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Distribution-Free Inequalities for the Deleted 
and Holdout Error Estimates 

LUG I’. DEVROYE AND TERRY J. WAGNER, MEMBER, IEEE 

Abstmct-In the . dmaimhation problem the random variable 8, known 
to take values in {l,... ,M}, Is estimated from the random wxtor X 
taking valuea in wd. AU that Is known abut the joint distribution of (X, 0) 
is that which au be inferred from a sample (X,, O,), . . . ,(X&J of size n 
dnwu from that distrib*tion. A disakhation rule is any procedure which 
determines a decision e for eJr0m x and (x,,e,),. . . ,(x,,e,). The rule is 
died k-lucal if the decision B depends only on X and the pairs (Xi,Oi), for 
~hlchX~isowofthekclosesttoXfromX,,...,X,.IfL,denotes~ 
prowity of error for a k-local rul: given the sampI% then estimates 4 
ofL,aredetermiwdforwhiebP{IL,-L,I>c}<Aexp(-Bn),whereA 
and B are positive constauts depending only on d, IU, and c. 

I. INTR~DU~H~N 

I ‘N THE discrimination problem a statistician makes an 
oheruation X, a random vector with values in I?‘, and 

wishes to estimate its state 8, a random variable known to 
take values in { 1, * * * , M}. All that he knows about the 
distribution of (X,0) is that which can be inferred from a 
sample (Xi, B,), . - . , (X,,B,) of size II drawn from that 
distribution. The sample, commonly called data, is 
assumed to be independent of (X,8). Using X and the 
data, the statistician makes a decision 8 for 8 where his 
rule is any procedure which determines d from X and the 
data. 

The rules which we are interested in are called k-local 
rules. Here the estimate 8 is a function of X, the k nearest 
observations to X from Xi, * - - ,X,, and the states of these 
k nearest observations. Because there may be ties in 
determining the k nearest observations to X, we use an 
independent sequence of random variables 2, Z,, Z,, * - * 
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which itself is an independent identically distributed 
(i.i.d.) sequence with a uniform distribution on [0, 11. Then 
Xi is nearer than Xj to X if 

a) Ilx-xill < Ilx-xjl19 or. 
b) [IX-X,ll=IlX-X,ll and lZ-Zil<lZ-Z,l, or 
c) [IX-X,ll=IlX-X,/l, IZ-ZJ=lZ-Z,l, and i<j. 

The event c) has probability zero and can be ignored. We 
will think of Z  as being attached to X and of Zi as being 
attached to X, for i= 1; * * ,n. If a new independent ob- 
servation X’ is to have its state estimated, another random 
variable Z’ is generated, but Z,, - - . ,Z, remain the same. 
If (X’,B’,Z’) denotes the ith-nearest observation, its state, 
and its attached random variable, respectively, then a 
k-local rule is any rule for which 

e=g(x,z,(x*,el,zl),...,(xk,ek,zk)) 

for some measurable function g. 
The most familiar example of a k-local rule is the 

k-nearest neighbor rule [I], in which 8 is taken to be the 
state which occurs most often among the k nearest ob- 
servations to X. In the event that several states tie in this 
respect, e is taken to be the state from those tied with the 
nearest observation to X. 

For a k-local rule and the given data, the probability of 
error is 

where 

v, = ((x,, 4, z,), . . - , (x,, en, a). 
The value taken by the random variable L,, is just the 
lim iting frequency of errors made when a large number of 
independent observations have their states estimated with 
the given rule and data. Since L,, measures the effective- 
ness of the rule, and since it cannot be computed, the 
immediate need of the statistician is to estimate it as 
accurately as possible. Suppose, for example, it addi- 
tional observations and their states (X,, ,,Bn+ i), * * * , 
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Kl+tw n+m 0 ) are available. One  then could estimate L,, by 
the emp irical f requency count 

