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Distribution-Free Inequalities for the Deleted
and Holdout Error Estimates

LUC P. DEVROYE anp TERRY J. WAGNER, MEMBER, IEEE

Abstract—In the discrimination problem the random variable 4, known
to take values in {1,---,M}, is estimated from the random vector X
taking values in R%. All that is known about the joint distribution of (X,8)
is that which can be inferred from a sample (X,8,),-- - ,(X,,8,) of size n
drawn from that distribution. A discrimination rule is any procedure which
determines a decision 4 for § from X and (X,,6)),- - - ,(X,,,0,). The rule is
called k-local if the decision # depends only on X and the pairs (X},,), for
which X; is one of the k closest to X from Xy,---,X,. If L, denotes the
probability of error for a k-local rule given the sample, then estimates L,
of L, are determined for which P{|L,— L,|>¢} <A exp (— Bn), where A
and B are positive constants depending only on d, M, and €.

I. INTRODUCTION

'N THE discrimination problem a statistician makes an

observation X, a random vector with values in R?, and
wishes to estimate its state 8, a random variable known to
take values in {1,---,M}. All that he knows about the
distribution of (X,#) is that which can be inferred from a
sample (X,,8,), --,(X,,0,) of size n drawn from that
distribution. The sample, commonly called data, is
assumed to be independent of (X,#). Using X and the
data, the statistician makes a decision Q for § where his
rule is any procedure which determines § from X and the
data.

The rules which we are interested in are called k-local
rules. Here the estimate # is a function of X, the k nearest
observations to X from X,,- - -,X,, and the states of these
k nearest observations. Because there may be ties in
determining the k nearest observations to X, we use an
independent sequence of random variables Z,Z,,Z,,- - -

Manuscript received June 28, 1977; revised December 1, 1977. This
work was supported in part by the U.S. Air Force under Grant AFOSR
77-3385. This paper was presented at the IEEE International Symposium
on Information Theory, Cornell University, Ithaca, NY, October 10-14,
1977.

L. P. Devroye is with the School of Computer Science, McGill
University, P.O. Box 6070, Station A, Montreal, PQ, Canada H3C 3Gl.

T. J. Wagner was with the Department of Electrical Engineering, Rice
University, Houston, TX. He is now with the Department of Electrical
Engineering, Univeristy of Texas, Austin, TX 78712.

which itself is an independent identically distributed
(i.i.d.) sequence with a uniform distribution on [0, 1]. Then
X is nearer than X to X if

2) | X - X,|| <|IX =X, or"
b) | X - X,||=|| X~ X;|| and |Z— Z|<|Z— Z], or
o) |X-Xl=1X-X.,|Z-Z|=|Z-Z], and i <.

The event c) has probability zero and can be ignored. We
will think of Z as being attached to X and of Z, as being
attached to X, for i=1,---,n. If a new independent ob-
servation X" is to have its state estimated, another random
variable Z' is generated, but Z,,---,Z, remain the same.
If (X',8°,Z") denotes the ith-nearest observation, its state,
and its attached random variable, respectively, then a
k-local rule is any rule for which
I=5(X,Z,(X',0%,2"),--- ,(X*,8%Z%))

for some measurable function g.

The most familiar example of a k-local rule is the
k-nearest neighbor rule [1], in which 4 is taken to be the
state which occurs most often among the k nearest ob-
servations to X. In the event that several states tie in this
respect, d is taken to be the state from those tied with the
nearest observation to X.

