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I . INTRODUCTION

In statistical pattern recognition (or classification), one
is usually given a training set (X1,Y1), . . . .(X,,Yn) .
which consists of n independent identically distributed
A° x {0, 1 } valued random variables with the same
distribution as (X, Y) . Denote the probability measure
of X by s . The object is to guess Y from X and the
training set . Let us formally call a given estimate (or
pattern recognition rule) g„ (X) = g„ (X ; X 1 , Y" . . . . X n,
Y,J. The best possible rule, or the Bayes rule, is the one
achieving the smallest (or Bayes) probability of error,

L*def

	

inf

	

P{g(X) ?,- Y ; .
g eVd~',0 .1',

The object is to find rules g„ such that in a specified
sense, the probability of error with q,,,

def
Ln = Plgn(X) ~ YIX 1 , Y,, . . .,X n , Yn },

is close to L* .
Under the impetus of Valiant,"' many people have

recast the pattern recognition in the framework of
learning. Originally this was done under two restric-
tions :

• L* = 0: this happens only if with probability one .
P{Y= IIX}E{0,1} . In pattern recognition, we speak
of non-overlapping classes .
• One is interested in minimizing L n over a given

class of rules ~Y. That is, with the help of the training
data, the designer picks a function from a given class of
{0,1 }-valued functions lb'. (In the terminology of learn-
ing theory, elements of ~~ are called concepts .) The
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error with the best rule in'~ is denoted by

L d=f

	

inf

	

P{g(X) ~ Y} .
yE:, : .ra

	

,0,l

In fact, it is assumed that L = L* = 0, that is, that the
Bayes rule is in'~.

Later, these requirements have been relaxed . To see
what the limits are that one can achieve . minimax
lower bounds for the quantity

sup P{L„-L>e}
(X .Y) :1.=0

are derived that are valid for all rules g„ . Needless
to say, this provides us with information about the
necessary sample size. An (,-,J) learning algorithm in
the sense of Valiant" ) is one for which we may find a
sample size threshold N(i :, b) such that for n>_ N(s, b):

sup P{Ln -L>e}5.6 .
(,Y .YI :L=O

In this respect, N(;, (5 ) may be considered as a measure
of the appropriateness of the algorithm . Blumer et al. (21
showed that for any algorithm,

N(1:. (5)>CC t, log( b )+I I

where C, is a universal constant and Vis the Vapnik-
Chervonenkis (or VC) dimension of ~, introduced by
Vapnik and Chervonenkis . (3-5) We recall here that V
is the largest integer n such that there exists a set
{X	Xn) C= . ' that is shattered by W. That is, for
every subset S-_ there exists gel§ such that
g(x,) = I when (ES an g(x,) = 0 when ii~S. In Ehrenfeucht
et alt") the lower bound was partially improved to

V-I
N(F, d) _

	

-
32e
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when c _< 1/8 and S _< 1/100. It may be combined with
the previous bound .

In the first part of this note we improve this bound
further in constants . More importantly, the main pur-
pose of this note is to deal also with the case L > 0, to
tie things in with the more standard pattern recognition
literature . In fact, we will derive lower tail bounds as
above, as well as expectation bounds for

sup
(X, Y) :L fixed

For the L = 0 case it is shown in theorem 2 that

I

	

2esn (`-t)/2
sup P{L„>_c},

	

e -anr)(f - ar)
(X,Y) :r.=o

	

2eJnV V- 1

Devroye and Wagner ( ' ) showed that if g„ is a function
that minimizes the empirical error

n
IIg(X ;) # Yd

i=t

over S, and L = 0, then

''
P{L„ >_ f} _< 4

Zen

)
e-nr74

V

(I[A] denotes the indicator of an event A .) Later this
bound was improved by Blumer et a1/ 2) to

P{ L„

	

/ten

	

nr(og2i2>_ s} ~ 2

	

e
V v

Apart from the e (v- ` ) / 2 term in the lower bound, and
differences in constants, the lower bound and the upper
bound have the same form .

