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Correspondence 
A Distribution-Free Performance Bound in Error 

Estimation 

LUC P. DEVROYE AND T. J. WAGNER, MEMBER, IEEE 

Abstract-It is shown that distribution-free confidence intervals 
can be placed about the resubstitution estimate of the probability 
of error of any linear discrimination procedure. 

I. INTRODUCTION 

In the discrimination problem the statistician is given an ob- 
servation X, a random vector taking values in Rd, and wishes to 
estimate its state 0 E (1,2]. The only knowledge that the statis- 
tician has of the distribution of X, given 0 = i, is that which can 
be inferred from a sample of size ni drawn from F; where 

P[X I x ) 8 = i] = Fi (x), i = 1,2. (1) 

The two samples, here called data, are denoted Xi, a . . ,Xi, and 
xp, * - - ,Xz2, respectively, and are assumed to be independent 
of X regardless of its state. 

A discrimination procedure which has been frequently inves- 
tigated in the pastjsee, for example, Duda and Hart [l, ch. 51) 
is to estimate 8 by 0 where 

a= 1, 
i 

if wtX 1 ws 
2, ifwtX <we. 

The vector wt = (WI, . . . ,wd) and the number we, called the 
weight vector and threshold weight, respectively, are chosen from 
the data. Regardless of what method is used to arrive at a weight 
vector and threshold weight, the statistician will always be in- 
terested in estimating 

Li = P[i # i IX:, . a. ,Xlnl,X;, *.. ,X&,0 = i], i = 1,2, 

a random variable whose value is just the frequency of errors 
when a large number of independent observations, all with state 
i, have their states estimated using (2). 

The resubstitution estimates ii of Li are defined by 
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and 

These estimates have the appeal of being very simple to calculate 
once w and wo have been determined and, indeed, some proce- 
dures for finding w and we involve the specific calculations above. 
For example, for a given 0 < o( < 1, one may seek values w and wo 
such that, when L1 I o(, & is minimized. 

The question that we address ourselves to here is: how much 
confidence can the statistician place in these estimates, that is, 
for a given c > 0, what is 

P[l& - L;I < c]. (3) 
There is, of course, no way of calculating (3) since the distribution 
functions (1) are unknown. However, if pi denotes the measure 
on the Bore1 sets corresponding to Fi and pi denotes the empirical 
measure on the Bore1 sets for Xi, . . . ,X$ (e.g., Pi(A) is the pro- 
portion of the X with state i falling in the set A), then 

where @i deontes the class of sets of the form (x:w % 2 we], for 
i = 2, and (x:w% < we), for i = 1. The random variable on the 
right in (4) is, in the one-dimensional case, essentially what is 
dealt with in the GlivenkwCantelli theorem [2]. Indeed, for d L 
1, Wolfowitz [2] showed that this random variable tends to zero 
with probability one as ni - m. While this gives the statistician 
some assurance that, for large ni, his estimate of Li will be close 
to the actual value uniformly in all procedures for determining 
w and we (see Glick [3] for a thorough discussion of this point), 
he still falls short of getting a numerical grasp on (3). 

Suppose now that X1, . . . ,X, is a sample of size n drawn from 
the distribution function F. If p denotes the measure corre- 
sponding to F and fi denotes the empirical measure for X1, 
. . . ,X,, then Vapnik and Chervonenkis [4, theorem 2, p. 2691 
have shown that 

P{,E~ Ip(A) - P(A)1 L ~1 I 4s(@,2n)e-n~2/S 

where @ is a class of Bore1 sets in Rd and S(e,n) is the maximum 
over x1, *. a ,x, ofthe number of sets in {(xl, . s. ,x,) n A:A E @). 
For the class of “half planes” that we are considering here (e.g., 
@I or @2), 

I nd + 1, if n 2 d. 



CORRESPONDENCE 

Applying these results to (4) yields 

P[l&-LiI Zc]_<4(1+2 dnf)e-?Zic’/S i = 1,2. (5) 

The significance of (5) is that the statistician knows that 

P[l& - L;I < t] I 1 - 4(1 + 2dnP)e--nic2’8, i = 1,2 

regardless of F1,F2. By constraining his decision procedure to 
be linear, he can get a distribution-free performance bound with 
the resubstitution estimates & independently of the procedure 
used to find w .and WO. This generalizes the result stated in [5] for 
d = 1 and left there as an open question for d > 1. 

