whole space X (such

as the normal density, or the uniform density on a compact). The support of a random variable X is

the smallest closed set S such that P{X ∈ S} = 1. We also make sure that at least λn observations

are available for each Xi at time n. If the noise is additive, we may consider the λ2n pairings for all

the observations at each of Xi and Xj , recording all values of W (i, j), the number of wins of Xi over

Xj , 1 ≤ i ≤ j ≤ n, where a win occurs when for a pair of observations (Y, Y ′), Y < Y ′. For each Xi,

let Zi = minj �=iW (i, j), and define X∗
n as the trial point with maximal Zi value. If λn/ logn → ∞,

and
∑

αn = ∞, then Q(X∗
n) → ess inf Q(X) almost surely (Devroye, 1977; Fisher and Yakowitz, 1973).

Interestingly, there are no conditions whatever on the noise distribution. With averaging instead of a

statistic based on ranks, a tail condition on the noise would have been necessary. Details and proofs are

provided in this paper. For non-additive noise,

sup
x

E
{
et|Y ||X = x

}
< ∞

for all 0 < t ≤ t0 (where Y is drawn from Fx) suffices for example when X∗
n is obtained by minimizing

the λn-averages at the trial points.

Gurin (1966) was the first to explore the idea of averages of repeated measurements. Assume

again the αn condition on the selection of trial points and let Q̂ denote the average of λn observations.

Then, if εn ≥ 0, Gurin proceeds by setting

X∗
n+1 =

{
Xn+1 if Q̂(Xn+1) < Q̂(X∗

n)− εn

X∗
n otherwise.

This is contrary to all principles of simulated annealing, as we are gingerly accepting new best points

by virtue of the threshold εn. Devroye (1976) has obtained some sufficient conditions for the strong

convergence of Q(X∗
n) → ess inf Q(X). One set includes εn ≡ 0, supx V{Y |X = x} < ∞, and

∑
1/

√
λn =





∞ (a very strong condition indeed). If εn > 0 and for each x, |Y −Q(x)| is stochastically smaller than Z

where EetZ < ∞ for some t > 0, then εn → 0 and λnε
2
n/ logn → 0 are sufficient as well. In the latter case,

the conditions insure that with probability one, we make a finite number of incorrect decisions. Other

references along the same lines include Marti (1982), Pintér (1984), Karmanov (1974), Solis and Wets

(1978), Koronacki (1976) and Tarasenko (1977).

§5. Optimization and nonparametric estimation

To extract the maximum amount of information from past observations, we might store these

observations and construct a nonparametric estimate of the regression function Q(x) = E{Y |X = x},
where Y is an observation from Fx. Assume that we have n pairs (Xi, Yi), 1 ≤ i ≤ n, where a diverging

number of Xi’s are drawn from a global distribution, and the Yi’s are corresponding noisy observations.

Estimate Q(x) by Q̂(x), which may be obtained by averaging those Yi’s whose Xi is among the k nearest

neighbors of x. It should be obvious that if ‖Q̂ − Q‖∞ → 0 almost surely, then Q(X∗
n) → ess inf Q(X)

almost surely if X∗
n = argmini Q̂(Xi). To this end, it suffices for example that k/n → 0, k/ logn → ∞,

that the noise be uniformly bounded, and that X be compact. Such nonparametric estimates may also

be used to identify local minima.

§6. Noisy optimization: formulation of the problem

We consider a search problem (Q,µ) on a subset B of Rd, where µ is the probability distribution

of a generic random variable X that has support on B. Typically, µ is the uniform distribution on B.

For every x, it is possible to obtain an i.i.d. sequence Y1, . . . , Yn, . . . distributed as Q(x) + η, where η is

a random variable (“the noise”) with a fixed but unknown distribution. We can, if we wish, demand to

see as little or as much of the Yn sequence as we wish. With this formulation, it is still possible to define

a random search procedure such that Q(X∗
n) → qµ

def
= ess infQ(X) almost surely for all search problems

(Q,µ) and all distributions of η. Note that we do not even assume that η has a mean. Throughout this

paper, F is the distribution function of Q(X) − qµ. The purpose of this paper is to draw attention to

such universally convergent random search algorithms that do not place any conditions on µ and F , just

as Sid Yakowitz showed us in 1973 (Yakowitz and Fisher, 1973).

§7. Pure random search

In this section, we analyze the behavior of unaltered pure random search under additive noise.

The probe points X1, . . . form an i.i.d. sequence drawn from a distribution with probability distribution

µ. At each probe point Xn, we observe Yn = Q(Xn) + ηn, where the ηi’s are i.i.d. random variables

distributed as η. Then we define

X∗
n = Xi if 1 ≤ i ≤ n and Yi = min

1≤j≤n
Yj .

This is nothing but the pure random search algorithm, employed as if we were unaware of the presence of

any noise. Our study of this algorithm will reveal how noise-sensitive or robust pure random search really





is. Not unexpectedly, the behavior of the algorithm depends upon the nature of the noise distribution.

The noise will be called stable if for all ε > 0,

lim
x↓−∞

G(x − ε)

G(x)
= 0,

where G is the distribution function of η, and 0/0 is considered as zero. This will be called Gnedenko’s

condition (see Lemma 1). A sufficient condition for stability is that G has a density g and

lim
x↓−∞

g(x)

G(x)
= ∞

.

Examples. If G does not have a left tail (i.e., G(x0) = 0 for some x0 > −∞), then the noise is stable.

Normal noise is also stable, but double exponential noise is not. In fact, the exponential distribution is

on the borderline between stability and non-stability. Distributions with a diverging hazard rate as we

travel from the origin out to −∞ are stable. Thus, stable noise distributions have small left tails. In fact,∫ 0
−∞ |x|kG(dx) < ∞ for all k.