For a k-local rule and the given data, the probability of
error is

L,=P{8+6\V,}
where
Vn =((X1’01’Zl)" T ’(Xn’gn’zn))’

The value taken by the random variable L, is just the
limiting frequency of errors made when a large number of
independent observations have their states estimated with
the given rule and data. Since L, measures the effective-
ness of the rule, and since it cannot be computed, the
immediate need of the statistician is to estimate it as
accurately as possible. Suppose, for example, n addi-
tional observations and their states (X,,.6,,.). ",

0018-9448 /79 /0300-0202$00.75 ©1979 IEEE
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(X4 m> 0, ,,) are available. One then could estimate L, by
the empirical frequency count

A

1 &
n = _n7 ; I{0n+i7é0n+i}

where @, , , is the estimate of 0, fromX,, ,Z ,andV,
and where ., denotes the indicator function of the event
{-}. This estimate will be close to L, if m is large, and

since, conditioned on the data, the sequence
I, 20,01 rem By} is a sequence of Bernoulli tri-
is with expectation L,, we have, using Hoeffding’s in-

equality [2],
P{|L,—L,|>€¢|V,} <2e™2, (1)

Inequality (1) is interesting because it does not depend on
the data or a specific knowledge of the distribution of
(X,0) and, at the same time, is reasonably tight. The
difficulty with this estimate is that one rarely has m
additional observations and states, and even if they were
available, they would be included in the data. One wants
then an estimate L of L, which depends only on the data
and for which P{|L L,|>¢} can be upper-bounded by
an expression which depends only on known quantities
(e-8., n, d, M, ¢) and tends to zero with n as fast as
possible. In short, one wants an estimate L which y1e1ds a
good distribution-free upper bound for P{IL L) >¢€).
We note here that since L, and L are both functions of
the data it is no longer poss1b1e to find such bounds for
P{IL,~L)|>€V,}.

If 6( V,,X,Z) denotes the function which first finds the
k nearest points to X, Z from ¥, and then uses g to get the
value of é, we can write the resubstitution estimate L¥, the
deleted estimate L, and the holdout estimate LY as

l n
LE= =3 Itiv. x, 2y %]
,,; [0V, X, Z)=6,]

1 n
- 21: 114 Voo Xo Z) 70,

and

1 5
7= 3 ; [0(V,§’,X,-,Z,-)#0,-]?

respectively, where ¥V, denotes the sequence V, with
X, ,,Z.) deleted and where V., =(X;, 1,0, 1,21 1) " ">
(X,,0,,Z,), for n>s > 1. Notice that we must have n >k +
1 for LD to be defined and n >k +s for L¥ to be defined.

The main objective of this paper is to present distribu-
tion-free bounds for P{|L — L,| > €} when the rule used is
a k-local rule and L is one of the above estimates. The
first distribution-free bound for k-local rules was found
by Rogers and Wagner [3}], who showed that

E(LP~L,)* <((0.25+6k)/n) +(4k /n?)

(see also [4], where the bound (1+46k)/n is obtained) so
that

P{|LP~L,|>€} <((0.25+6k)/ne’) +(4k / n’e?)
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by Chebyshev’s inequality. The bounds derived in this
paper, by contrast, will be exponential in n with an
exponent depending on d, k, and e. Similar bounds will be
derived for LY. The resubstitution estimate has been
shown to have exponential distribution-free bounds for
linear discrimination rules [5]-[7}, which are not local, and
has been discounted for local rules because, when the
distribution of X given § is absolutely continuous, LX=0
with probability one for the single-nearest rule regardless
of the value of L,. In spite of this, we show that L® is
close to LP and to L, for large k.

II. RESULTS

The bounds below use the constant vy, the maximum
number of distinct points in R? which can share the same
nearest neighbor. While one can easily see that y,=2 and
y,=6, no explicit formula for y, is known. It can be
shown that y,<3?—1 for all 4 while other upper and
lower bounds for d > 9 are given in [8].

To economize on the use of parentheses in the formulas
that follow, (abc)/(def) will be written abc / def (e.g., in an
expression involving only multiplications and one divi-
sion, the multiplications are done first).

