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Abstract.

A file of n records can be sorted in linear time given O(log(n)) processors . Four such algorithms
are presented and analyzed . All of them have reasonable hardware requirements ; no memory access
conflicts are generated ; a constant number of communication . lines per processor are needed
(except for one case) ; and the space requirements are 4(n) or O(n log(log(n))) .

1 . Introduction.

It is i well known that sorting requires S2(n log n ) comparisons. The time
requirement for a single processor is therefore S2(n log n). If parallel processors
are used then the time requirement can be reduced . A realistic model of parallel
computation has the following properties
- The number of processors is sub-linear .
- The number of communication lines attached to each processor is sub-linear

(and preferably constant) .
- Input to and output from the parallel processor is sequential. (This implies that

any sorting algorithm must take S2(n) time .)
- Memory access conflicts do not occur.

Todd (1978) describes "parallel mergesort" which can be, implemented with
0(log(n)) processors and 0(n) memory to sort n objects in O(n) time without
memory conflicts .. Other parallel sorting algorithms (Batcher, 1968 ; Hirschberg,

1978 ; Preparata, 1978) violate one or more of the properties listed above . In
this paper we present four algorithms that can sort n records in D(n) time (as
measured by at least one of two criteria) given 4 (log(n )) processors .
We will measure the running time of each algorithm by two criteria

1 . The required number of "effective passes" of the file . An effective pass
(abbreviated to "ep") is the time required to read (or write) the file using
a single processor. This measurement is of interest when the file resides on
secondary storage .

2. The number of parallel comparisons. Each processor is either idle or
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performs comparisons, {one comparison per time unit} ; all the other
operations take o time units. The number of parallel comparisons is defined
to be the number of time units required to sort the file .

In some cases, either the number of elements in each processor is random or
the time needed by each processor is random . Because one usually waits until
the slowest processor has finished executing before going on to the next phase
of the algorithm, the expected time taken by the algorithm can be written as the
expected value of a maximum of some random variables. 1n the appendix, we
give some useful probability theoretical machinery for the study of such
quantities (we are mainly interested, of course, in upper bounds) . The tools
given there are applied to several of our algorithms .

We will also discuss the memory requirements of each algorithm .

2. Practical parallel sorting algorithms .

We will use the following conventions
All logarithms are base 2 .
The number of records being sorted, n, is a power of 2 . The modifications
of the algorithms to handle other values of n are trivial (or we give the
modification .

2.1 . Parallel bucketsort.

Bucketsort, a variant of distributive partitioning (Dobosiewicz, 1978), is
especially suitable for implementation on a parallel processor . Using an order
preserving key-to-address function (Sorensen, Tremblay and Deutscher, 1978)
the records can be distributed among m buckets, B 1 , B2 ,	Bm, so that each
record in B, precedes each record in B 1 if i .< j. Each bucket is sorted by
one processor using an Q(n tog n ) method. The concatenation of the results
B1B 2 . . . B,,, is the sorted output .

The processors are arranged serially for parallel bucketsort . Po stores the input
file and receives the result, while P~, i = 1, 2, . . ., m, is the processor assigned to B 1 .
There is a two-way communication line between P . and P~+ 1, i = o, 1, . . ., m ---1 .
During input, each record travels from P o towards P,, until its destination
is reached. After the records of B 1 have been sorted by P . the records travel
in order back to P 0.

J

2.2 . Merge of sorted subfiles .

The worst case for parallel bucketsort occurs when the records are all placed
in the same bucket. This can be avoided if Ln/mi or In/mi records are assigned
to each processor in an arbitrary fashion . A merge of the sorted subfiles
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(abbreviated to MOSS) will be required ; concatenation will no longer be
sufficient due to the arbitrary distribution of the records. This merge can be
done by a single processor with m input lines, one from each of the processors,

2.3 . Another version of MOSS .

MOSS, as presented in section 2 .2, requires the use of one processor with m
input lines . This processor performs the merge. If we take m = log n, (which
will be shown to be a reasonable choice in section 3 . 1), the hardware requirement
is not as realistic as for parallel bucketsort . However, the merge can also be
performed by a tree of processors .

Each component processor has two input lines . The m processors which sort
the subfiles are the leaves of the tree . Pairs of leaves pass their output to aa
parent processor which will produce one run of length <_ (2n/m] . This run in
turn gets passed (with another run) to another processor. Eventually, the root
will receive two runs and merge them to produce the sorted file . This tree of
processors has (log(m)] + 1 levels and the entire machine uses 2m -1' = O(log n)
processors. (If m is not a' power of 2 then some processors in the tree are
idle) .