The reason why stable noise will turn out to be manageable, is that min(η1, . . . , ηn) is basically

known to fall into an interval of arbitrary small positive length around some deterministic value an with

probability tending to one for some sequence {an}. It could thus happen that an → −∞ as n → ∞, yet

this is not a problem. This was also observed by Rubinstein and Weissman (1979). In the next section,

we obtain a necessary and sufficient condition for the weak convergence of Q(X∗
n) for the pure random

search algorithm.

Theorem 1. If η is stable, then Q(X∗
n) → qµ in probability. Conversely, if η is not stable, then Q(X∗

n)

does not tend to qµ in probability for any search problem for which for all ε small enough, F (2ε)−F (ε) > 0.

We picked the name “stable noise” because the minimum η∗n of η1, . . . , ηn is stable in the sense

used in the literature on order statistics, that is, there exists a sequence an such that η∗n − an → 0 in

probability. We will prove the minimal properties needed further on in this section. The equivalence

property A of Lemma 1 is due to Gnedenko (1943), while parts B and C are inherent in the fundamental

paper of Geffroy (1958).

Lemma 1.

A. G is the distribution function of stable noise if and only if η∗n − an → 0 in probability for some

sequence an.

B. If η∗n − an → 0 in probability for some sequence an, then nG(an − ε) → 0 and nG(an + ε) → ∞
as n → ∞ for all ε > 0. Also, if bn = Ginv(1/n), then nG(bn − ε) → 0 and nG(bn + ε) → ∞ as

n → ∞ for all ε > 0. Note: Ginv(u) = inf{t : G(t) ≥ u}.
C. If the noise distribution is not stable, then there exist positive constants a < b, a sequence {an},

a subsequence ni and an ε > 0 such that niG(ani − ε) ≥ a and niG(ani) ≤ b for all i.





Proof. We begin with property B. Note that by assumption, (1−G(an−ε))n → 1, and thus nG(an−ε) →
0. Also, (1−G(an + ε))n → 0 implies nG(an + ε) → ∞. Observe that nG(bn) ≤ 1 ≤ nG(bn + u) for any

u > 0. This shows that eventually, an + ε ≥ bn ≥ an − ε. Thus, nG(bn + 2ε) ≥ nG(an + ε) → ∞ and

nG(bn − 2ε) ≤ nG(an − ε) → 0.

Let us turn to A. We first show that B implies Gnedenko’s condition. We can assume without loss

of generality that an is monotone decreasing since an can be replaced by Ginv(1/n) in view of property

B. For every u < a1, we find n such that an > u ≥ an+1. Thus, G(an + ε) ≥ G(u+ ε) ≥ G(an+1 + ε) and

G(an − ε) ≥ G(u− ε) ≥ G(an+1 − ε). Thus,

G(an+1 + ε)

G(an − ε)
≤ G(u + ε)

G(u − ε)
≤ G(an + ε)

G(an−1 − ε)
.

The case of bounded an is trivial, so assume an → −∞. Now let u → −∞ (and thus n → ∞), and deduce

that G(u+ ε)/G(u− ε) → ∞. Since ε is arbitrary, we obtain Gnedenko’s condition.

Next, part A follows if we can show that Gnedenko’s condition implies the existence of the

sequence an; proving the existence of an is equivalent to proving the existence of an such that nG(an+ε) →
∞ and nG(an − ε) → 0 for all ε > 0. Let us take an = Ginv(1/n). From the definition of Ginv, we note

that for any u > 0, v ∈ (0, 1), G(Ginv(v)) ≤ v ≤ G(Ginv(v) + u). Thus, by the Gnedenko condition, for

ε > 0,

nG(an + ε) ≥ G(an + ε)

G(an + ε/2)
→ ∞ .

Similarly,

nG(an − ε) ≤ G(an − ε)

G(an)
→ 0.

This concludes the proof of part A.

For part C, we see that necessarily an → ∞. We define an = Ginv(1/n). By assumption, there

exists an ε > 0, a sequence xk ↑ ∞, and an a > 0 such that G(xk − 2ε)/G(xk + ε) ≥ a for all k. Next, by

definition of an, we note that for infinitely many indices n, we have xk − ε ≤ an ≤ xk. These define the

subsequence ni that we will use. Observe that nG(an) ≤ 1 for all n, while for all n with xk− ε ≤ an ≤ xk,

nG(an − ε) ≥ G(an − ε)

G(an + ε)
≥ G(xk − 2ε)

G(xk + ε)
≥ a > 0.

Proof of theorem 1. Let F be the distribution function of Q(X1)− qµ, and let G be the distribution

function of η. We first show that stable noise is sufficient for convergence. For brevity, we denote qµ by q.

Furthermore, ε > 0 is an arbitrary constant, and an = Ginv(1/n). Observe that the event [Q(X∗
n) ≤ q+3ε]

is implied by An ∩ Bn, where An is the event that for some i ≤ n, Q(Xi) ≤ q + ε and simultaneously,

ηi ≤ an + ε; and Bn is the event that for all i ≤ n we either have Q(Xi) ≤ q + 3ε or ηi > an − ε. The

convergence follows if we can show that P {An} → 1 and P {Bn} → 1 as n → ∞.

P {Ac
n} = P {∩n

i=1 {[Q(Xi) > q + ε] ∪ [Q(Xi) ≤ q + ε][ηi > an + ε]}}
= (1− F (ε) + F (ε)(1−G(an + ε)))n

≤ exp(−nF (ε)G(an + ε)).