Theorem 1: For k-local rules with k<n—1,

P{|L,,D - L,| >e} <2e /184 g~/ 108K+ ()
Theorem 2: For k-local rules with k <n—s,
E(L,— L7 <(1/25)+(2sk/n) 3)
and
P{|L,~ LF|>€} <2e™*/2+(2sk / ne). 4

By using an argument similar to the one used for
Theorem 1, an exponential bound for L can be obtained
which depends on d.

Theorem 3: For k-local rules with k<n—s and s<
ne/12k(y,+2),

P{ILF - L,|>€) <2e~2/244¢~n</N6k1+D_ (5)

The holdout estimate always poses the problem of the
selection of 5. From Theorem 2 one might be tempted to

conclude that s="Vn/4k would be a good choice since it
minimizes the bound (3) for E(LY — L,)>. However, such
a choice will not yield an exponential bound in (5). If one
lets s=pn/k, for some 0<p<e/12(y,+2)<1, then the
bound (5) is exponential in ». This is somewhat surprising
since E(LF — L,)* can go to zero at an algebraically slow
rate in this case (see [3]). One might still wonder, however,
if the dependence on d is necessary. The following exam-
ple shows that it is.

Example: Put M =2, and consider the nearest neighbor
rule with # fixed and d=2n. In R?*" let the distribution of
(X,8) put weight 1/n at ((0,---,0),1) and weight (1/2n)
(1—1/n) at each of the points (e,2), 1 <i<2n, where ¢
is the ith unit vector in R?*, If 4 is the event that exactly
one of the (X,0) equals ((0,---,0),1) for 1<i<s and
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none of the (X;,8,) do for s+1<i<n, then, on A4,

Ll
"os
and
1 1 1 1
Ln>2 (1—;)(14—}1)—5—*2—”—2
so that
1 1 1
—gJHS - __~ _ _ 2
L, L,,>2 Py

Thus, whenever 1/2—1/2n2—1/s >¢,

H NPT R
P{|L,~ L¥| >} >P{d}= (1 n) >2 ()
smce exp (x—1)/x)<x, 0<x <1, implies (1-1/n)y""! >
. Thus if one picks s=pn for some p=p(e), where
O<p< 1, then (6) shows that P{|L,— L”|>¢} cannot go
to zero exponentially fast in n uniformly in d and the
distribution of (X,8). In fact, when s =pn, (6) shows that
it cannot even go to zero in »n uniformly in 4 and the
distribution of (X,8).

We do not know if the dependence on d in (2) is
necessary for the deleted estimate to have a distribution-
free exponential bound.

If one considers the specific case of the k-nearest
neighbor rule, then the above bounds can be improved
somewhat by replacing k/n with Vk /n. In both Theo-
rem 4 and Theorem 5 below, one should be cautioned that
k is fixed and not a function of ».

Theorem 4: For the k-nearest neighbor rule with M =2
and k<n-—1,

E(LP- LY <(1/n)+(24Vk /V2r n).  (7)
If M=2 and k<n—s, then
E(LF-L) <(1/25)+(8sVk /N2r n)  (8)

and

P{|LF~ ,,|>€}<2e_s‘2/2+(8sﬁ/\/§;ne). 9)

In fact, by using a large k, the resubstitution estimate
becomes a reasonable estimate of L,.

Theorem 5: For the k-nearest neighbor rule with M =2
and k<n-—1,

E(LR— L) <2E(LP- L) +8/VIrk . (10)

III. PrOOFs

If x,,- - - ,x, is a sequence of distinct points in R? and if
the nearest point or neighbor to x; is found from
Xpp s X3 Xg gyt 5 X, fOr 1</ <n, then as noted earlier,
no point can be the nearest neighbor to more than vy, of
the remaining points. If the points are now the values
assumed by the observations X|,- - -, X, we can no longer
make this statement because the distribution of X may
have atoms so that X,-- -, X, are not necessarily distinct.
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Nevertheless, if we use the sequence Z,,---,Z, and the
notion of “nearest” in Section I, we have the following
easy lemma.