For the case L > 0, several upper bounds for the
performance of empirical error minimization were
derived using Vapnik-Chervonenkis-type inequalities
(see reference 8 for a survey) . The best upper bounds
have the form

cf(ne2)czv e -znr2

(see references 9-10), which are much larger than the
bounds for L = 0 for small e . Among other inequalities,
we show in theorem 5, that the E2 term in the exponent
is necessary . In particular, for fixed L_< 1/4

sup P{L„ - L , L} , e -4 nr 2 L .
(X,Y) :Lfixed

	

4

In general, we can conclude, that in the case L > 0, the
number of samples necessary for a certain accuracy
is much larger than in the usual learning theory
setup, where L = 0 is assumed . This phenomenon was
already observed by Vapnik and Chervonenkis°") and
Simon 112) who both proved lower bounds of the type

sup

	

E{L„-L)=52~
(X,i')arbitrary Vn )

In terms of n, the order of magnitude of this lower
bound is the same as those of upper bounds implied
by the probability inequalities cited above. In our

theorem 3 we point out that the lower bound on the
expected value of any rule depends on L as

sup E{L„-L)= J LV) .

(x,Y) :Lrxed

	

n

The results presented here can also be applied for
classes with infinite VC dimension . For example, it
is not hard to derive from theorem 1, what Blumer
et a!/ 2) already pointed out, that if V = co, then for
every n and g„, there is a distribution with L = 0 such
that

EL„ , c

for some universal constant c . This generalizes the first
theorem in reference 13, where Devroye showed a
similar result if s' is the class of all measurable discri-
mination functions. Thus, when V = oo, distribution-
free nontrivial performance guarantees for L„ - L or
L„ - L* do not exist .
Other general lower bounds for L„ - L* were also

given in reference 13 . For example, it is shown there
that if L* < 1/2, then for any sequence of rules g„, and
positive numbers a„ -.0, there exists a fixed distribution
such that EL„ min(L* + a„, 1/2) along a subsequence,
that is, the rate of convergence to the Bayes-risk can
be arbitrarily slow for some distributions . The differ-
ence with the minimax bounds given here is that the
same distribution is used for all n, whereas the bad
distributions for the bounds in this paper vary with n .

We note here that all results remain valid if we allow
randomization in the algorithms g„ .

The case L = 0

We begin by quoting a result by Vapnik and
Chervonenkis°" and Haussler et al! 14)

Theorem 1 . Let be a class of discrimination func-
tions with VC dimension V. Let X be the set of all
random variables (X, Y) for which L = 0. Then, for
every discrimination rule g„ based upon X,, Y,,..., X„,
Y„,andn >_ V-1,

sup EL„ > V	 - 1 1 - 1
(x, Y)E Y

	

2en

	

n - I

We now turn to the probability bound. Our bound
improves over the best bound that we are aware of thus
far, as given in theorem I and corollary 5 of Ehrenfeucht
et a1/ 6 In the case of N(e, 8), the sample size needed
for (e, S) learning, the coefficient is improved by a factor
of 8/3 .

Theorem 2 . Let be a class of discrimination func-
tions with VC dimension V> 2. Let X be the set of all
random variables (X, Y) for which L = 0, Assume a S
1/4 . Define v = [(V - 1)/2], and assume n , v. Then for
every discrimination rule g„ based upon X ,, Y,_.,X,
Yn,



sup P{L >F
}>
	

1

	

2neF

	

e -4"slit-a,l

V-1
(x .Y)Ex

	

2ev 2rru

In particular, when r < 1/8 and

log (1 ) >
C4i J

(2eJ2nu
d

	

e
then

N(F, (J ) > 1
8

log C 1 l .
F

	

Sd

If on the other hand n > 15 and n < (V - 1)/(12F), then

sup P{l.,>F}> 1
(X .Y)

	

20

Finally, for b < 1/20, and e < 1/2,

V-I
N(F, h) > -

	

.
12f;

Proof. The idea is to construct a family .~F of 2' - '
distributions within the distributions with L = 0 as
follows : first find points x 1 , . . . . x,, that are shattered by
cg. A member in ~F is described by V- I bits, 0 1 , . . .,
0 1 . For convenience, this is represented as a bit
vector 0 . We write 0,_ and 0 i _ for the vector 0 in which
the ith bit is set to I and 0, respectively . Assume V - I
n. For a particular bit vector, we let X = x,(i < V)
with probability p each, while X = x,, with probability
1 -p( V- 1) . Then set Y = f0(X), wherefa is defined as
follows :

fe

	

O i if x = x i , i < V;
few _

0 ifx=x,, .

Note that since Y is a function of X, we must have
L* 0. Also, L= 0, as the set {x	x,,} is shattered
by .4, i .e . there is a gc-W with g(x ;) = fa (x i ) for I < i < V.