where e,+, is the estimate of O ,,+i from Xn+i, Z,,+i, and  V,, 
and  where I(.) denotes the indicator function of the event 
{ * }. This estimate will be  close to L, if m  is large, and  
since, condit ioned on  the data, the sequence 
16+,#%+,P’ * * J@“+m#4+ml 

i 
is a  sequence of Bernoulli tri- 

a  s with expectation L,,, we have, using Hoeffding’s in- 
equality [2], 

P{IL,-%I)EIV,}(2e-*“*. (1) 
Inequality (1) is interesting because it does not depend on  
the data or a  specific knowledge of the distribution of 
(X,0) and, at the same time, is reasonably tight. The  
difficulty with this estimate is that one  rarely has m  
additional observations and states, and  even if they were 
available, they wo_uld be  included in the data. One  wants 
then an  estimate L,_of L,, which depends only on  the data 
and for which P {IL,, - L,, I > E} can be  upper-bounded by 
an  expression which depends only on  known quantities 
(e.g., n, d, M , e) and  tends to zero with n  as fast as 
possible. In short, one  wants an  estimate %  which yields a  
good distribution-free upper  bound for P { I L,, - L,,] > E}. 
W e  note here that since L, and  L, are both functions of 
the data it is no  longer possible to find such bounds for 
pK -LnI 4  v 

If d( V,,X,Z) denotes the function which first finds the 
k nearest points to X, Z  from V, and  then uses g  to get the 
value of 8, we can write the resubstitution estimate LnR, the 
deleted estimate LnD, and the holdout estimate L,” as 

and 

respectively, where V,,i denotes the sequence V, with 
(Xi,ei,Zi) deleted and where Vi =(XS+l,BS+,,ZS+,),. e  . , 
(X,,&,Z,,),forn>s> l.Notice that wemust haven>k+ 
1  for L,” to be  def ined and n  > k + s for L,” to be  defined. 

The  ma in objective of ,+this paper  is to present distribu- 
tion-free bounds for P { I L,, - L,I > E} when the rule used is 
a  k-local rule and i,, is one  of the above estimates. The  
first distribution-free bound for k-local rules was found 
by Rogers and Wagner  [3], who showed that 

E( L,” - L,)* < ((0.25 + 6k)/n) + (4k/n*) 
(see also [4], where the bound (1 + 6k)/n is obtained) so 
that 

P{ IL,“- Lnj >e} < ((0.25+6k)/nc2)+(4k/n2e2) 

by Chebyshev’s inequality. The  bounds derived in this 
paper, by contrast, will be  exponential in 12  with an  
exponent  depending on  d, k, and  e. Similar bounds will be  
derived for L,“. The  resubstitution estimate has been 
shown to have exponential distribution-free bounds for 
l inear discrimination rules [5]-[7], which are not local, and  
has been discounted for local rules because, when the 
distribution of X given 0  is absolutely continuous, L,” = 0  
with probability one  for the single-nearest rule regardless 
of the value of L,. In spite of this, we show that L,” is 
close to L,” and to L,, for large k. 

II. &XJLTS 

The bounds below use the constant yd, the maximum 
number  of distinct points in IWd which can share the same 
nearest neighbor. W h ile one can easily see that y, =2 and 
y2= 6, no  explicit formula for yd is known. It can be  
shown that yd < 3d- 1  for all d  while other upper  and 
lower bounds for d  Z  9  are given in [8]. 

To  economize on  the use of parentheses in the formulas 
that follow, (abc)/(def) will be  written abc/def (e.g., in an  
expression involving only mu ltiplications and one divi- 
sion, the mu ltiplications are done first). 

Theorem I: For k-local rules with k <n - 1, 

P{ I&f’- L,,I )E} ( 2e-n22/18+6e-“3/108k(2+7~). (2) 

Theorem 2: For k-local rules with k <n - s, 

and  
E( L, - L,H)* < (1/2s) + (2sk/n) (3) 

P{~L,-L,HI>E)<2e-“z/2+(2sk/ne). (4) 
By using an  argument similar to the one used for 

Theorem 1, an  exponential bound for L,” can be  obtained 
which depends on  d. 