Lemma 1: Suppose (X,,Z,), " -,(X,,Z,) is the
sequence obtained from the data by omitting the states of
each observation. If, for each j, the nearest neighbor
to. (X;,Z) is found from (X,Z),---,(X (15 Zi—1)s
(Xis1:Z1+1) -+ 5(X,, Z,), then no point (X,,Z) can be the
nearest neighbor to more than y,+2 of the remaining
points.

Lemma 2: Suppose the probability distribution of the
binary-valued sequence Y,,---,Y, is the same as that of
Y 5 Yo for every permutation o of 1,---,n. Then

o1y’
1< 1 &
P{7$”‘Z$K

Proof: 1f Q(»y,- -~
Y , then

LY,
Q(yg(1)>' o

for all ¢, and

>e} <2e"%¥  1<i<n.

,y,) 18 the probability distribution
of ¥,,

>yo(n))= Q(yl" o ’yn)

n!

_ 1

= ; ) 2 , I{1a/03 v -a/msivi><)
'Q(yl" o ’yn)

= 2 00 o)
P4 PR ™

1
) (F ; Kia/nztvan-a/mziv >=})

21e? =2e"~ 2le?

< 2 Q(yl" ot ’yn)ze_
Y1s" "V

where the inequality follows from Hoeffding [2, sec. 6,
theorem 4].

Proof of Theorem 1: We consider one-local rules first.
Suppose

(X,0,2),(X1,0,,Z,), - s (X s O Zy s )
are i.i.d. with

V,=(X1,0,Z), - ,(X,,0,.Z,)

Up=Xps 0004 Zus 1) (X ss O Ziem)

T (Xl’ol’zl) ( n+m’0n+m’Zn+m)'

We shall write V, ;, U, ;, T, ; to denote the corresponding
sequences with (X,,6,,Z,) deleted As before, V, denotes
the data used with X,Z to estimate #. The sequence U,

and its concatenation with V,, denoted by T, are used
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only in the proof. Let
L,=P{0(V, X,Z)#8|V,}

1 &
L=+, -21 T60v, X020 #0001}
j=
1 m
L"2= ; _21 I{é(Tn.n+;vXn+i,Zn+i)9*9n+i}
i=

1 n+m

> I {6(T,.%.2)7#6,)

i=1

L.=
"3 p+m

1 n
Ln4= ; igl I{é(Tn.iin’Z[)#ai}

1 n
Ly=— El Hécv,xaz) =8}

Our proof consists of noting that
P{|L,— LP|>€} <P{|L,— L,|>¢/6)}

+P{|L,— L,| >2¢/6)
+P{|L,,— Lyl >¢/6}
+P{|L,;3— L, >e¢/6}
+P{|L,~LPI>e/6} (11)

and showing that each term can be bounded in a distribu-

tion-free way by picking m properly.

1) Using Hoeffding’s inequality for sums of inde-
pendent [0, 1}-valued random variables [2], we have

P{|L,— Ly|>¢} <2e™2,
2) We have

P{anl_ LnZl >€}

1 m
<P{—’;21

2 [0(Vn,xm,z“,-)see(rn."”,xnﬁ,zﬁf)]>f}
=

1 m
<P — .
P{ m 2 IA(n+1)>€}

i=1

where, for I/=1,---,n+m, A(]) is the event that
(X,+Z,4,) is the nearest neighbor to (X,,Z) from T, ,
for some j=1,- - ,m, excluding j=/—n if />n. To use
Lemma 2, we symmetrize the sequence Ly, -« s Ly 4 my 88
follows. Let Y,,---,Y,,,, be a random permutation of
1',~ ~,n+m. Then Ly, -, Ly, satisfies the condi-
tions of Lemma 2, and

1 & ]
P_ In,'>€
{m'=1 A(n+i)

H

] m
— >
<P{ m EIIA‘Y‘) 6}

n+m

; IA(,')>E—

l m
=P[;$IA(Y.-)—

< Qe 2mie /2y

n+m
Ly
n+m n+m ; A(‘)}
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whenever
I n+m

21 IA(i)<€/2'

(12)

n+m

However, since each (X,.;Z,,;) can be the nearest

neighbor of at most (y,+2) other points from T, we see
that 33", <(yv;+2)m, and thus (12) is valid whenever
(Y, +2)m<(n+m)e/2.