This tends to zero by property B of Lemma 1. Next,

P {Bc
n} = P {∩n

i=1 {[Q(Xi) ≤ q + 3ε] ∪ [Q(Xi > q + 3ε][ηi ≤ an − ε]}}
= (F (3ε) + (1 − F (3ε))G(an − ε))n

≤ exp(−n(1− F (3ε))(1−G(an − ε)))

∼ exp(−(1− F (3ε))n)

where we used property B of Lemma 1 again. This concludes the proof of the sufficiency.

The necessity is obtained as follows. Since G is not stable, we can find positive constants a < b,

a sequence {an}, a subsequence ni and an ε > 0 such that niG(ani − 2ε) ≥ a and niG(ani) ≤ b for all i

(Lemma 1, property C). Let n be in this subsequence ni, and let (N,M, n−N −M) be the multinomial

random vector with the number of Q(Xi)− q values (i ≤ n) in [0, ε], (ε, 2ε] and (2ε,∞], respectively. We

first condition on this vector. Clearly, if for some Q(Xi)− q in the second interval we have ηi ≤ an − 2ε,

while for all Q(Xi)− q in the first interval, we have ηi > an, then Q(X∗
n) > q + ε. Thus, the conditional

probability of this event is

P
{
Q(X∗

n) > qµ + ε
}
≥ (1−G(an))

N (1− (1 −G(an − 2ε))M )

≥ (1 − b/n)N (1− (1− a/n)M ).

To un-condition, we use the multinomial moment generating function

E
{
sN tMvn−N−M

}
= (sp1 + tp2 + vp3)

n ,

where s, t, v ≥ 0 and p1, p2, p3 are the parameters of the multinomial distribution. This yields

P
{
Q(X∗

n)− qµ > ε
}
≥ E

{
(1− b/n)N (1− (1 − a/n)M )

}
= (1− F (ε)b/n)n − (1− F (ε)b/n− (F (2ε)− F (ε))a/n)n

∼ exp(−bF (ε))(1− exp(−a(F (2ε)− F (ε)))) > 0,

provided that F (2ε) − F (ε) > 0. This can be guaranteed, since we can make ε smaller without compro-

mising the validity of the lower bound. This concludes the proof of Theorem 1.

§8. Strong convergence and strong stability

There is a strong convergence analog of Theorem 1. We say that G is strongly stable noise

if the minimal order statistic of η1, . . . , ηn is strongly stable, i.e., there exists a sequence of numbers an

such that η∗n − an → 0 almost surely as n → ∞.

Theorem 2. If η is strongly stable, then Q(X∗
n) → qµ almost surely.

Proof. Since strong stability implies stability, we recall from Lemma 1 that we can assume without

loss of generality that an = Ginv(1/n). For δ > 0, let aδn = Ginv(1/(δn). Observe that in any case

an − aδn → 0 as n → ∞. Let ε > 0 be arbitrary, and let Sn be the set of indices between 1 and n for

which Q(Xi) ≤ qµ + ε. Let |Sn| denote the cardinality of this set. As |Sn| is binomial (n, F (ε)), it is easy

to see that |Sn| ≥ nF (ε)/2 except possibly finitely often with probability one. Define

η∗n = min
i≤n

ηi , η#n = min
i∈Sn

ηi.





Since |Sn| → ∞ almost surely, we have η∗n−an → 0 and η
#
n −a|Sn| → 0 almost surely. Define c = F (ε)/2.

Consider the following inclusion of events (assuming for convenience that cn is integer-valued):

[Q(X∗
n) > qµ + 4ε i.o. ]

⊆ [|Sn| < cn i.o. ] ∪ [η∗n ≤ an − ε i.o. ]∪
[η#n ≥ a|Sn| + ε i.o. ] ∪ [an ≤ acn − ε i.o. ].

The event on the right hand side has zero probability. Hence so does the event on the left hand side.

It is more difficult to provide characterizations of strongly stable noises, although several sufficient

and a few necessary conditions are known. For an in-depth treatment, we refer to Geffroy (1958). It

suffices to summarize a few key results here. The following condition due to Geffroy is sufficient:

lim
x↓−∞

G(x + ε)

G(x) log(1/G(x))
= ∞ .

This function comes close to being necessary. Indeed, if G is strongly stable, and G(x)/G(x + ε) is

monotone in the left tail beyond some point, then Geffroy’s condition must necessarily hold. If G has a

density g, then another sufficient condition is that

lim
x↓−∞

g(x)

G(x) log log(1/G(x))
= ∞ .

It is easy to verify now that noise with density c exp(−|x|α) is strongly stable for a > 1 and is not

stable when a ≤ 1. The borderline is once again close to the double exponential distribution. To

more clearly identify the threshold cases consider the noise distribution function given by G(x) =

exp(−|x| log |x|h(|x|)), x ≤ −1, where h(x) is a positive function. It can be shown that for constant

h(x) ≡ H > 0, the noise is stable but not strongly stable. However, if h(|x|) ↑ ∞ as x → −∞, then G is

strongly stable (Geffroy, 1958).

§9. Mixed random search

Assume next that we are not using pure random search, in the hope of assuring consistency for

more noise distributions, or speeding up the method of the previous section. A certain minimum amount

of global search is needed in any case. So, we will consider the following prototype model of an algorithm:

Xn has distribution given by αnµ+ (1 − αn)µn, where {αn} is a sequence of probabilities, and µn is an

arbitrary probability distribution that may depend upon the past (all Xi with i < n, and all observations

made up to time n). We call this mixed random search, since with probability αn, the trial point is

generated according to the pure random search distribution µ. In the noiseless case,
∑∞

n=1 αn = ∞ is

necessary and sufficient for strong convergence of Q(X∗
n) to qµ for all search problems and all ways of

choosing µn. One is tempted to think that under stable noise and the same condition on αn, we still

have at least weak convergence. Unfortunately, this is not so. What has gone wrong is that it is possible

that too few probe points have small Q-values, and that the smallest ηi corresponding to these probe

values is not small enough to “beat” the smallest ηi among the other probe values. In the next theorem,

we establish that convergence under stable noise conditions can only be guaranteed when a positive

fraction of the search effort is spent on global search, e.g. when infn αn > 0. Otherwise, we can still have

convergence of Q(X∗
n) to qµ, but we lose the guarantee, as there are several possible counterexamples.