Theorem 3: For k-local rules with k <n -s and s < 
nc/ 12k(Yd + 9, 

P{IL,H-LnI>~} (2e-2”2/9+4e-“‘3/2’6k(7d+2). (5) 

The  holdout estimate always poses the problem of the 
selection of s. From Theorem 2  one m ight be  tempted to 
conclude that s = vw would be  a  good choice since it 
m inimizes the bound (3) for E(LnH - L,,)*. However, such 
a  choice will not yield an  exponential bound in (5). If one  
lets s=pn/k, for some O<p<e/12(yd+2)<l,  then the 
bound (5) is exponential in n. This is somewhat surprising 
since E( L,” - L,J* can go  to zero at an  algebraically slow 
rate in this case (see [3]). One  m ight still wonder, however, 
if the dependence on  d  is necessary. The  following exam- 
ple shows that it is. 

Example: Put M  = 2, and  consider the nearest neighbor 
rule with n  fixed and d=2n. In lR*” let the distribution of 
(X,0) put weight l/n at ((0; -. ,O), 1) and  weight (1/2n) 
* (1 - l/n) at each of the points (e,, 2), 1  <i < 2n, where e, 
is the ith unit vector in Iw*“. If A is the event that exactly 
one  of the (Xi,Si) equals ((0; * - ,O), 1) for 1  &i <s and 
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none of the (Xi,($) do for s+ 1 <i <n, then, on A, 

and 

L,>& 1-i (1+n)=& 
( 1 

so that 

Thus, whenever l/2- 1/2n2- l/s >e, 

since exp ((x- 1)/x) <x, O<x < 1, implies (1- l/n)“-’ > 
e -I. Thus if one picks s =pn for some p =p(e), where 
O<p< 1, then (6) shows that P{]L,,-L,H] >c} cannot go 
to zero exponentially fast in n uniformly in d and the 
distribution of (X, 0). In fact, when s = pn, (6) shows that 
it cannot even go to zero in it uniformly in d and the 
distribution of (X, 0). 

We do not know if the dependence on .d in (2) is 
necessary for the deleted estimate to have a distribution- 
free exponential bound. 

If one considers the specific case of the k-nearest 
neighbor rule, then the above bounds can be improved 
somewhat by replacing k/n with fi /n. In both Theo- 
rem 4 and Theorem 5 below, one should be cautioned that 
k is fixed and not a function of n. 

Theorem 4: For the k-nearest neighbor rule with M  = 2 
and k<n-I, 

E(L,D-L,)2<(l/n)+(24fi /fi n). (7) 
If M=2 and k<n-s, then 

E(L,H-L,)2q1/2S)+(8Sfi/vGz) (8) 
and 

P{IL,H--LL,I>~} <2e- sr*‘2 + (8~65 /m m). (9) 
In fact, by using a large k, the resubstitution estimate 

becomes a reasonable estimate of L,,. 

Theorem 5: For the k-nearest neighbor rule with M  = 2 
and k<n- 1, 

E(L,R-L,)‘<2E(L,D-L,)‘+8/m. (10) 

III. PROOFS 

If x1; * * ,x, is a sequence of distinct points in Rd and if 
the nearest point or neighbor to 3 is found from 
x,; * - ~xj-l~xj+l~“‘> x,, for 1 <j <n, then as noted earlier, 
no point can be the nearest neighbor to more than yd of 
the remaining points. If the points are now the values 
assumed by the observations Xl,. . . ,X,, we can no longer 
make this statement because the distribution of X may 
have atoms so that X,, . . . ,X, are not necessarily distinct. 

Nevertheless, if we use the sequence Z,, * + * , Z, and the 
notion of “nearest” in Section I, we have the following 
easy lemma. 

Lemma I: Suppose (Xi, Z,), . . . , (X,, Z,) is the 
sequence obtained from the data by omitting the states of 
each observation. If, for each j, the nearest neighbor 
to (X$ Zj) is found from (Xi, Z,), * . * , (Xj-i, Zj-i), 
<~.l~~.l~~~ * * ,(X,, Z,), then no point (Xi, Zi) can be the 
nearest neighbor to more than yd +2 of the remaining 
points. 