3) Lemma 2 can be applied immediately to L,,—
L,and L~ L, to yield

P{|L,y~ Lyl >€} <2e72"¢
P{|L;—L,,|>€} <22,
4) Finally,
P{|Ls= L] >¢}

<r{5
n

~M=

1 (6T, X, Z)#0(V,., X, 2) | >e€ }

X |-

<r|

;} IA(I')>6‘}

=0, if m(y,+2)<ne.

Taking m=ne/6(y,+2) and using inequality (11), we
see that
P{|L,— LP|>€} <2e™"/18 4 e~ me/18
which yields (2). For an arbitrary k, it suffices to replace
(v2+2) by ky;+2<k(y,+2) since no (X,,Z;) can be one

of the k nearest neighbors to more than ky,+2 of the
points in V, .

Proof of Theorem 2: Letting

V,=(X,0,,Z,), -~ ’(Xs’os’Zs)
and
Vn” =(Xs+l’05+]>zs+1)" v ’(Xn’en’zn)’
we have

|Ln - LnHl < an - E(LnHl Vn”)| + |E(erll Vn”) - LnHl
<P{6(V,.X,Z)#0(V,.X,Z)|V,)}

+|E(L V) - LY
since

E(LF\V;)=P{O(V;,X,Z)=0|V;)

=P8V, X,Z)#8|V,}
and

|P{6(V,.X,Z)#0|V,} - P{6(V,,X,Z)+#0|V,}|

<P{0(V,,X,Z)#0(V;,X,Z)|V,}.
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Using |a+ b|" <2""!(Ja["+|b|") for r > 1, we have
E(L,- LEY' <2P{6(V,,X,Z)#0(V},X,Z))
+2E(LY - E(L|V)))

<2P [ U {(X;,Z,) is among the &
i=1

nearest to (X,Z)} }

1
+24
(k1

n 2s
which proves (3). Also,

P{|L,— L}|>¢}
<P{IL7-E(LM|V,)|>€/2}
+P{P{O(V,,X,Z)=0(V}.X,Z)|V,} >€/2}
SE{P{|LF-E(LF\V))|>¢/2|V;}}

(13)

+2 P{0(v,%,2) #(7;, X, 2))
<2e~2/2' 125k /ne

using Hoeffding’s inequality and Markov’s inequality.
This proves Theorem 2.

Proof of Theorem 3: Using the notation of the proofs
of Theorems 1 and 2, consider k equal to one. From the
argument of Theorem 2 we have
P{|L,—LF|>€} <2e7%</?

P{P{0(V,,X,Z)#0(V;.X,Z)|V,} >2¢/3}.
Letting

L*=
n

1 m
_zlévx 5 Zns YOV Xy s Zo s
m 1 (m n+is n+:)¢( nrXn+is n+t)

we have

P{P{6(V,.X,Z)#0(V,,X,Z)|V,} >2¢/3)
<P{|L}-P{6(V,.X,Z)#0(V,; . X,Z)|V,}| >¢/3)
+P{L}>e¢/3}
<2e” /24 P(L*>¢/3)

where, for the first term, we first condition the probability
on V, and use Hoeffding’s inequality. Also,

P{L*>¢/3)} <P{% > Icnsi) >€/3]
i=1

where C(n+)) is the event that the closest point to
X+ Z,4)) from V, is (X,,Z) for some 1<i<s. How-
ever, if D(/) is the event that the closest point to (X}, Z))
from T, ; is (X}, Z) for some 1<i<s or n<i<n+m, then