We will refer to this version of MOSS as MOSS(log n) and to the previous
version - as MOSS(1). The subscript indicates the number of processors used in
the merge .

2.4. Parallel sorting using splitting .

Another parallel sorting algorithm can be implemented using the same
architecture as for MOSS(log n ). The file will pass from the root to the leaves .
We assume again that m = log n . Let the levels of the tree be labelled
0,1, . . ., [log ml from the root to the leaves. The algorithm for a processor on
level i, i = 0, 1, . . ., clog m] --1, is as follows

Wait for the parent (on level r --1 ). to supply an unsorted subfile of n r records.
Find . M, the median record.
For each record, r :

Send r to the left child if r M ;
Send r to the right child if r > I .

The leaf processors receive subfiles of no more than In/m] records each. These
subfiles are sorted in parallel . One-way communication lines linking the leaves
are used (as in parallel bucketsort) to return the output .

P

, 5
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3. Time requirement ~- number of I/O operations .

In sorting large files of data resident on secondary storage, it is customary
to measure the running time in terms of the number of transfers between
primary and secondary memory. We will, for each algorithm, count the number
of effective passes required (as defined in section 1) .

3 .1 . Parallel bucketsort .

If the records are distributed uniformly (deterministically) across the buckets and
if m = log n, then parallel bucketsort runs in less than 4 eps . Input and output
take 1 ep each and each processor can sort its records in no more than 2 eps.

Suppose that each processor sorts its records using mergesort, which requires
one read and one write per comparison . Then each processor takes, (assuming
that n/m is an integer)

2 log(n/m)
T (n/m) =	eps,

m

where T (N) is the time required to sort N records . Form = log n

T n m

	

2[log n- log log n]
e s< 2 e s.t I )=

	

log n

	

P

	

P

For random. distributions across the buckets, the analysis of section 4 .1 is
applicable. It says that the expected running time of the sort step is 0(1 ) eps
in most cases:

In the worst case, one processor received all the records . The running time
is then 0(log n) eps .

3.2 . MOSS(1).

MOSS(1) always runs in 4 eps. Input and the sorting of the subfiles take 1
and 2 eps respectively . The merge step costs 1 ep . In practice the steps of the
m-way merge would be overlapped with the output operations . (We discuss the
cost of merging in section 4 .2.).

3.3 . MOSS(log n) .

As above, the leaf processors require 3 eps to read and sort'their subfiles .'
For the analysis of the merging time, suppose that n/m is ari integer. +The

tree has clog m] + 1 levels labelled. . 0-1 ; . . :; (log m] from the leaves ~ to the root.
A processor at level 1 reads 2 records' (simultaneously) at time 0 and produces
a run of length 2n/m from time 1 through time 2n/m: A processor on: level 2



174

can start reading after its children (on level I ) have started writing. Therefore
it starts reading at time 2 and writes from time 3 to time 4n/m + 2 . In general
a processor at level i writes from time 2i - I to time 2`n/rn + 2(i 1). The last
processor, at level log rn, finishes writing at time

T(n) = n+2(logm-1).

Thus merging takes about 1 ep .

3.4 . Parallel sorting using splitting .

Input, output and the sorting done by the leaf processors take 4 eps . Unlike
MOSS(Iog n), a processor must wait for its supplier to finish working before it
can start. Thus, the time required to send a subfiie to a child processor is
significant. A processor on level i has to send n/2` + 1 records to each child.
The total communication time is

fag n - I
C (n) =- n/2i + I

1=0

So this algorithm takes 5 eps .

4. Time requirement number of comparisons .

In this section we consider the number of parallel comparisons required by
each algorithm. Since each algorithm uses 0(log n) processors, no moree than
O(log n) comparisons can occur simultaneously .

4.1. Parallel bucketsort .

Let ni denote the number of records received. by P1 , i = 1, . . ., rn., Then: the
running time of parallel. bucketsort is
.}:
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r

T(n) = max (O(n ; log n;)).

In the worst case T(n) = 0(n log n) .
For the averag&_time taken. by. parallel .bucketsort, . we assume the convenient .

modell from. Devroye and Klincsek (1981) : assume ,that .._ the, data ~ consists of
independent : identically.- : distributed random variables with density . fs on . ; [0,;1 ] ;
and that the m buckets are defined bye thee intervals [(i -1)/m, . i/m), _ :where
m:y log . n and 1 S_ i s m. The number of points in the ith, bucket iV If- T(n)
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is the average time taken by parallel bucketsort and X„ = max ; (N ;log(N; + 1))
then T(n) = S2(E„)) and T(n) = O(E(X„)) where E( .) denotes "expected value" .*'

THEOREM 1 . Inn any case, T(n) = fl(n). Also, T(n) = 0(n) if and only if f has
a bounded version, i .e. a version such that sup zf (x) < ao.

