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A NOTE ON THE HEIGHT OF SUFFIX TREES*

LUC DEVROYEt, WOJCIECH SZPANKOWSKI$, AND BONITA RATS

Abstract. Consider a random word in which the individual symbols are drawn from a finite or infinite
alphabet with symbol probabilities p;, and let H,~ be the height of the suffix tree constructed from the first
n suffixes of this word . It is shown that H~, is asymptotically close to 2 log n/log (1/~~ p ) in many respects :
the difference is O(log log n ) in probability, and the ratio tends to one almost surely and in the mean .
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1 . Introduction . Tries are efficient data structures that were developed and
modified by Fredkin [14] ; Knuth [19] ; Larson [21] ; Fagin, Nievergelt, Pippenger, and
Strong [10] ; Litwin [23], [24] ; Aho, Hopcroft, and Ullman [2] ; and others . Multi-
dimensional generalizations were given in Nievergelt, Hinterberger, and Sevcik [26]
and Regnier [30] . One kind of trie, the suffix tree, is of particular utility in a variety
of algorithms on strings (Aho, Hopcroft, and Ullman [1] ; McCreight [25] ; Apostolico
[3]) . However, except for the results in Apostolico and Szpankowski [5], who give an
upper bound on the expected height (see also Szpankowski [32]), very little is known
about the expected behavior of suffix trees . Also noteworthy is a result by Blumer,
Ehrenfeucht, and Haussler [6] who obtained asymptotics for the expected size of the
suffix tree under an equal probability model . The difficulty arises from the interdepen-
dence between the keys, which are suffixes of one string . In this note, we study the
height of the suffix tree . The results of our analysis find applications in many areas
(Aho, Hopcroft, and Ullman [1] ; Apostolico [3]) . For example, suffix trees are used
to find the longest repeated substring (Weiner [33]), to find all squares or repetitions
in strings (Apostolico and Preparata [4]),to. compute string statistics (Apostolico and
Preparata [4]), to perform approximate string matching (Landau and Vishkin [20] ;
Gaul and Park [15]), to compress text (Lempel and Ziv [22] ; Rodeh, Pratt, and Even
[29]), to analyze genetic sequences, to identify biologically significant motif patterns
in DNA (Chung and Lawler [8]), to perform sequence assembly (Chung and Lawler
[8]), and to detect approximate overlaps in strings (Chung and Lawler [8]) . Consequen-
ces of our findings for an efficient design of algorithms are extensively discussed in
Apostolico and Szpankowski [5] .
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and
(2)

	

lim P(H„ <log Q n-(1+E) logo log n)=0 .

n-~oo

Thus, the variations of H„ are at most of the order of log log n. In § 4, we will show

that the convergence in the theorem is in the almost sure sense as well .

It is interesting to note that the first asymptotic term (logo n) is of the same order

of magnitude as for the asymmetric trie when the words Y,, , Y„ are i.i.d. (Pittel

[27], [28]; Szpankowski [32]). In [27], Pittel showed that H„/log o n - 1 almost surely,

and in [28], he showed that H„ -log o n = O(1) in probability. Other properties of the

height of a trie under the independent model can be found in Yao [34] ; Regnier [30] ;

Flajolet [11] ; Devroye [9] ; Pittel [27], [28] ; Jacquet and Regnier [16] ; and Szpankowski

[32], who presents a survey of recent results . The reader is also referred to some other

related papers, such as Kirschenhofer and Prodinger [18], Flajolet and Puech [12],

Flajolet and Sedgewick [13], and Szpankowski [3 .1] .

2. Preliminary results. We present four simple lemmas. The first two are trivial .

The third one is due to Apostolico and Szpankowski [5] .

LEMMA I .

Ilnll

2<

IlnilZ~ Ilnll

~LENtNtA 2. For every r?2,

	

11 .`=11 P11z •
Proof. Let f(x) _ {L p ; }'/" for x > 0 . It is easy to show that the first derivative of

J(x) is negative for all x > 0, and hence f is a decreasing function . For details, see
Szpankowski [32] and Kartin and Ost [17] .