C(n+j)CD(n+))
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and
P{L:>f/3}<P{ 2 ID(n+i)>€/3}
m
where Y,---,Y,,,, is an 1ndependent random permuta-
tion of 1,---,n+ m. Using the same arguments as Theo-

rem 1, we see that this last term is bounded by 2¢~2m(/6?

if 1/(n+m)Z7""Ip, <e/6. This occurs if (y,+2)(s+m)
<(e/6)(n+ m). Taking m=ne/12(y,+2) and s <ne/12(y,
+2) yields the theorem for k=1 after collecting terms.
For arbitrary k, we need only replace (y,+2) by k(y,+2).

Lemma 3: If P{Y=}) =(;.')(1/2)", 0<,j<n, then

P{|Y—n/2|<a/2}<4a/V2mn
for all positive integers a.

Proof: We make repeated use of Feller’s [9] ap-
proximation for n!. If n is even, the maximal term of the
binomial expansion is

()< vy o0 (1
2\n/2 27n P
Hence P{|Y—n/2|<a/2} is upper-bounded by

(a+1)2/V2an <4a/V2un .

1 2) 2
2n  6n+1 ron

For n odd, n >3, the maximal term is

#(-v2) <35 0 02)
1 2
<

<
V2m(n—1)

Thus
P{|Y-n/2|<a/2}<2a/Van <4a/V2an .

Lemma 4: For k-local estimates with k<n—1,

E(L,~LPY <1/n+6P{0(V,,X,Z)#0(V, ,.X,Z)}

<1/n+6k/n.

Lemma 4 is proved in [4]. It can, in implicit form, also
be found in [3].

Proof of Theorem 4: We will show that
P{0(V,,X,Z)#0(V},X,Z)} <4sVk /V2r n. (14)

A combination of (14) and (13) yields (8); (7) follows from
Lemma 4 and (14) upon noting that V=V, | if s=1.
Let N, N,, and N, be the number of (X,,Z) that are
among the k nearest neighbors to (X,Z) and for which,
respectively, 1<i<s, §,=1, and §,=2. Conditioned on
(X**',Z¥+1 x,Z), the random variables N and |N,— N,
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are independent. Thus
P{O(V,.X,Z)#0(V;],X,Z))

s
< _EIP{N=j, [N = Nyl <}
iz
s
=E{ > P{N=j|X,Z}
j=1

.P{lNl_Nzl <j|X,Z,Xk+1’Zk+1}}'
oo

U))

i VNS

P{N—jIX,Z}— (n) .

s

Also, by Lemma 3, (1

P{IN\ = N,|<J|X,Z,x*+1, 2+ 1}
=P{|N,—k/2|<j/2|X,Z,X**1,Z*+1)
<4j/V2nk .

(2]
131

Collecting bounds and using a property of the hypergeo- X

metric distribution [10] yields 5

P{O(V,.X,2)#0(V;},X,Z)} < zj(f)(’;:f) 4

j=1 (;’) V2ak 6]
=4ks/nV2nk (7]
=4sVk /V2x n.

(8]
19l
> 0]

Proof of Theorem 5: From (a+ b)*<2(a*+ b? and

ILn_Lnkl< |Ln_LnD|+

1 n
n El H4(v, %, 2) 26,0 %:2) }
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we deduce

E(L,— L®)’<2E(L,- LP)

+2E(% ,él 1{ BV, X, Z,) = b( Vn,.-,XnZi)})z
<2E(L,-LPY

+2P{0(V,, X1, Z)#0(V, . X, Z,)}
<2E(L,- LPY

+2 sup P{|N,(x,2) = Ny(x,2)| < 1}

<2E(L,— LP) +8/V2nk

where we use Lemma 3 and where N,(x,z) and N,(x,z)
are as in the proof of Theorem 4 after replacement of
(X,Z) by (x,2).
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