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A Note on Point Location in Delaunay Triangulations
of Random Points1

L. Devroye,2 E. P. Mücke,3 and Binhai Zhu4

Abstract. This short note considers the problem of point location in a Delaunay triangulation ofn random
points, using no additional preprocessing or storage other than a standard data structure representing the
triangulation. A simple and easy-to-implement (but, of course, worst-case suboptimal) heuristic is shown to
take expected timeO(n1/3).
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1. Introduction and Main Result. Assume that we are given a Delaunay triangulation
D of n pointsX1, . . . , Xn in the plane, represented by one of the standard data structures
for triangulations (see, e.g., Okabe et al., 1992). That is, inPASCAL terminology, the
information is stored as points, edges, and triangles, linked by neighborhood information:

point : RECORD x,y: real
neighbors : edgelist END

edgelist : RECORD next: ↑edgelist
key : ↑edge END

edge : RECORD pt1,pt2 : ↑point
tr1,tr2 : ↑triangle END

triangle : RECORD ed1,ed2,ed3 : ↑edge END
delaunay : ARRAY[1..n] OF ↑point

It should be noted that this is not the most space-efficient way to store planar tri-
angulations (see, e.g., Guibas and Stolfi, 1985), but it is sufficient for the sake of this
discussion. The crucial point is thatD is represented withO(1) storage per triangle, and
no other structure is assumed on top of this simple graph-like object. The objective is
to investigate how fast we can perform point location for a query pointq without any
further preprocessing of the data. We remark that to apply our point-location heuristic,
the data structure must supportO(1) time access to a triangle from a neighboring tri-
angle. Certainly, the above data structure supports this; moreover, almost all commonly
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used data structures storing planar triangulations support this operation: DCEL (Doubly
Connected Edge List) or simply a linked list of triangles with all the necessary local
information (three vertices, three edges, and three pointers pointing to its neighboring
triangles), etc.

A simple method is mentioned in the literature (see, e.g., Green and Sibson, 1978;
Bowyer, 1981) as performing quite well in practice; however, a rigorous expected-time
analysis was never given: start with one of the points ofD, say,Y = Xj , and “walk
from neighbor to neighbor” across the triangulation toward the query pointq. A recent
implementation for spatial Delaunay triangulations (M¨ucke, 1993) uses the same method
in three dimensions, together with a heuristic to find a good starting point, and reports it
as extremely efficient in practice.

Here, we formalize this heuristic for the planar case, and analyze its expected time
complexity. Note thatd(·, ·) denotes the Euclidean distance between points, andd(x, A)
is infy∈A d(x, y) wheneverA is a set.

STEP1. Select m points Y1, . . . ,Ym at random and without replacement from
X1, . . . , Xn.

STEP2. Determine the indexj such thatd(Yj ,q) is minimal for j ∈ {1, . . . ,m}. Set
Y = Yj .

STEP3. Locate the triangle containingq by traversing all triangles crossed by the line
segment(Y,q).

Step 3 is easy to implement given the adjacency list implementation mentioned above.
The timeT taken by the algorithm is2(m) (Steps 1 and 2), plus2(k), wherek is the
number of triangles crossed by the line segment(Y,q) in Step 3. Here, the2, O, and
Ä notation is used as in standard textbooks on data structures (see, e.g., Cormen et al.,
1990). SinceY is random,T is random as well. Our main result is the following:

THEOREM. If X1, . . . , Xn are independently drawn from a distribution with the uniform
density f on a convex compact set C⊆ R2 of unit area, m = o(n), and m→ ∞, and
if the query point q is independent of X1, . . . , Xn and is at distance at least2

√
logn/m

from the boundary∂C of C, then the expected time of the simple algorithm given above
is bounded by

c1m+ c2

√
n/m,

where c1, c2 > 0 are universal constants depending upon the geometrical properties
of C only. In particular, the expected time is O(n1/3) if m = dn1/3e and q is at least
distance2

√
logn/n1/6 away from∂C.

As a technical report, the present paper predated a later paper by M¨ucke et al. (1996),
who generalized the present results to three dimensions at the expense of an extra polylog
factor in the complexities. The latter factor became necessary after noting that Delaunay
triangulations in dimensions greater than two are not planar. Throughout the present
paper,ci , i ≥ 1, denote positive constants depending upon the geometrical properties
of C.
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2. Proof of the Theorem. The proof rests on the following lemma, which can be
thought of as the simplification of Theorem 2 of M¨ucke et al. (1996), which in turn uses
an argument from Bose and Devroye (1997).