Theorem 3. If lim infn→∞ 1
n

∑n
i=1 αi ≥ a for some a > 0, then under stable noise conditions, Q(X∗

n) →
qµ in probability, and under strong stable noise conditions, Q(X∗

n) → qµ almost surely. Conversely, if

lim infn→∞ 1
n

∑n
i=1 αi = 0, then there exists a search problem, a stable noise distribution G, and a way

of choosing the sequence µn such that Q(X∗
n) does not converge weakly to qµ.

Proof. We only prove the first part with strong stability. We mimic the proof of Theorem 2 with the

following modification: let Sn be the set of indices between 1 and n for which Q(Xi) ≤ qµ + ε and

Xi is generated according to the αiµ portion of the mixture distribution. Note that |Sn| is distributed

as
∑n

i=1 Ai, where the Ai’s are i.i.d. Bernoulli random variables with parameter αiF (ε). Note that

|Sn|/
∑n

i=1 αiF (ε) → 1 almost surely, so that |Sn| ≥ naF (ε)/2 except possibly finitely often with prob-

ability one. Then apply the event inclusion of Theorem 2 with c = aF (ε)/2. The weak convergence is

obtained in a similar fashion from the inclusion

[Q(X∗
n) > qµ + 4ε] ⊆ [|Sn| < cn] ∪ [η∗n ≤ an − ε] ∪ [η#n ≥ a|Sn| + ε] ∪ [an ≤ acn − ε],

where we use the notation of Theorem 2. All events on the right-hand-side have probability tending to

zero with n.

§10. Strategies for general additive noise

From the previous sections, we conclude that under some circumstances, noise can be tolerated in

pure random search. However, it is very difficult to verify whether the noise at hand is indeed stable; and

the rate of convergence takes a terrible beating with some stable noise distributions. There are algorithms

whose convergence is guaranteed under all noise distributions, and whose rate of convergence depends

mainly upon the search distribution F , and not on the noise distribution! Such niceties do not come free:

a slower rate of convergence results even when the algorithm operates under no noise; and in one of the

two strategies discussed further on, the storage requirements grow unbounded with time.

How can we proceed? If we stick to the idea of trying to obtain improvements of X∗
n by comparing

observations drawn at Xn+1 with observations drawn at X∗
n, then we should be very careful not to accept

Xn+1 as the new X∗
n+1 unless we are reasonably sure that Q(Xn+1) < Q(X∗

n). Thus, several noise-

perturbed observations are needed at each point, and some additional protection is needed in terms of

thresholds that give X∗
n the edge in a comparison. This is only natural, since X∗

n embodies all the

information gathered so far, and we should not throw it away lightly. To make the rate of convergence

less dependent upon the noise distribution, we should consider comparisons between observations that

are based on the relative ranks of these only. This kind of solution was first proposed in Devroye (1977).

Yakowitz and Fisher (1973) proposed another strategy, in which no information is ever thrown

away. We store for each Xn all the observations ever made at it. At time n+ 1, draw more observations

at all the previous probe points and at a new probe point Xn+1, and choose X∗
n+1 from the entire pool

of probe points. From an information theoretic point of view, this is a clever though costly policy. The

decision which probe point to take should be based upon ranks, once again. Yakowitz and Fisher (1973)

employ the empirical distribution functions of the observations at each probe point. Devroye (1977) in a

related approach advocates the use of the Wilcoxon-Mann-Whitney rank statistic and modifications of it.

Note that the fact that no information is ever discarded makes these algorithms nonsequential in nature;

this is good for parallel implementations, but notoriously bad when rates of convergence are considered.





Consider first the nonsequential strategy in its crudest form: define X∗
n as the “best” among the

first n probe points X1, . . . , Xn, which in turn are i.i.d. random vectors with probability distribution µ.

Let λn ↑ ∞ be a sequence of integers to be chosen by the user. We make sure that at each time n, the

function is sampled λn times at each n. If the previous observations are not thrown away, then this means

that λn + (n − 1)(λn − λn−1) new observations are necessary, λn at Xn, and λn − λn−1 at each of Xi,

1 ≤ i < n. The observations are stored in a giant array Yij , 1 ≤ i ≤ n, 1 ≤ j ≤ λn. As an index of the

“goodness” of Xi, we could consider the average

Qni =
1

λn

λn∑
j=1

Yij .

The best point is the one with the smallest average. Clearly, this strategy cannot be universal since for

good performance, it is necessary that the law of large numbers applies, and thus that E|η| < ∞, where

η is the noise random variable. However, in view of its simplicity and importance, we will return to this

solution in a further subsection.

If we order all the components (Yi1, . . . , Yiλn) of the i-th vector so as to obtain (Yi(1) < · · · <
Yi(λn)), then other measures of the goodness may include the medians Mni of these components, or “quick

and dirty” methods such as Gastwirth’s statistic (Gastwirth, 1966)

Gni =
1

10
(3Yi(λn/3) + 4Yi(λn/2) + 3Yi(2λn/3)).

We might define X∗
n as that point among X1, . . . , Xn with the smallest value of Gni.