Lemma 2: Suppose the probability distribution of the 
binary-valued sequence Y,, * * * , Y,, is the same as that of 
Y 41)’ . . . , YoCn, for every permutation u of 1, * 1 * ,II. Then 

Proof: If Q(yi;.. ,y,) is the probability distribution 
of Y,, . . . , Y,, then 

Q(Y,w. * . ,Y,(,,> = Q(Y 1, - * - ,Y,) 
for all u, and 

( x Q(y,; . . ,yn)2eC2f’2=2e-2”* 
YI.“‘.Y. 

where the inequality follows from Hoeffding [2, sec. 6, 
theorem 41. 

Proof of Theorem I: We consider one-local rules first. 
Suppose 

are i.i.d. with 

We shall write Vn,i, U,,i, T,,i to denote the corresponding 
sequences with (Xi,& Zi) deleted. As before, V, denotes 
the data used with X,Z to estimate 8. The sequence U,, 
and its concatenation with V,, denoted by T,, are used 
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only in the proof. Let 

Ln=p{@f,,,x,z)+ep,,} 

Ln’= ; .f z(8’(v”,x”+,,z”+,)P8”+,} 
151 

Ln2= ; i$, ‘{ ~(T,.,+,.x,+,,z,+,)ze+,} 

L n3 = &q ~~z(i(i...x,.z,)is) 

L n4  = : .$ ‘{ ” ~(L,,.x,z)z~,) 

JY=; ,$ ‘{~(vn.,,xi,z,)A9,}. r-1 
Our proof consists of noting that 

P{IL,-L,Dj>e} <P{lL,-L&c/6} 

+wL-L2I~w6~ 

+‘{iLn2- Ln3i )+) 

+fwn3-L4I W6)  

+P{IL,4-L,Dl>e/‘6} (11) 
and  showing that each term can be  bounded in a  distribu- 
tion-free way by picking m  properly. 

1) Using Hoeffding’s inequality for sums of inde- 
pendent  [0, II-valued random variables [2], we have 

P{IL,-L,,I)r}g2e-2”‘z. 
2) W e  have 

pwk,-Ln*l >f> 

where, for I= 1; .* , n  + m , A(Z) is the event that 
(X,+j,Z,,+j) is the nearest neighbor to (X,,Z,) from T,,, 
for some j=l;+. ,m, excluding j=Z-n if I>n. To  use 
Lemma 2, we symmetrize the sequence IA(,), * . . , ZACn+m) as 
follows. Let Y,, . . f , Y,,, be  a  random permutation of 
1  ;**,n+m. Then ZACyI);*+ ,ZACy,+,) satisfies the condi- 
tions of Lemma 2, and  

whenever 

(12) 

However, since each (X,+j, Z,,+j) can be  the nearest 
neighbor of at most (yd+2) other points from T,,, we see 
that x7+“’ ZACi) < (yd+2)m, and thus (12) is valid whenever 
(yd + 2)m <(n + m)e/2. 

3) Lemma 2  can be  appl ied immediately to L,,,- 
4I3 and Ld - Ln4  to yield 

P{IL,,-L,,I>c} <2e-2”‘2 

P{IL,,- Ln4) >c} <2e-2”‘2. 

4) F inally, 

p{ I4I4-J%? a+ 

=o, if m(y,+2) <nc 

Taking m  = nc/6(yd+2) and using inequality (11) we 
see that 

P{JL,,-LFI>c} <2e-n’2/18+6e-“‘2/18 

which yields (2). For an  arbitrary k, it suffices to replace 
(yd + 2) by ky, + 2  f k(yd + 2) since no  (Xi, Z i) can be  one 
of the k nearest neighbors to more than kyd+2 of the 
points in V,,i. 