The proof of Theorem 1 appears in the Appendix. We point out that in this
model we count truncation as a constant-time operation. The use of parallel
bucketsort for internal sorting is somewhat limited because linear average
running times are achieved without the parallelism (Dobosiewicz, 1978 ; DevroYe
and Klincsek, 1981) and for a broader class of densities than those given in
Theorem 1 . Finally we note that Theorem 1 remains valid if we first find the
minimal and t naximal elements in the data and then divide the obtained sub-
interval of [U,1 ] into rn equal buckets .

4.2. MOSS(1).

Each processor has no more thin (n/m] records where m = log n isthe number
of processors . The sorting of subfiles costs

n

	

n
og n log

C
	 ogn „ D~n~

time units. The merge of the sorted sub-tiles is of degree m . Using a heap, the
merge requires '~ n log m comparisons . Thus the time complexity of MOSS(1)
is 0(n log log n) which is suboptimal .

4.3 . MOSS(log n).

If the merge at the en~ of MOSS- is performed by a tree of processors then
the time complexity is 0(n) : the processors at level i take time cn/2` for some
constant c, and

tog n -1

cn/2` 0
r=o

This very simple analysis does not apply when instead of an 0(n tog n) worst
case sorting algorithm for the sub-files (of size approximately n/rn), we use, say,
quicksort. In the worst case, the algorithm will require time proportional to.
n2/rn2 ' n 2/log2n. We could ask whether it, is still true that the average time is
4(n). Since the processors at the bottom level take different times, saY,t T 1 , . . ., Tm,

*' f(x) = f2(g(x)) means that there exists a constant C such that f (x) ? Cg(x) for all x .

LINEAR SORTING WITH (1(lOg n) PROCESSORS
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the overalll time of the algorithm is bounded from below -by max ;(T), and from
above by max~(T)+0(n). This observation allows us to prove (see Appendix)

THEOREM 2. If quicksort is used to sort the m sub files in the MOSS(logn)
algorithm, then the average time taken by the algorithm is 0(n) .

4.4 . Parallel sorting using splitting .

The running time of this algorithm is determined by the time required to find
the median of a sub-file.

Linear time median finding algorithms (Blum et al ., 1973 ; Schonhage et al .,
1976 ; see also Knuth, 1975) can be used to split sets in two . In that case the
total time taken by the algorithm is

logo-!
0

	

~

	

2}=0(n).
=o

In practice, these algorithms are notoriously slow compared to the algorithms
of Hoare (1961) (see also Aho, Hopcroft and Ullman (1974)) and Floyd and
Rivest (1975) which are linear on the average but super-linear in the worst case .
Furthermore, it is not necessary to achieve an exact split in each processor ; an
approximate split will since. Assume for example that we use Hoare's simple
bounded workspace algorithm FIND (Hoare, 1961) to split a set of n elements
into two sets of sizes n l and n 2 where In 1 -n 21 5 c for some constant c . All
the elements in the first set are smaller in value than those in the second set .
If the same c is used regardless of the value of n, we see that at level l, the sets
are of size between n/2 - c and n/2 + c, and at level i, all sets are of
size between n/2` - 2c and n/2` + 2c . In particular, since there are flog m. ] levels,
we see that at the bottom level (clog m]), each processor has at most n/m + 2c
elements. If c = 0(n/log n) then we have 0(n/log n) elements in the processors at
the bottom level and these can be sorted_ in time 0(n) in parallel by heapsort,
and in average time 0(n) in parallel by quicksort (Theorem 2) .

We have to establish that the average time taken by the splitting stage of the
algorithm is D(n)

THEOREM 3 . If parallel sorting with splitting is implemented in such a way that
(1) algorithm FIND is used to split any set of size n o into two sets of sizes
contained in [no/2 -c,_no/2 +c] where c = 0(n/log n) ; and (2) an 0(n log n) average

time comparison-based sorting algorithm is used to sort the sub-files at the bottom

level of the tree, then the average time taken by the entire algorithm is 0(n) .

The proof of Theorem 3 appears in the Appendix .



5. Memory requirements .

For parallel bucketsort a processor requires 0(n) storage in the worst case .
Thus the total memory requirement for parallel bucketsort is 0(n log n).