Observe that
v-1

+=1

Using this, for given 0,

P{LR>FIX, .Y,, . , X„,Y„}
( v-1

>P(p
=1

I I9,~IxrA''1, - . . .X,,,Y,) x 5,]

X,, Y,, . . . .X„, Y„ }

This probability is either zero or one, as the event is
deterministic . We now randomize and replace 0 and
O. For fixed X I -_, X„, we denote by J the collection
{j : I -<j < V - 1, r-) l

	

5,1- x 1] } . This is the collection
of empty cells x i . We bound our probability from
below by summing over J only :

P{L„ > FIX,, Y X,,, Y

X 1 , Y I , . . ., X, Y„~

RR 2R-7-E

> F

>P {p I,

	

>- f"
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where g . j is shorthand for g„ (x ;, X I __, Y„) . Condi-
tionally, these are fixed members from {0, 11 . The O i s
with ieJ constitute independent Bernoulli (1/2) random
variables . Importantly, their values do not alter the
y„ is (this cannot be said for O ; when i0J) . Thus, our
lower bound is equal to

P{pBinomial(IJI, 1/2)>FIIJI} .

We summarize :

sup P{L„>eIX1,Y,, . . .,X„,Y}
(X,Y( :L=O

sup P{Ln>EIX,,Y	X,,,Y}
(X . Y)E :f

>supP{L„>FIX1,Y	X,,,Y}
e

E{P{L„ > FIX 1 , Y 1 , . . ., X,,, Y} }
E{P{p Binomial(IJI,1/2)>F IJI}} .

As we are dealing with a symmetric binomial, it is easy
to see that the last expression in the chain is at least
equal to

I P{IJI > 2F/p} •2

Assume that i; < 1 1/2 . By the pigeonhole principle, IJI >
2F/p if the number of points X ;, I < i < n, that are not
equal to x,, does not exceed V - I -2F/p. Therefore,
we have a further lower bound :

2 P{IJI > 2F/p 1 > 2 P{Binomial(n,(V- 1)p)

V- I -2F/p} .

We consider two choice for p .

Choice A . Take p = I /n, and assume 12ni; < V - 1,
F < 1 /2 . Note that for n > 15

EIJI=(V-1)(l-p)^> V_1(1-n
) 1

> V-1
e

	

3

Alsosince0<IJI< V-1,wehave VarIJI<(V-1) z/4 .
By the Chebyshev-Cantelli inequality,

(1 1/2)P{ IJI > 2ni:}
_ (I /2)(l - P{ IJI < 2nr} )

(1 /2)(l -P{ IJI < (V- I)/6})

=(1X2)(1-P{IJI-EIJI<(V-1)/6-EIJI})

(1/2)(1 -P{IJI-EIJI < -(V- l)/6})

1 2) I

	

VarIJI
> (

	

-
VarIJI +(V- 1) 2/36

( V - 1) - /4
(V - 1) 2 /4 + (V - 1) 2 /36

1

20

This proves the second inequality for sup P { L„ > r;} .
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Choice B . Take p = 2e/v and assume a < 1/4. Assume
n > v . Then the lower bound is

2
1 P{Binomial(n, 4E) < v}

(1-4a)"

1
x	 by Stirling's formula

e .J2rzv

1

	

1

	

(4es(n-r+1)1
- 4a)"

2 e1/~nv

1

	

1

	

4ena

	

v -

1 /
-

	

(
(1 - 4a)" 1 -

2 e2rcv

	

v

	

n

I

	

I

	

(2ena)° e-a"";11-aE) (since n>2(v-1))
2 e,12nv r

(use 1 -x > exp(-x,,/(l - xl))

1

	

1

	

gene
>

	

e-8"` (since a < 1/8)
2 e .v/2nv

	

v

(8e)`°

	

n "e- 8nc

log"(1/b)

since we assume log

	

4 /(2e,/2nv)

The function n"e -8ne varies unimodally in n, and
achieves a peak at n = r,/(8a) . For n below this threshold,
by monotonicity, we apply the bound at n = c/&). It
is easy to verify that the value of the bound at v/(8a) is
always at least S . If on the other hand, (l/8a) log(1 116)
n > v/(8a), the lower bound achieves its minimal value
at (1/8a) log(l,,/S), and the value there is S . This concludes
the proof.