We could also introduce the notion of pairwise competitions between the Xi: for example, we

say that Xi wins against Xk if Gni < Gnk. The Xi with the most wins is selected to be X∗
n. This

view leads to precisely that Xi with the smallest value of Gni. However, pairwise competitions can go

further, as we now illustrate. Yakowitz and Fisher (1973) thought it useful to work with the empirical

distribution functions Fni(x) = 1
λn

∑λn
j=1 1[Yij≤x]. Our approach may be considered as a tournament

between X1, . . . , Xn, in which
(n
2

)
matches are played, one per pair (Xi, Xj). Let

Dij = sup
x
(Fni(x) − Fnj(x)).

We say that Xi wins its match with Xj when Dij ≥ Dji. We define X∗
n as that member of {X1, . . . , Xn}

with the most wins. In case of ties, we take the member with the smallest index. We call this the tour-

nament method. Rather than using the Kolmogorov-Smirnov based statistic suggested above, one might

also consider other rank statistics based on medians of observations or upon the generalized Wilcoxon

statistic (Wilcoxon, 1945; Mann and Whitney, 1947), where only comparisons between Yij ’s are used.

The number of function evaluations used up to iteration n is nλn. In addition, in some cases,

some sorting may be necessary, and in nearly all the cases, the entire Yij array needs to be kept in storage.

Also, there are
(n
2

)
matches to determine the wins, leading to a complexity, in the n-th iteration alone

of about n2λn. This seems to be extremely wasteful. We discuss some time-saving modifications further

on. We provide a typical result here (Theorem 4) for the tournament method.

Theorem 4. Let X∗
n be chosen by the tournament method. If λn/ logn → ∞, then Q(X∗

n) → qµ almost

surely as n → ∞.





Proof. Fix ε > 0 and let G be the noise distribution, and Fn is the empirical distribution function

obtained from λn observations taken at Xi = x. Note that Fn(y+Q(x)) can be considered as an estimate

of G(y). In fact, by the Glivenko-Cantelli lemma, we know that supy |Fn(y +Q(x))−G(y)| → 0 almost

surely. But much more is true. By an inequality due to Dvoretzky, Kiefer and Wolfowitz (1956), in a

final form derived by Massart (1990), we have for all δ > 0,

P
{
sup
y

|Fn(y +Q(x)) −G(y)| ≥ δ

}
≤ 2e−2λnδ

2
.

For ε > 0, we define the positive constant

δ = sup
x
(G(x + ε)−G(x)),

and let An be the event that for all i ≤ n, supy |Fni(y +Q(Xi))−G(y)| < δ/4. Clearly, then,

P {Ac
n} ≤ 2ne−λnδ

2/8.

An important event for us is Tε, the event that all matches (Xi, Xj) (i �= j, i, j,≤ n) with Q(Xi) ≤
Q(Xj)− ε have a fair outcome, that is, Xi wins against Xj . Let us compute a bound on the probability

of T c
ε : We observe that T c

ε ⊆ Ac
n so that P{T c

ε } ≤ δ/4 < 0 + 2(δ/4). To see this, fix (i, j) with

Q(Xi) ≤ Q(Xj)− ε. Then Dij ≤ Dji (Xi loses) if

sup
x
(Fni(x) − Fnj(x)) ≤ sup

x
(Fnj(x)− Fni(x))

but this in turn implies that

δ − 2(δ/4) < 0 + 2(δ/4)

which is impossible. Thus, every such match has a fair outcome.

Consider next the tournament, and partition the Xi’s in four groups according to whether Q(Xi)

belongs to one of these intervals: [qµ, qµ + ε], (qµ + ε, qµ + 2ε], (qµ + 2ε, qµ + 3ε], (qµ + 3ε,∞). The

cardinalities of the groups are Ni, 1 ≤ i ≤ 4. If Tε holds, then any member of group 1 wins its match

against any member of groups 3 and 4, for at least N3 +N4 wins. Any member of group 4 can at most

win against other members of group 4 or all members of group 3, for at most N3 + N4 − 1 wins. Thus,

the tournament winner must come from groups 1, 2 or 3, unless there is no Xi in any of these groups.

Thus,

Q(X∗
n) ≤ qµ + 3ε .

We showed the following:

P{Q(X∗
n) > qµ + 3ε} ≤ P{T c

ε ∪ [N1 +N2 +N3 = 0]} ≤ 2ne−2λnδ
2
+ (1− F (3ε))n.

This is summable in n for every ε > 0, so that we can conclude Q(X∗
n) → qµ almost surely by the

Borel-Cantelli lemma.

It is a simple exercise to modify Theorem 4 to include mixing schemes, i.e., schemes of sampling

in whichXn has probability measure αnµ+(1−αn)µn, where αn ∈ [0, 1] and µn is an arbitrary probability

measure. We note that Q(X∗
n) still converges to qµ almost surely if we merely add the standard mixing

condition ∞∑
n=1

αn = ∞.





Following the proof of Theorem 4, we notice indeed that for arbitrary N ,⋃
n≥N

[Q(X∗
n) > qµ + 3ε] ⊆

⋃
n≥N

Ac
n ∪

[
N⋂
i=1

[Q(Xi) > qµ + 3ε]

]
.

Hence,

P

{
sup
n≥N

Q(X∗
n) > qµ + 3ε

}
≤

∑
n≥N

2ne−λnδ
2/8 + exp

(
−F (3ε)

N∑
i=1

αi

)
.

Here we used an argument as in the proof of Theorem 3 in the section on mixed global random search.

The bound tends to 0 with N , and thus Q(X∗
n) → qµ almost surely if λn/ logn → ∞.