LEMMA. Let C and X1, . . . , Xn be as in the theorem. IfL is a fixed line segment of length
|L| and is at distance≥ 3

√
logn/n from the boundary of C, and ifL is independent of

X1, . . . , Xn, then the expected number of triangles or edges of the Delaunay triangulation
for X1, . . . , Xn crossed byL is bounded by

c3+ c4|L|
√

n,

where c3, c4 are universal positive constants not depending uponL or n.

To use this lemma for a random line segmentL, we must first make sure thatL
is independent ofX1, . . . , Xn. This is not the case here. For this reason, we make a
small detour. LetD be the Delaunay triangulation forX1, . . . , Xn, and letDm be the
Delaunay triangulation for{X1, . . . , Xn} − {Y1, . . . ,Ym}. ThenL = (Y,q), the line
segment connectingY andq, is independent of then−m data points definingDm. We
need to make sure thatL = (Y,q) is at distance≥ 3

√
logn/n from ∂C, under the

assumption thatd(q, ∂C) ≥ ξ√logn/n, whereξ ≥ 6 may depend uponn. This follows
from the convexity ofC, the triangle inequality, andd(Y,q) ≤ (ξ/2)√logn/n. We show
below that this claim holds with high probability.

Let B be a probability event defined asB
def= {d(Y, ∂C) ≥ 3

√
logn/n}. Let IQ be the

indicator function for a probability eventQ. Let N denote the number of triangles inDm

crossed byL. We haveE{N} = E{NIB} +E{NIB̄} whereB̄ denotes the complement of
B. HereE{NIB} (E{NIB̄}) denotes the number of triangles inDm crossed byL when the
eventB (B̄) occurs. We provide upper bounds for the two terms on the right-hand side.

We begin withE{NIB̄}. Because of the planarity of two-dimensional Delaunay trian-
gulations,N ≤ 3n. Hence

E{NIB̄} = E{N|B̄}P{B̄} ≤ 3nP{B̄}.
By the triangle inequality,

P{B̄} ≤ P{d(Y,q) ≥ (ξ/2)
√

logn/n}
= (P{d(Y1,q) ≥ (ξ/2)

√
logn/n})m

= (1− P{d(Y1,q) < (ξ/2)
√

logn/n})m
≤ exp(−mP{d(Y1,q) < (ξ/2)

√
logn/n})

≤ exp(−ξ2πm logn/(4n)).

Thus,

E{NIB̄} ≤ 3ne−ξ
2πm logn/(4n).

We now turn toE{NIB}. On B, d2(Y,q)π is the probability contents of the circle at
q of radiusd(Y,q), and is therefore distributed as the minimum ofm i.i.d. (indepen-
dently identically distributed) uniform [0,1] random variables, which we callZ. Clearly,
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E{Z} = 1/(m+ 1). Our lemma, along with the fact that{X1, . . . , Xn} − {Y1, . . . ,Ym}
constitutes an i.i.d. set of random variables implies that

E{NIB} ≤ c3P{B} + c4
√

n−mE{d(Y,q)I B}
≤ c3+ c4

√
nE{d(Y,q)I B}

≤ c3+ c4
√

n
√

E{d2(Y,q)I B}
(by the Cauchy–Schwarz inequality)

≤ c3+ c4
√

n
√

E{(Z/π)I B}
≤ c3+ c4

√
n
√

E{Z/π}
= c3+ c4

√
n/(π(m+ 1)).

Thus, the expected number of triangles or edges ofDm crossed byL is

E{N} ≤ 3ne−ξ
2πm logn/(4n) + c3+ c4

√
n/(π(m+ 1)),

where we recall thatξ ≥ 6 can still be selected by us. The number of triangles or edges of
D crossed byL is not more than that forDm plus the sumSof the degrees ofY1, . . . ,Ym

in the Delaunay triangulationD. To see this, note thatL either crosses a triangle without
one of theYi ’s as a vertex (in which case the triangle is identical inD andDm) or with
one of theYi ’s as a vertex. The total number of the latter kind of triangles does not exceed
S. The expected value ofS is, by symmetry,m times the expected degree ofY1. By the
planarity ofD, we know that the sum of all degrees ofX1, . . . , Xn is twice the number
of edges, which does not exceed 6n. Therefore, the expected degree ofX1 or Y1 does
not exceed 6. Combining all this shows that

E{T} ≤ O(m)+ 3ne−ξ
2πm logn/(4n) + c4

√
n/(π(m+ 1)).