The case L > 0

In this section, we consider both expectation and
probability bounds when L > 0. The bounds involve n,
V and L jointly . The minimax lower bound below is
valid for any discrimination rule, and depends upon n

as ~/L(V- 1),/n . As a function of n, this decrease as in
the central limit theorem . Interestingly, the lower bound

L(n
1) (1 -2/n) a " if n >

V 2LI
max(4,1/(1- 2L) 2);

8

sup E(L" - L)
(x . Y)EX

	

2 V - 1)
(1 - 8,in)2n

	

ifn < 2(V - 1)/L (this implies L < 1/4).

n
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becomes smaller as L decreases, as should be expected.
The largest sample sizes are needed when L is close to
1/2. (Note that for L = 1/2, N(e, S) = 0, since any random
decision will give 1/2 error probability.) When L is very
small, we provide an U(1/n) lower bound, just as for
the case L = 0. The constants in the bounds may be
tightened at the expense of more complicated expres-
sions .

Theorem 3 . Let ~P be a class of discrimination
functions with VC dimension V > 2 . Assume that
n > 8(V - 1). Let ;t be the set of all random variables
(X, Y) for which for fixed LE(0, 1/2),

L = inf P{g(X) = Y} .
gEfi

Then, for every discrimination rule g" based upon X 1 ,
Y1, . . .,X",Y

Proof. Again we consider the finite family F from
the previous section . The notation 0 and O is also as
above . X now puts mass p at x,, i < V, and mass 1 -
(V - 1)p at x,,. This imposes the condition (V - 1)p < 1,
which will be satisfied . Next introduce the constant
cE(0, 1/2). We no longer have Y as a function of X.
Instead, we have a uniform [0, 1] random variable U
independent of X and define

Y=

1
I ifU<--c+2c0;,X=x,,i<V

2

0 otherwise .

Thus, when X = x;, i < V, Y is 1 with probability 1 /2 - c
or 1/2 + c. A simple argument shows that the best rule
for 0 is the one which sets

fe(x) =
I 0

Also, observe that

ifx=x,,i<V,0;=1 ;
otherwise .

L=(V-1)P(Il2-c) .

	

(1)

We may then write, for fixed 0,
v-I

L"-L>

	

2pcl[g"1=;. .z, .r,	x ,ra=1-felx;)7

It is sometimes convenient to make the dependence of
g" upon 0 explicit by considering g"(x ;) as a function of
x,, X	X", U1, . . ., U„ (an i .i .d . sequence of uniform
[0, 1] random variables), and 0 ; . The proof below is
based upon Hellinger distances, and its methodology
is essentially due to Assouad .° s) We replace 0 by a

1 nl
(4s)°(1 -4a)"- '

2\v

1

	

1 4ee(n - v + 1)
- -
2 e\nv v(1 -4a)

(since (n/ >
(n-v+ 1)e `



uniformly distributed random O over {0, I ;

	

' . Thus,

	

yields the following:

sup E{L"-L}=supE{Ln -L{

		

Er+ 'P2-1V-)
2

2 n

•

	

v' Pe, , (x, Y)Pe ; (x, Y)
e

	

(x.1)

(X . Y) . i

	

e

X I {I
7

	

t9 .dx; : .c,

	

,

E{L„ - L ; (with random O)
V-I

2p .
1 - 1

Fix i < V and call the ith summand in the last
expression E; . Introduce the notation

P,)(xr, . . ,x'., v1, .

	

, ) ,n)

=P{ni=1 [X3=4 Y, 1'i] O=O~ .

Clearly, this may be written as a Cartesian product :

Pc(X'1, . . .,X,i	t,,)=

	

pe(.)~1,Y,),

i- 1

where p11 (x,, 1',)=P{X= )c1,,Y= Y,IO=O{ . Thus,

Pattern recognition and learning

1x1'*-..""....""')
Eu .<, . . .

	

0 .1 c

B .

	

I

n

	

n

min
(
H pH, (xi, v,), r l PB,

	

- , l'~)

._Y,J ()

	

J - 1

	

I - 1

n

	

n
r - 1)= cp2-

	

Y min H Pr, ; . (xi . Y) .

	

P H ,
(x,	r .F( . . . .)'„I B

	

i

	

I

	

I - )

cP+

	

2-(' --,

	

/

	

Po,

	

v) X

	

Pe, (v"' .--( ,x, . x Y- l . . .