Proof of Theorem 2: Letting 

v,l=(x,,e,,z,);~~,(x,,8,,z,) 
and  

vi =ws+,,e,+,,z,+,~,~ e  - ,cw3,,z,), 
we have 

IL,-L,“I<IL,-E(L,HI~~)I+IE(L,HIV~)-L,HI 

~P{e(v,,x,z)#e(v,/l,x,z>~v,} 

+ IE(L,Hj VI) - L,“I 
since 

and 
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U sing la+ bl’< 2’-‘(lalr+ lbl’) for r > 1, we have 

E(L,-L,H)2<2P{B(v~,X,Z)#B(v~,X,Z)} 

+2E(L,n- E(L,HI vi))” 
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and 

< 2P ; { (Xi,Zi) is among the k 
i=l 

nearest to (X, Z)} 
1 

where Y,; . . , Yn+,,, is an independent random permuta- 
tion of 1; . . , n + m . Using the same arguments as Theo- 
rem 1, we see that this last term is bounded by 2e-2m(E/6)2 

+2& 
if l/(n + m)E y’“ZDci, <c/6. This occurs if (yd + 2)(s + m) 
<(c/6)(n +m). Taking m=nc/12(yd+2) and s<nc/l2(y, 

2sk 1 
+2) yields the theorem for k= 1 after collecting terms. 

<7+5 (13) For arbitrary k, we need only replace (yd + 2) by k(yd + 2). 

which proves (3). Also, Lemma 3: If P{Y=j}=(r)(l/2)“, O<j<n, then 

P{IL,-L,HI>c} P{IY-n/2l<a/2}<4a/V% 
(P{IL,H--E(L,HJ~~)I)e/2} for all positive integers a. 

+P{P{&v~,X,Z)#~(v~,X,Z)~v~} >E/2} Proof We make repeated use of Feller’s [9] ap- 
<E{P{IL,n-E(L,H(V,“)I>~/21~~}} proximation for n!. If n is even, the maximal term of the 

+~P{e(V,,X,z)~~(~~,x,z)} 
binomial expansion is 

< 2e-2S(‘/2)2+2sk/ne 

using Hoeffding’s inequality and Markov’s inequality. 
This proves Theorem 2. Hence P { I Y - n/21 <a/2} is upper-bounded by 

Proof of Theorem 3: Using the notation of the proofs 
of Theorems 1 and 2, consider k equal to one. From the 

(a+ 1)2/S <4a/% . 

argument of Theorem 2 we have For n odd, n > 3, the maximal term is 

P{IL,-L~I>~}<2e-2‘*/9 

+P{P{8(V~,X,Z)#d(V-;,X,Z)IV,} >2r/3}. 
+( (n-;),2)+( &)l,2) 

Letting 

L& m  7 z[B(v,,x”+i,z”+i)i+~(~~,x”+i,z”+i)] Thus 
we have 

P{IY-n/2l<a/2} <2a/G <4a/VG. 

P{P{~(v,,X,Z)#~(~~,X,Z)Iv,} >2~/3} Lemma 4: For k-local estimates with k <n - 1, 
~P{lL~-P{~(~~,X,Z)#B(~~,X,Z)~V,}~~r/3} 

+P{L,*>c/3} E(L,-L,D)2<l/n+6P{8(V,,X,Z)#&‘~,l,X,Z)} 

<2e-2”“/9+P{Ln*>c/3} < l/n + 6k/n. 

where, for the first term, we first condition the probability 
Lemma 4 is proved in [4]. It can, in implicit form, also 

on V, and use Hoeffding’s inequality. Also, 
be found in [3]. 