Consider the simplest sequential strategy, comparable to a new player entering at each iteration

in the tournament, and playing against the best player seen thus far. Assume that the Xi are i.i.d. with

probability measure µ, and that at iteration n, we obtain samples Ynj and Yn−1,j∗ , 1 ≤ j ≤ λn, at Xn

and X∗
n−1 respectively. For comparing performances, we use suitably modified statistics such as

Zn = sup
y
(Fn(y)− F ∗

n−1(y)),

where Fn is the empirical distribution function for the Ynj sample, and F ∗
n−1 is the empirical distribution

function for the other sample. Define X∗
n according to the rule

X∗
n =

{
Xn if Zn < εn

X∗
n−1 otherwise,

where εn ≥ 0 is a threshold designed to give some advantage to X∗
n−1, since the information contained

in X∗
n−1 is too valuable to throw away without some form of protection. We may introduce mixing as

long as we can guarantee that for any Borel set A, P {Xn ∈ A} ≥ αnµ(A), and αn is the usual mixing

coefficient. This allows us to combine global and local search and to concentrate global search efforts in

promising regions of the search domain.

Theorem 5 (devroye, 1978). Assume that the above sequential strategy is used with mixing, and

that comparisons are based upon Zn. Assume furthermore that limn→∞ εn = 0,
∑∞

n=1 αn = ∞. If

λnε
2
n/2− log(1/αn) → ∞, then Q(X∗

n) → qµ in probability as n → ∞. If

∞∑
n=1

exp(−λnε
2
n/2) < ∞ ,

then Q(X∗
n) → qµ with probability one as n → ∞.

Proof. We will use fact that if Q(X∗
n) → qµ in probability, and

∞∑
n=1

P
{
Q(X∗

n+1) > Q(X∗
n)
}
< ∞ ,

then Q(X∗
n) → qµ almost surely. This follows easily from the inequality

P

 ⋃
n≥N

[Q(X∗
n) > qµ + ε]

 ≤ P
{
Q(X∗

N ) > qµ + ε
}
+

∞∑
n=N

P
{
Q(X∗

n+1) > Q(X∗
n)
}
.





Now,

P
{
Q(X∗

n+1) > Q(X∗
n)
}
≤ P {Q(Xn+1) > Q(X∗

n);Zn > εn}

≤ P
{
sup
y

|Fn(y)−G(y −Q(Xn)| >
εn
2

}
+ P

{
sup
y

|F ∗
n−1(y)−G(y −Q(X∗

n−1)| >
εn
2

}
≤ 4 exp(−λnε

2
n/2),

where we used the Dvoretzky-Kiefer-Wolfowitz inequality. Thus, the summability condition is satisfied.

To obtain the weak convergence, we argue as follows. Define

ρn = inf
x,x′:Q(x′)≤Q(x)−ε

P
{
X∗

n+1 = Xn+1|Xn+1 = x′, X∗
n = x

}
and

pn = sup
x,x′:Q(x′)≥Q(x)

P
{
X∗

n+1 = Xn+1|Xn+1 = x′, X∗
n = x

}
.

Then

ξn+1
def
= P

{
Q(X∗

n+1) > qµ + 2ε
}

≤ P
{
Q(X∗

n) > qµ + 2ε; [Q(Xn+1) ≤ qµ + ε;X∗
n+1 = Xn+1]

c}
+ P

{
Q(X∗

n) ≤ qµ + 2ε;Q(Xn+1) > qµ + 2ε;X∗
n+1 = Xn+1

}
≤ ξn(1 − αnF (ε)ρn) + pn .

A bit of analysis shows that ξn → 0 when
∑∞

n=1 αnρn = ∞ and either
∑

n pn < ∞ or pn/(αnqn) → 0.

But we have already seen that

pn ≤ 4 exp(−λnε
2
n/2).

Define δ = supx(G(x+ ε)−G(x)). Then, for εn ≤ δ/2,

qn ≥ 1− 4 exp(−λnδ
2/2).

Thus, when λn → ∞, εn → 0, and either
∑

n αn = ∞ or α−1
n exp(−λnε

2
n/2) → 0, we have weak

convergence of Q(X∗
n) to qµ. This concludes the proof of Theorem 5.

Choosing εn and λn is an arbitrary process. Can we do without? For example, can we boldly

choose εn = 0 and still have guaranteed convergence for all search problems and all noises? The answer

is yes, provided that λn increases faster than quadratically in n. This result may come as a bit of a

surprise, since we based the proof of Theorem 5 on the observation that the event [Q(X∗
n) > Q(X∗

n−1)]

occurs finitely often with probability one. We will now allow this event to happen infinitely often with any

positive probability, but by increasing λn quickly enough, the total sum of the “bad” moves
∑

n(Q(X∗
n)−

Q(X∗
n−1))+ is finite almost surely.

Theorem 6. Assume that the sequential strategy is used with mixing, and that comparisons are based

upon Zn. Assume furthermore that εn ≡ 0,
∑∞

n=1 αn = ∞, and
∑∞

n=1 1/
√
λn < ∞. Then Q(X∗

n) → qµ

with probability one as n → ∞.





Proof. Let ε > 0 be arbitrary. Observe that

⋃
n≥N

[Q(X∗
n) > qµ + 2ε] ⊆ [Q(X∗

N ) > qµ + ε] ∪

∑
n≥N

(Q(X∗
n+1)−Q(X∗

n))+ > ε

 .

Thus, strong convergence follows from weak convergence if we can prove that

∞∑
n=1

(Q(X∗
n+1)−Q(X∗

n))+ < ∞ almost surely .

This follows if ∞∑
n=1

1[
Q(X∗

n+1)>Q(X∗
n)+1

] < ∞ almost surely

and ∞∑
n=1

min
(
1, (Q(X∗

n+1)−Q(X∗
n))+

)
< ∞ almost surely .