Now, takeξ = max(6,
√

12n log(3n)/mπ logn) to make the second term at most 1. The
bound then becomesO(m+√n/m). Note that with this choice ofξ , the condition on
q becomes

d(q, ∂C) ≥ max(6
√

logn/n,
√

12 log(3n)/mπ).

If m = o(n), for n large enough, this is equivalent tod(q, ∂C) ≥ √
12 log(3n)/mπ .

This in turn is implied for largen by d(q, ∂C) ≥ 2
√

logn/m. This concludes the proof
of the theorem.

3. Remarks. 1. The theorem above is easily generalized to arbitrary densitiesf
bounded away from 0 and∞ on C, and the area ofC does of course not need to
be one. However, these trivial points make the proofs less readable. The constantsc1 and
c2 would then also depend upon the area ofC, and the upper and lower bounds off on
C. The boundary condition onq would also change by a constant factor.

2. In Delaunay triangulations, the boundary effect is considerable, and requires con-
ditions such as the ones seen in the theorem. The boundary effect was circumvented by
Bern et al. (1991), in the analysis of the maximal degree in a Delaunay triangulation, by
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considering an infinite Poisson point process in the plane and studying its restriction to
finite sets.

3. The theorem may also be used to obtain a very simple on-line algorithm for insertion
and deletion in a Delaunay triangulation withO(n1/3) expected time per operation. This
result uses the fact that after a triangle is located, we can find out in which Voronoi
cell q falls, and update the local structure in time bounded by the number of faces of
the Voronoi cell. Now, the expected number of faces of the Voronoi cell to which a
randomq belongs (drawn independently and according to the densityf from which the
data were drawn) isO(1). Clearly, the expected complexity is eclipsed by theO(logn)
expected-time fully dynamic algorithm (Devillers et al. 1992), but the data structure is
also less complicated. We would also like to point out that when a query point is very
close to the boundary of the triangulation the bound in this theorem might vary. In fact,
the trivial linear bound is the only known one whenq is very close to the boundary.

4. Using the given point-location scheme, a Delaunay triangulation can be constructed
in O(n4/3) expected time. Again, this is theoretically slower than some well-known
O(n logn) algorithms (Shamos and Hoey, 1975; Lee and Schachter, 1980; Guibas and
Stolfi, 1985) or someO(n logn) expected-time randomized algorithms (Guibas et al.,
1990; Boissonnat and Teillaud, 1993).

5. It should also be noted that we do not make use of the power of truncation and
bucketing, so that the algorithm cannot be expected to compete against fine-tuned buck-
eting methods (see, e.g., Maus, 1984; Dwyer, 1986, 1987; Katajainen and Koppinen,
1988; Ohya et al., 1984a,b; Sugihara et al., 1990; Ooishi and Sugihara, 1991) which all
achieveO(n) expected time under certain conditions on the distribution of the data.

6. The algorithm has been implemented by the authors. The program is only about
200 lines long (including comments) and it is very efficient. With respect to a random
Delaunay triangulation of 3200 (32,000) points the average number of triangles visited,
over a sufficient large number of trials, is about 36 (50) when 32 random points are
selected. We strongly believe that the method discussed above is also efficient in practice
to locate a query point in arbitrary triangulations. We also need to mention the recent work
of Lemaire (1997), which includes novel algorithms based on the paradigm of Green and
Sibson, as well as many experiments, including experiments with our method, which was
coined theJump-and-Walkmethod. All the new algorithms of Lemaire require additional
preprocessing beyond the simple structure assumed in this paper.

7. Finally, ad-dimensional version of this simple point-location scheme seems to re-
quire expected timeO(m+ (n/m)1/d), which isO(n1/(d+1)) if we setm= 2(n1/(d+1)).
The constant in front of the polynomial factor grows exponentially quickly withd
however.
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