Proof of Theorem 4: We will show that 

P{L,*>c/3}<P ; ,$ z 
1 

r-l C(n+O >e/3 
1 

P{ e( V,,X,Z)#d( Vl,X,Z)} <4sfi /VZ n. (14) 

where C(n +j) is the event that the closest point to 
A combination of (14) and (13) yields (8); (7) follows from 

(X,,+j,Z,+j) from V,, is (Xi,Zi) for some 1 <i <s. How- 
Lemma 4 and (14) upon noting that V: = V,, i if s = 1. 

ever, if D(j) is the event that the closest point to (Xj,Zj) 
Let N, N,, and iV2 be the number of (Xi,Zi) that are 

from TnJ is (Xi, Zi) for some 1 < i Q  s or n <i < n + m , then 
among the k nearest neighbors to (X,Z) and for which, 
respectively, 1 <i <s, Oi = 1, and Oi =2. Conditioned on 

C(n+j)cD(n+j) k+l (X ,zk+’ ,X, Z), the random variables N and IN, - N,I 
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are independent.  Thus we deduce 

=E j$, P{N=jlX,Z) 
i 

E( L, - L,R)’ < 2E(L, - L;)2 
n  2  

+m ; isl z{~((,,x,,z,)~~(v.,,,x,,,)} 

< 2E( L, - L,D)2 

+2P{8(v,,~,,z,~z~~~,l~~,~~,~} 

.P{IN,-N21<jlX,Z,Xk+‘,Zk+’ 

=0 for j>k, 

< 2E( L, - L,D)2 

+2 y P{I~,bJ)-~,b,z)l (I} 

<2E(L,- L;)2+8/m 

(j”)( ::;) where we use Lemma 3  and where N,(x,z) and  N2(x,z) 

P{N=jIX,Z}= 
are as in the proof of Theorem 4  after replacement of 

In, . tx, Z> by t-v>. 
\S/ 

Also, by Lemma 3, VI 

P{INl-N2(<jlX,Z,Xk+1,Zk+1} 
= P{IN,,- k/21 < j/21X,Z,Xk+‘,Zk+‘} 

121 

<4j/VZE. 
[31 

Collecting bounds and using a  property of the hypergeo- [41 

metric distribution [lo] yields 

=4ks/nm 

=4sfi /d%Y n. 
[71 

Proof of Theorem 5: From (a + b)2 ( 2(a2 + b2) and  PI 

REFERENCES 

T. M. Cover and  P. E. Hart, “Nearest neighbor pattern classifica- 
tion,” IEEE Trans. Inform. Z’Zzory, vol. IT-13, pp. 21-27, Jan. 
1967.  
W. Hoeffding, “Probability inequalit ies for sums of bounded  ran- 
dom variables,” J. Amer. Stat. Ass., vol. 58, pp. 13-30, 1963.  
W. H. Rogers and  T. J. Wagner ,  “A finite sample distribution-free 
performance bound  for local discrimination rules,” Ann. Stat., vol. 
6, pp. 506-514,  1978.  
L. P. Devroye and  T. J. Wagner ,  “Nonparametr ic discrimination 
and  density estimation,” Information Systems Research Labora-  
tory, Univ. Texas, Austin, Tech. Rep. 183,  1976.  
V. N. Vapnik and  A. Ya. Chervonenkis,  “Theory of uniform 
convergence of f requencies of events to their probabil it ies and  
problems of search for an  optimal solution from empirical data,” 
Automation and  Remote Control, vol. 32, pp. 207-217,  1971.  
L. P. Devroye and  T. J. Wagner ,  “A distribution-free performance 
bound  in error estimation,” IEEE Trans. Inform. Theory,  vol. 
IT-22, pp. 586-587,  Sept. 1976.  
-, “Distribution-free performance bounds  with the resubstitu- 
tion error estimate,” in Proc. 1977  Coqwter Society Conf. Pattern 
Recognit ion and  Zmage Processing, Troy, NY, 1977,  pp. 323-  
326. 
C. Rogers,  “Cover ing a  sphere with spheres,” Mathematika, vol. 10, 
pp. 157-164,  1963.  
W. Feller, An Introduction to Probability Theory and  Its Applica- 
tions, vol. 1. New York: W iley, 1968.  
G. Roussas,  A First Course in Mathematical Statistics. Reading, 
MA: Addison-Wesley, 1973.  