By the Beppo-Levi theorem, the former condition is implied by

∞∑
n=1

P
{
Q(X∗

n+1) > Q(X∗
n) + 1

}
< ∞.

By the Beppo-Levi theorem, the latter condition is implied by

∞∑
n=1

E
{
min

(
1, (Q(X∗

n+1)−Q(X∗
n))+

)}
< ∞ .

Define

pn(s) = sup
x,y:Q(y)−Q(x)=s

P
{
X∗

n+1 = Xn+1|Xn+1 = y,X∗
n = x

}
.

We recall that

pn(s) ≤ 4 exp(−λnδ(s)
2/2),

where

δ(s) = sup
x
(G(x + s/2)−G(x)) .

We note that if L is the distance between the third and first quartiles of G, then δ(s) ≥ s/(2s+4L). This

is easily seen by partitioning the two quartile interval of length L into �2L/s� ≤ 1 + 2L/s intervals of

length s/2 or less. The maximum probability content of one of these intervals is at least 1/2(1 + 2L/s).

From the proof of Theorem 5,

E
{
min

(
1, (Q(X∗

n+1)−Q(X∗
n))+

)}
≤ sup

1≥s>0
spn(s)

≤ sup
1≥s>0

4s exp(−λnδ(s)
2/2)

≤ sup
1≥s>0

4s exp(−λns
2/2(2s+ 4L)2)

= O
(
1/

√
λn

)
.





This is summable in n, as required. Also,

P
{
Q(X∗

n+1) > Q(X∗
n) + 1

}
≤ pn(1)

and this is summable in n. To establish the weak convergence of Q(X∗
n), we begin with the following

inclusion of events, in which m is a positive integer:

[Q(X∗
n+m) > qµ + 2ε] ⊆

 n+m⋂
k=n+1

Ak

 ∪
[
n+m∑
k=n

(Q(X∗
n+1)−Q(X∗

n))+ > ε

]
,

where

Ak
def
= [Q(Xk) > qµ + ε/2] ∪ [Q(Xk) ≤ qµ + ε/2]

[
sup
x

|Fk(x) −G(x+Q(Xk))| > δ(ε)/2

]
∪ [Q(Xk) ≤ qµ + ε/2]

[
sup
x

|F ∗
k−1(x) −G(x+Q(X∗

k−1))| > δ(ε)/2

]
.

Here we used the notation of the proof of Theorem 5. By estimates obtained there, we note that

P


n+m⋂
k=n+1

Ak

 ≤
n+m∏
k=n+1

(
1− αkF (ε/2)

(
1− 4e−λkδ(ε)

2/2
))

≤
n+m∏
k=n+1

(1− αkF (ε/2)/2)

≤ exp

−
n+m∑
k=n+1

αkF (ε/2)/2

 ,

provided that n is large enough. For any fixed n, we can choose m so large that this upper bound is

smaller than a given small constant. Thus, P
{
Q(X∗

n+m) > qµ + 2ε
}
is smaller than a given small constant

if we first choose n large enough, and then choose m appropriately. This concludes the proof of Theorem

6 when Zn is used.

Both the sequential and nonsequential strategies can be applied to the case in which we compare

points on the basis of Qni, the average of λn observations made at Xi. This is in fact nothing more than

the situation we will encounter when we wish to minimize a regression function. Indeed, taking averages

would only make sense when the mean exists. Assume thus that we have the regression model

Q(x) = E {g(x, η)} ,

where g is a real-valued function, and η is some random variable. For fixed x, we cannot observe

realizations of η, but rather an i.i.d. sample Y1, Y2, . . ., where Yi = g(x, ηi), and the ηi’s are i.i.d. In the

additive noise case, we have the special form g(x, η) = Q(x)+ η, where η is a zero mean random variable.

We first consider the nonsequential model, in which the probe points are i.i.d. with probability measure

µ. The convergence is established in Theorem 7. Clearly, the choice of λn (and thus our cost) increases

with the size of the tail or tails of η. In the best scenario, λn should increase faster than logn.





Theorem 7. Let X∗
n be chosen on the basis of the smallest value of Qni. Assume that η is such that

E|η| < ∞, Eη = 0. Then Q(X∗
n) → qµ in probability as n → ∞ when condition A holds: P {|η| > n} =

o(1/nt+1) for some t > 0 (a sufficient condition for this is E|η|1+t < ∞), and lim inf λn/n
1/t > 0. We have

strong convergence if B or C hold: (condition B) Eetη < ∞ for all t in an open neighborhood of the origin,

and limn→∞ λn/ logn = ∞; (condition C) P {|η| > n} = o(1/nt+1) for some t > 0, lim inf λn/n
1/t > 0,

and
∑

n λ
−t
n < ∞. Finally, for any noise with zero moment, there exists a sequence {λn} such that

Q(X∗
n) → qµ almost surely as n → ∞.

Proof. Let An be the event that for all i ≤ n, |Qni −Q(Xi)| ≤ ε/2. We note that

P {Ac
n} ≤ nP

{∣∣∣∣∣ 1

λn

λn∑
i=1

ηi

∣∣∣∣∣ > ε/2

}
.

Arguing as in the proof of Theorem 4, we have

P
{
Q(X∗

n) > qµ + 2ε
}
≤ P {Ac

n}+ (1− F (ε))n.

This implies weak convergence of Q(X∗
n) to qµ if P {Ac

n} → 0. From the work of Baum and Katz (1985)

(see Petrov (1975, pp. 283-286)), we retain that P {Ac
n} = o(n/λtn) for all ε > 0 if P {|η| ≥ n} = o(n−t−1),

where t ≥ 0. If E|η|1+t < ∞ for some t > 0, then by Theorem 28 of Petrov (1975), P {|η| > n} = o(1/nt+1),

so condition A is satisfied. Finally, if Eetη ≤ ∞ for all t in an open neighborhood of the origin, then

P {Ac
n} = O(nρ−λn) for some constant ρ ∈ (0, 1) (see e.g. Petrov (1975, pp. 54-55)). This proves the

weak convergence portion of the theorem.