	

0

A NOTE ON THE HEIGHT OF SUFFIX TREES

	

49

We consider an independently and identically distributed (i .i .d .) sequence
X1, X2,'• • of integer-valued nonnegative random variables with P(X 1 = i ) = pi for
i = 0, 1,2,. and ~~ p, = 1 . The X i 's should be considered as symbols in some alphabet .
Together, they form a word X = X1X2X3 • • • . We do not assume that the alphabet is
finite, but we will assume that no

pi is one, for otherwise all the symbols are identical
with probability one: The suffixes Y of X are , obtained by forming the sequences
y1 = (X1X +1 i • • • ) . The suffix tree based upon

	

Yn is the trie obtained when the
pi 's are used as words (for a definition of tries, see Knuth [19] ; for a survey of recent
results, see Szpankowski [31], [32]} . Note, however, that we do not compress the trie
as in a PATRICIA trie, i .e ., no substrings are collapsed into one node .

In this note we study the height .H„ of the suffix tree, which is given by
Hn = max C,

i#j,lCi, jCii
where

	

is the length_ of the longest common prefix of Y and Yj , i .e ., Ci; = k if
,X_ 1) and X1+k ~Xf+k .

In the discussions to follow, we will use the standard notations for the L r-metric :
I1pOr=(LP)", ~ rwhere o C r C oa, and ~IpjI=maxp 1 . ~ i We write f(n)-'-'g(n) if
limf(n )/ g(n ) = 1, and we will reserve the symbol Q to stand for 1/ lI p 11 2 .

THEOREM. For a random suffix tree, H„/ Iog Q n -~ 1 in probability. Also, for all

m1, EH, --- (logQ n)'".

We will prove this result using only elementary probability theoretical tools, such

as the second moment method. Nevertheless, we will in fact be able to show that for

any s>0 and any sequence o,,Tco,

(1) lim P( H„ > logQ n + w„ ) = 0



50

		

L. DEVROYE, W. SZPANKOWSKI, AND B. RATS

LEMMA 3 . For 0 < Ii-iI= d, we have

r

	

d-r
P(Ci; ~' k) __"' ~ Ps+2 P isI+

	

~
s

	

s

where 1= [kid] and r = k - dl = k mod d. In particular, for
k) _ I1p1I .ik

LEMMA 4. For 0< I i-j 1 =d <k, we have P(C;;?k)~11P11Z+a

Proof. From Lemmas 2 and 3 we immediately obtain

(3)

'

	

r

	

d -- r
P( CU

	

--

	

P$+2

	

s+'

	

p
ZI+2)r+{t+i}(d-r) -

P 1l
+d

s

	

s

3. Proof of the theorem. We prove our theorem by showing two tight bounds for
the height H . Roughly sceaking, we shall show that for every c > o and large n the
following holds : P(Hn > ( 1+ e ) • logQ n ) o as n -~ 00 (upper bound), and P(Hn c
(1-c) • loge n)-* 1 as n -0o0D (lower bound) .

We start with an easier part of our proof, namely, the upper bound. Assume that
2 k n -1 . We have, from Lemmas 2 and 4 and Bonferroni's inclusion-exclusion
inequality for the probability of the union of events,

k-i

	

n-i
(

	

P(Cl,l+d k)+
d=i

	

d=k
P(max C, k)2n

	

~'~ Cl , i+d k}
i#j

-`-2n1 ~ ~~P1l

	

I I P.IIi'`l

~2n'

	

rPII2\
	 IIPII' z+ ~ + n11 pll2)'`

1 - I

	

2

This tends to zero provided that Il p 11 2 < 1 (this is always true) and that n II P II z - 0 (for

this, it suffices that k = (log n + w„)/(-log[p112), with w„ -* co) . This establishes (1) .
Let u+ be defined as max (u, 0) . Clearly, EH„ ~ log Q n +E(H„ -logQ n)+ . We will show
that the second term in this upper bound is O(1) . Indeed, by (3),

E(H„ log (1/pf 2)-1og IIIn)+ = J P(H„ log (1/(IpI2)-log

	

In > u'/"') du
0

2e-ullm 2e-2ullm

I (
	 .+	 ~u C OD .