The memory requirement for MOSS(1) is O(n) since each of the m processors
sorts a sub-file of about n/m records .
The memory requirement of MOSS(log n) and of parallel sorting using

splitting is 0(n log log n) since there must be room for the entire file at every
level of the tree of processors .

b. Summary .

The average case results of sections 3, 4 and 5 are summarized below .

Time (eps) Time (parallel comparisons)

	

Space

Parallel bucketsort 4
MOSS(1) 4
MOSS(log(n)) 4
Parallel sorting 1 5
using splitting

Appendix .

We will repeatedly use the following lemma

LEMMA 1 . For any collection X 1 , . . ., X,~ of positive random
all constants r ? 1,

F(max1X1 ) n l / r max1E'"(X~ ) .
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` PROOF. By Jensen's inequality,

Er max X < E(max X7 ) <_

PROOF OF THEOREM 1.

Assume first thatt f is. bounded by c . Since T
consider E(X„). By Lemma T,

r. :

* See text for more details .

*

	

O(n) *

	

0(n)
0(n log log n)

	

0(n)
O(n)

	

0(n log log n)
*

	

0(n) *

	

0(n log log n)

PT

X < < n max

variables, and for

= O(n~+E(X„)), it suffices to

., r

1
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E(X) <_ log(n + 1) E(max ; N t)

i --1
Nm/n = m max Pi ? mM max A L ,

1 _<i5m

	

1 Si<m

	

. m
l

m

lim infNm/n >_ ~~~ ~.(A)
n-+ao 2

•

	

log(n + 1)(max; E(N 1 ) + E(max1 (N; - E(N ;))))

•

	

log(n+l)('mmax;JVar(N;)+max;E(N;)). 1 < i _< m .

Since E(N 1 ) = np < <_ nc/m (where p; is the integral off ' over [(i -1)/m, i/m)), and
Var(Ni ) = np;(1- pi ) <_ nc/m, we have

E(X) <_ log(n + 1)(J(nc) + nc/m) -r nc

sine m log n. Thus, T(n) -= 0(n).,

Next, we show that when f is unbounded, then lim n inf T(n)/n . = co . First, weao

note that T(n) = Q(n + E(X n)) and that E(X) ? max t < i < mE(Nj )log(E(N j) + 1)
(this follows from Jensen's inequality) . Let N = max 1 < mE(Nj) . We will first_ta
prove that lim,inf NM/n = cc. Choose a positive number M and let A be then

set of all x with, f(x) ? M. If a. is Lebesgue measure, then

•

	

mM sup min ~. A x - 1 , x , ~.
(A.[x,

x +
jj_

	

xsA

	

2m

	

2m

•

	

mMA-'(A) A x- 1 , x , ~. A x, x + 1 dx.
2m

	

2m

By the Lebesgue density theorem, for almost all x e A, 2mi(A[x-1/(2in) x)) -~ 1

as m -• co (Wheeden and Zygmund, 1977). Thus, by Fatou's Lemma,

Since M was arbitrary, the limit inhmum must be co . We conclude the proof
by noting that

E(Xj/n->_ (Nm/n 1 og I + n _ Nm (1, +o(l)) --'
m

	

m

PROOF OF THEOREM 2 .
We need only show that E~max i m 7} = 0(n). By Lemma 1 and the fact that

quicksort when used on a set of n elements, takes time T where E(T) c 1 nlogn,
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Var(T) ' c Z n2 for some c,, c2 > 0 (see Sedgewick (1977) and Knuth (1975,
pp. 121-122) ; for the original version of quicicsort, see Hoare (1962)), we have

E( max T) ~ max E(7)+ m max JVar(7)
1 SiSm

	

1 Si_<m

	

1 Si_<m

2
-r c l m log m + (rnc 2 (;) -r c tn+n J(c2/rn) ~ c l n .

Here we used the facts that m ~ log n and that each processor at the bottom
level has -V n/m elements .

PROOF OF THEOREM 3 .
The average time . taken by the splits while we move down the tree is the

sum of the average times taken at level i, 0 i < log m . At level i, we have 2i
processors each working on a set of at most n/2`+2c elements, and the
execution times are T1 , . . ., T, ; . Thus, at level i, we take time bounded by

max T
1<j52c

and average time
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for some universal positive constants a, b . The bound on E(7 2 ) is provided
by a result of Devroye (1982) on the moments of the running time of Hoare's
algorithm FIND (Hoare, 1q61). Summing with respect to i gives the bound

bn ~ 2 - `~ 2 = bn/(1-1/J2) = 0(n).

This concludes the proof of Theorem 3 .
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