	

H

cp s L'-UC
~

	

~
N

	

~x .r1

(by the identity (E ;a ;)" = E,,, . . ;,, a ;,

	

u;,, )

	

As the right-hand-side does not depend upon i, the
where we used a discrete version of LeCam's inequality overall bound becomes
(reference 19 ; for example see page 7 of reference 18),
which states that for positive sequences u ; and h ;, both
summing to one,

min(a ;, h;) > I ~~ X n ;h ; l

We note next that for x = .v I

	

V / # i,

Ps, . (x, V) = Ps ; (-X • v) = PH(x. i') .

For x = x„ i < V. we have

1
PO ' -( X I Y)P0 ; (x . Y) = P2

4

Resubstitution in the previous chain of inequalities

cp

	

J,
7

('p

•
., 1V

cp

"Y

	

Pe (x, Y) + 2Px/
r)

	

(x .y)Sxx,

1)y

	

P5(x,Y)+2p114 - c 2
9

	

(s .)9
2n

- Pe(-X ;, 1) - P5(x , 0)

`p (l+ PN/
e

= • (1 +P"('
- P)2n .

E,=2pc.2-"-n

1

	

11
= 2pc2 " n

	

I

	

H Pe, (.v ; . J'~) + Ite„(1,	„ ,,)-1i

	

t g (x,:x, . > , .

->2pc2-I~' I)

V-l
sup Ell, L) >

	

E ;
Ix .r)Es

	

i =1

(V- 1)c'p
+-	 (1+pv -4( 2 -p)'"2	

A rough asymptotic analysis shows that the best
asymptotic choice for c is given by

1

, . 4n p

This leaves us with a quadratic equation in c . Instead
of solving this equation, it is more convenient to take
c=v/(V-l)/(8nL) . If 2nL/(V-1)+4, then cal/4 .

P)2"- 4e

1015

2n

.r.) =m fl Poi -(xi , Y~)
J-1
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With this choice for c, the lower bound is

	

Also,

sup E(Ln-L)>
Lc
-(1-4pc 2 ) 2 n

(X,Y)E.F

	

I -2c

(since L=(V-1)p(1/2-c) and
vl-x-I>-xfor0<x<1)

> Lc(I - 1/(n(1 -2c))) 2 n

(by our choice of c and the
expression for L above)

(V-1)L
(I - 2/n)2,

8n

(since c < 1/4) .

The condition p(V - 1) < 1 implies that we need to ask
that n > (V - 1)/(2L(1 - 2L) 2 ).

Assume next that 2nL/( V- 1) < 4 . Then we may put
p = 8/n . Assume that n > 8(V - 1) . This leads to a value
of c determined by I - 2c = n1,/4(V - 1) . In that case,
as c > 1/4, the overall lower bound may be written as

(V - 1)cp(l - p)2n
(1

	

2(V- 1)

2

	

n

This concludes the proof of theorem 3 .
From the expectation bound in theorem 3, we may

derive a probabilistic bound by a rather trivial argu-
ment. Unfortunately . the bound thus obtained only
yields a suboptimal estimate for N(e, S) .

Theorem 4 . Let <y be a class of discrimination func-
tions with VC dimension V>-2 . Assume that n>_
8(V - 1) . Let X be the set of all random variables (X, Y)
for which for fixed Lc(0, F'2),

L= inf P{g(X) i Y .
gE S

Then, for every discrimination rule g n based upon X,,
Y ) , . . . , X, Yn , and any e < A/2,

A
sup P{L n - L>e}

(X,Y)ex

	

2-A

where

~uV

-1)
(1 -2,/n) z n

8n

V-I

A =

	

if n > - max(4,1/(1 - 2L) 2 ) ;
2L

2(V- 1)
(I - 8/n) In

n

if n < 2(V - 1)/L.

=2-(v-u

sup P{L n - L > e} > EI v ,,
%et(X .Y)e X

L(V- 1)e - ' 0

	

1 1
N(e, S) >-	- x min

32 62 F 2

Proof Assume that we have E(Ln - L) > A (as in
theorem 3). Then a simple bounding argument yields,
for e < A,

-a
P{Ln-L>

	

A
e} > -

I-e

For e < A/2, the lower bounds is at least A/(2 - A) .
For the bound on N(e, &) assume that P{L n - L > e}

< b . Then clearly, E{L n - L} < F + S. Thus, when n is
large enough to satisfy the assumptions of theorem 3,
we have

IL(V-1)~

	

-- )
1-

	

<e+cS.
8n

	

n

Note that

44
(1 - 2/n)'`" > exp - - - > e - s

1 - 2/n

when n > 10 . We have

L(V - 1)

	

L(V - 1)

	

1 1
n

8e 10 (e + S)2 > 32e' ° -
x min

6 :
,2

It is easy to see that sup (X , Y) infgn P{L n -L>e} is
monotone decreasing in n, therefore, small values of n
cannot lead to better bounds for N(e, S) .