0

	

1- (I p 1J z

	

11P112

A matching lower bound is obtained by the second moment method . We will use
a form due to Chung and Erdos [7], which states that for events Ai, we have

P(U-Ai) .
~, P(A1 )+L,, P(A1 fl A; }

Let S be the collection of pairs of indices (i,j) with 1 i, j n, and i -

	

k. Let A i;

be the event that C,; k. Then

P(max
i#j .

k, we have P(Ci;



where

and

(a)
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def

~' d f

	

P(A ij )
(i,j)ES

P(A zj f1 Arm ) .(i,j),(i,m)ES ;(i,j)#(r,m)
To prove our lower bound it is enough to show that the probability on the right-hand
side (RHS) of the above tends to 1 for k slightly smaller than log o n (k = logo n - w„ ) .
First we note that when k=o(n), then by Lemma 3,

~ P(A,i~ - ~ S~~~P~~z k EL~n 2- (2k+1)n)IIPIIik ~n2 ~~P~~i k~ •
(i,1)es

We decompose the collection of pairs of pairs of indices

{((i,j), (I, m)): (i,j) E S, (1, m) e S, (i,j) ~ (l, m)}
as follows into I, U IZ U 13 : I, captures all members with min (f 1-i f , ji-j f) ? k and

min (fm-ii, Jrn -ji)? k. IZ holds all members with either min (f l-if, Il-if)? k and

mmn(fm-if,fm-jf)<k, or mm (f 1-if,fl-jf)<k and mmn(fm-if,~m-jf)?k Finally,

13 collects all members with min (f 1- if, fl-if) < k and min (fm - if, frn -ii) < k By

Lemmas 1 and 2,

P(A,J fl Aim ) n4IJ p If ~ k ,

((i,j),(i, m))E 11

P(Aij fl Arm )S krz3 11p 1 1 22k II p lI

	

8kn3 1r p 11 Z k ,
((i,j),(4 m))E rz

2 kP(Aij l Aim ) (4k)2 n2 lf p fJ .

((i,J),(i, m))E 13

Thus,

~' ~114/Q4k +8IC11 3/Q'k +16kZn2/Q2k .

If we choose k such that n f) P h ~ Z / k - oo, then

P(Aij f1 Aim )n411 p 11 zk -
(4j),(i, m)ES, (i,j)~(I, m)

Because

2-9 z ~8kn
3/Q3k

+16k2n 2/Q +2(2k+1)n
3/Qak

and 9 n2/ Q2k, we have

P(max C c-k)

i~j

I1 2/Q21c+8kn
3/Q3k

+16k
2n 2/QZk

+2(2k+1)n
3/Q4k

n2/QZ'`+(l+o(1))n
a/Qak

8kQk

n

Collecting all these terms shows that P(H„ >_ k) -~ 1 when n -* oo. The lower bound in

(2) follows by setting k= (log n-(l+e)~loglog n)/(-log IIPIIZ)J for s>0. Also,

EH ~ ~ k'" P( H„ ? k) -~ k'"
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if k is chosen as indicated . This concludes the proof of the lower bound and of the
theorem .

	

0

4. Strong convergence .
PROPOSITION . For the suffix tree, H,~/log Q n -~ 1 almost surely .
Proof. We observe that Hn is monotone T . Thus, if a„ is a monotone T sequence,

we have H„ > a n finitely often if H2i > a2~-' finitely often in i. Similarly, Hn Can finitely
often if H2' c a2:+' finitely often in i. By the Borel-Cantelli lemma, the proposition is
proved if we can show that for all e >0,

(s)

and

~ P{HZ>>(1+E)ilogQ 2}<oo

(6)

	

~ P{H2 i <( 1-8)i logQ 2}<0o.

To show (S), we can use the inequality (3) with n = 2' and k = 1(1+ E ) i logQ 21 .
Note that Q k 2 (1~+£~` The ithh term in (5) is not larger than

2n

	

fn \ 2 ~

	

2

	

2
(Q_1)Qk+2(Qk) = (Q1)2 1_ e 22E1

which is summable in i. Similarly, to verify (6), we use (4) with n =2 ' and k =
~(1-E)i logo 2J . The ith term in (6) does not exceed

k

(1+0(1)) gkQ ~ (8+ o(1))i(1-e)(logQ 2)2- E',

which is summable in i, as required .

	

0
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