The strong convergence under condition B follows without trouble from the above bounds and

the Borel-Cantelli lemma. For condition C, we need the fact that if P
{
|n−1∑n

i=1 ηi| ≥ ε
}
= o(n−u) for

every ε > 0, where u > 0 is a constant, then we have

P

{
sup
n≥N

∣∣∣∣∣n−1
n∑

i=1

ηi

∣∣∣∣∣ ≥ ε

}
= o(N−u)

(see Petrov, 1975, p. 284). Now observe that under condition C,

P

{
sup
n≥N

Q(X∗
n) > qµ + 2ε

}
≤ P

{
sup
n≥N

sup
i≤n

|Qni −Q(Xi)| > ε/2

}
+ (1− F (ε))N

≤
∞∑
i=1

P

{
sup

n≥max(i,N)
|Qni −Q(Xi)| > ε/2

}
+ (1 − F (ε))N

=

N−1∑
i=1

P

{
sup
n≥N

|Qni −Q(Xi)| > ε/2

}
+ (1− F (ε))N

+

∞∑
i=N

P

{
sup
n≥i

|Qni −Q(Xi)| > ε/2

}
+ (1− F (ε))N

= o(Nλ−t
N ) +

∞∑
i=N

cλ−t
i + (1 − F (ε))N

for some constant c > 0. This tends to 0 with N .





The last part of the theorem follows from the weak law of large numbers. Indeed, there exists a

function ω(u) with ω(u) → 0 as u → ∞ such that P
{
|n−1∑n

i=1 ηi| > ε
}
= ω(n). Thus, P {Ac

n} ≤ nω(λn).

Clearly, this is countable in n if we choose λn so large that ω(λn) ≤ 2−n. Therefore, the last part of the

theorem follows by the Borel-Cantelli lemma.

The remarks regarding rates of convergence made following Theorem 4 apply here as well. What

is new though is that we have lost the universality, since we have to impose conditions on the noise. If

we apply the algorithm with some predetermined choice of λn, we have no guarantee whatsoever that

the algorithm will be convergent. And even if we knew the noise distribution, it may not be possible to

avoid divergence for any manner of choosing λn.

§11. Universal convergence

In the search for universal optimization methods, we conclude with the following observation. Let

Q be a function on the positive integers with finite infimum. Assume that for each x ∈ Z+ = {1, 2, 3, . . .},
there exists an infinite sequence of i.i.d. random variables Y (x, 1), Y (x, 2), . . ., called the observations.

We have Q(x) = E{Y (x, 1)}. A search algorithm is a sequence of functions

fn+1(x, k;X1,K1, X2,K2, . . . , Xn,Kn) , n ≥ 0,

where as a function of (x, k), fn+1 describes a distribution. The sequence (X1,K1, . . . , Xn,Kn) is called

the history. For each n, starting with n = 0, we generate a pair (Xn,Kn) from the distribution given

by fn(x, k). This pair allows us to look at Y (Xn,Kn). Thus, after n iterations, we have accessed at

most n observations. A search algorithm needs gn, a function of Xi,Ki, Y (Xi,Ki), 1 ≤ i ≤ n, that

maps to Z+ to determine which integer is taken as the best estimate X∗
n of the minimum: X∗

n =

gn(X1,K1, Y (X1,K1), . . . , X1,K1, Y (X1,K1). A search algorithm is a sequence of mappings (fn, gn).

A search algorithm is universally convergent if for all functions Q with infxQ(x) > −∞, and all distribu-

tions of Y (x, 1), x ∈ Z+, Q(X∗
n) → infxQ(x) in probability. We do not know if a universally convergent

search algorithm exists. The difficulty of the question follows from the following observation. At time

n, we have explored at most n integers and looked at at most n observations. Assume that we have n

observations at each of the first n integers (consider this as a present of n2 − n additional observations).

Let us average these observations, and define X∗
n as the integer with the smallest average. While at each

integer, the law of large numbers holds, it is not true that the averages converge at the same rate to their

means, and this procedure may actually see Q(X∗
n) diverge to infinity in some probabilistic sense.
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H.-P. Schwefel, Numerical Optimization of Computer Models, John Wiley, Chichester, 1981.

H.-P. Schwefel, Evolution and Optimum Seeking, Wiley, New York, 1995.

C. Sechen, VLSI Placement and Global Routing using Simulated Annealing, Kluwer Academic Publish-

ers, 1988.

G. R. Shorack and J. A. Wellner, Empirical Processes with Applications to Statistics, John Wi-

ley, New York, 1986.

B. O. Shubert, “A sequential method seeking the global maximum of a function,” SIAM Journal on Nu-

merical Analysis, vol. 9, pp. 379–388, 1972.

F. J. Solis and R. B. Wets, “Minimization by random search techniques,” Mathematics of Operations Re-

search, vol. 1, pp. 19–30, 1981.

G. S. Tarasenko, “Convergence of adaptive algorithms of random search,” Cybernetics, vol. 13, pp. 725–

728, 1977.

A. Törn, Global Optimization as a Combination of Global and Local Search, Skriftserie Utgiven av Han-

delshogskolan vid Abo Akademi, Abo, Finland, 1974.

A. Törn, “Probabilistic global optimization, a cluster analysis approach,” in: Proceedings of the EURO

II Conference, Stockholm, Sweden, pp. 521–527, North Holland, Amsterdam, 1976.
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