Theorem 5 . Let's be a class of discrimination func-
tions with VC dimension V> 2. Let y be the set of all
random variables (X, Y) for which for fixed Le(0,1/4),

L= inf P{g(X) 54 Y} .
g .S

Then, for every discrimination rule gn based upon X,,
Y,, . . ., X, Y, and any t. _< L,

I - 4nG 2 /Lsup P{Ln-L>e}>-e
(X,Y)F X

	

4

and in particular, for e < L < 1/4,

L

	

1
N(a, S) >	log- .

4 2 46

Proof. The argument here is similar to that in the
proof of theorem 3. Using the same notation as there,
it is clear that

n
~ It v

	

a

	

> E)

	

Pe(x;, y3) .E~= 1 2 I l9n lr~ .x~,Yi	x~ .Y n )=1-Ie(s91'
(x~	x .Yl	Yn)

	

6
et{x,, . . .,x"v1

J=1



Now, observe, that if E/(2pc) < (V - l)/2 (which will be

	

(by substituting c = e,/(2L + 2E))

4nc 2called condition (*) below), then

I
t£.-L Zp, tlq" (-< r .r iy ; . _ 1_1,) -L P, t~~11~ r1

t+ tFl- i Zp,)[s"~ .- ; .~~ .vi .--

	

"~ ' In, .~1~ ~ F
> 1,

where 0` denotes the binary vector (l -0 1 , . . ., 1 -
0,, ,), that is, the complement of 0 . Therefore, for
E < pc(V - 1), the last expression in the lower bound
above is bounded from below by

1

	

1

	

"
2y )

	

I

	

I2 min ( 1
TT
1 Pn(x;, y';), fi P0 ,(x ;,v;)~

(r~	x' .Yi - 'Y")

	

J-1

	

1 -1

l

		

f

	

Znn

V

	

P9(-xj, Yj) X

	

"
n

6 Pe ( x,, V ;)2

	

=
2
v 1 Y_ ( Y_ JPe(x,Y)Pe °(x,Y)1

j - 1

	

,
0

	

(A •Y )0

	

HIx~, . . . .srh

	

10.1,1"

	

J

	

)

It is easy to see that for x = x,,

Pe(x,v)=Pe`(x,Y)
I - (V - l)p

=

	

2

and for x = x t , i < V,

1
Pe(x, v)Pe'(x, Y) = P Z

4

Thus, we have the equality

I / ( x,Y)po,(x,y)= 1 -(V- 1)p
(-Y)

+2(V-l)p

Summarizing, since L = p(V - 1)(1/2 - c), we have

sup PAL"-L is
x .Y y

> I

	

1- 1 (1-,
4 C

	

1
-c

2

> I

	

1

	

L
4c2

4

	

1
C

2
)

2n

2n
zl

1

	

16nLc2

	

8Lc2
> exp -

	

-

	

1 -
4

	

1 - 2c ,l

	

I - 2c

where again, we used the inequality 1 - x > e - ° 1 _
z

We may choose c as E/(2L + 2E) . It is easy to verify that
condition (*) holds . Also, p(V - 1) < 1 . From the condi-
tion L > E we deduce that c < 1/4 . The exponent is the
expression above may be bounded as

16nLc 2

1 - 2c

	

16nLc2

1 - 8LC2 I -2c-8Lc 2

1 - 2c

4n5 2

L+e
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Thus,
L

1
sup P! L n - L > E} > - exp(- 4nc. 2 /L),

(x .r)E x

	

4

as desired . Setting this bound equal to (5 provides the
bound on N(E, (S) .

Theorems 4 and 5 may be course be combined . They
show that N(a, 6) is bounded from below by terms like
(1/E 2 ) log(1/h) (independent of V) and (V - 1)/E 2 . As d is
typically small, the main term is thus not influenced by
the VC dimension. This is the same phenomenon as in
the case L = 0 .
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