II. EXTENSIONS 

This result has easy extensions. Suppose the statistician de- 
cides to use a rule of the form: 

a= ;p 
1, 

if w”*(X) L wg 
if wt*(X) < wg 

where 

cpl 

a=, i 

0 (Pm 

is a fixed vector of real-valued measurable functions defined on 
Rd with wt = (WI,. . . ,wm) and wg determined in some manner 
from the data. A distribution-free bound for 

P[lL,i - Li( I c], i = 1,2, 

can be obtained immediately by replacing Xj by @(Xi) so that 
m  replaces d in (5). However, the Vapnik and Chervonenkis re- 
sult allows a firmer bound if s(@,n) can be computed, where @  
is the class of sets of the form (x E Rd:wt@(x) 2 wg] or (x E 
Rd:wt@(x) < ~0). The early paper of Cover [6] contains some 
specific examples, including the important case where We+ 
is a polynomial of degree r in the components of n. 

Suppose 0 can now take values in (1,. . * ,Mj where 

P[X 5 x/8 = i] = Fi(x), 1IisM. 

The data become the sequence 

x:, - * * ,x;,, - * - ,xy, - - * ,XfM (6) 
where Xi, . . . ,Xii is a sample of size ni drawn from Fi. The se- 
quence (6) will be denoted simply by the vector D. The linear 
decision rule for M  states is 

8 = smallest integer which achieves max (w FX + wio), (7) 
lSi5M 

where, as before, the weights and thresholds wl,wlo, . . . ,WM,WMO 

are determined in some manner from the data. If Li = P(B # i/D, 
6’ = i], then its resubstitution estimate just counts the frequency 
of errors made by (7) on the sample Xi, . . a ,Xl,,. It is not very 
difficult to see that a distribution-free bound for this case is given 
by 
P[ILi - Lil I C] I 4(1 + 2dnf)M-le-nif2/8, 1 I i I M. (8) 

Finally, we may assume, in some situations, that 0 is a random 
variable taking values in (1, . . . ,MJ with an unknown distribu- 
tion 

P{8 = i) = Ti, lli<M. (9) 

The data (Xl,&), . . .,(X,,&) is now a sample of size n drawn 
from the distribution of (X,0) which is determined from (1) and 
(9) while the random variable 
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is the probability of error for (7) with the statistician’s data and 
his method of choosing the weights and thresholds. The resubs- 
titution estimate of L becomes 

where Ni is the number of observations in the data with state i 
and .iri is the usual frequency estimate of ?ri, 1 I i I M. L is, of 
course, the frequency of errors made on the data with (7). For, 
O<ol<l, 

P[lL - LI L e] 

I P  SUP I.iri - KiI 2 at/M 
[ 1 

+P[sipI*._,., <at/MandIL-LI t,]. 

The second term above equals 

P[suplki-nil <at/Mand I$ri(ii-Li)l 2(1-a)(] 
i 

I E P[Iki - ai1 I olc/M and I& - Lil I (1 - a)t/Mai]. 
1 

Since (1 - ~)~/M~i I 1 will yield a probability of zero in each 
term above, we consider only terms with 

ri L (1 - o~)c/M. 

Then 

[I+i - TiI I cue/M] c [Ni 1 nc(l - 2c~)/M] 

and, from (5) and assuming 1 - 2a > 0, 

P[l+i - ail I at/M and Iii - Lil I (1 - a)c/Mai] 
5 4(1 + 2d(nc(l _ 201)/M)d)M-1e-ncj(l-a)2(1--201)/8M3 

Using Hoeffding’s inequality [7], we see that, for 0 < (Y < l/z, 

P[IL - LI 2 t] I 2Me-2na2~‘/M2 
+ 4M(1 + 2d(nc(l - 2LU)/M)d)M-1e-nf3(1-a)2(1-2a)/8M3. (10) 

No attempt here has been made to find the tightest bound 
possible. The interest in (lo), as stressed earlier, is that it works 
fOrUll~l,..-,aM,F1,... ,FM and all ways of choosing the weights 
and thresholds. 
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