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Distribution-Free Performance Bounds 
for Potential Function Rules 

LUC P. DEVROYE AND T. J. WAGNER, MEMBER, IEEE 

Abstrucr--In the discrimination problem the random variable 0, known 
totakevaluesin{l;.. ,M), is estimated from the random vector X. All 
that is known about the joint distribution of (X,0) is that which can be 
inferred from a sample (X1,0,),. . . ,(X,,Q of size n drawn from that 
distribution. A discrimination rule is any procedure which determines a 
decision 0 for 0 from X and (X,,e,); . ,(X,,e,). For rules which are 
determined by potential functions it is shown that the mean-square dif- 
ference between the probability of error for the rule and its deleted 
estimate is bounded by A /fl n where A is an explicitly given constant 
depending only on M  and the potential function. The O(n -‘12) behavior is 
shown to be the best possible for one of the most commonly encountered 
IIdes of this type. 

I. INTRODUCTION 

L ET 0 , = ((X,, e ,>, * * * , (X,,Q,)) be a sample of size it 
drawn from the distribution of (X,0). If (X,8) is 

independent of D,, then discrimination rules are ways of 
estimating the state 8 from X and the sample, which 
assume only that X takes values in IWd and 0 takes values 
in {l;.. , M}. Specifically, if d(n) = g,(X, 0,) is the esti- 
mate of 0  for the rule given by the function g,,: IWd X (l@  X 
{l;.. ,M})“-+{ 1;. . ,M}, then 

L,=P[B(n)#BID,] 

is its probability of error for the given sample, and we are 
interested here in how one estimates L,, from 0,. (See 
Toussaint [ 11, Kanal [2], and Cover and Wagner [3] for 
surveys of the problem.) 

If 2, is some estimate of L,, then one would like to 
know 

sup P[ I& - L,I >c] (1) 

for 0  <E < 1 where the supremum is taken over all distrib- 
utions of (X, t9). As might be guessed, upper bounds to (1) 
seem to be the most for which one can hope. To be useful 
these bounds must go to zero with n, hopefully as fast as 
possible. For linear discrimination rules with the resub- 
stitution error estimate, bounds to (1) have been found by 
Vapnik and Chervonenkis [4], Cover and Wagner [3], and 
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Devroye and Wagner [5], [6]. For local rules (e.g., nearest 
neighbor rules) with the deleted error estimate, bounds to 
(1) have been found by Rogers and Wagner [7], Devroye 
and Wagner [8]. Bounds for (1) for other rules with the 
resubstitution error estimate may also be found in [8]. 

The class of rules which this paper considers may be 
described as follows. Let K(x,y, 8) be a nonnegative func- 
tiondefinedon RdXRdX{l,-~-,A4} andlet 

n  

be the vote for statej where ,‘r.] is the indicator function of 
the event [a]. The estimate e(n) is taken to be the integer 
with the largest vote, or in the case of ties, the smallest 
integer from those tied. This class of rules is large enough 
to include the usual potential function methods where K is 
the potential function (Aizerman et al. [9], [lo], Bashkirov 
et al. [ll], [12]), histogram rules (Glick [13]), and two-step 
rules which use kernel density estimates with the same 
kernel widths [3]. Probably the simplest nontrivial rule 
from this class is obtained by putting 

w249 = h-v,l crl. (2) 
Then f&n) is just the integer with the highest frequency of 
occurrence from the integers 0, with IJX- X,1/ Q r, 1  <i <n. 
Mentioned first by Fix and Hodges [14], this rule is 
asymptotically optimal if r is allowed to vary with n. In 
particular, if L* is the Bayes probability of error for 
estimating 0 from X and if r = r,, with 

r-,-I: 0  

nrnd7 co, 

then L,, 1 L* in probability regardless of the distribution 
of (X,0) (Devroye and Wagner [15]). 

One estimate of L,,, called the resubstitution estimate, is 
given by 

where 4. = g,(X,, 0,). Because (X,,e,) is also in D,, it is not 
surprising that L,” is frequently an optimistic estimate of 
Ln. For example, consider the simple rule with K given by 
(2). If r is less than /lXi-Xill for 1  Gi, j <n, then L,” is 
always zero regardless of the value of L,,. From this it is 
not hard to see that (l), with this K and the resubstitution 
estimate, equals one for O<E < 1 - l/M. It appears then 
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that L,” is not a good estimate of L,, for the class of rules 
considered here. 

One possible way to remove the optimistic tendency of 
L,” is to let 4 be the estimate from Xi and the sample with 
(X,,e,) deleted, that is, 

8i=gn-,(Xi,Dni) 
where 

Dni=((X,,fl,),* * * ,(Xi-,,ei-,),(xi+l,ei+l),...,(x,,e,)). 

The resulting estimate is called the deleted estimate and is 
denoted L,“. To see how fast (1) might go to 0 with n for 
L,f, consider again the simple rule with K given by (2), let 
M= 2, and let X and B be independent with P[8 = l] = 
P[ 8 = 2]= i. If r is bigger than the diameter of the support 
of X and n is even, L,” = 1 whenever the number of 
e 19’ . - ,e, equal to one is n/2. Thus, for O<e< +, 

P[IL,D-L,j>e]>P 
i 

$Zfe.=11=n/2 . 1 
Using inequalities for factorials (Feller [16, p. 541) we see 
that this last probability is greater than l/s so that 
(1) can go to zero no faster than O(n - 1/2) for the simple 
rule with K given by (2) and 0 <E < i. The main result of 
this paper is the following theorem. 

Theorem: Let p* be the smallest number p > 1 such that 
the range of K is contained in { 0} u [LY, a~] for some (Y > 0. 
If no such p exists put p* = cc. Then (1) is bounded by 

where 
supE( L,” - L,)2/r2 

supE(LnD- 

and c is a constant independent of the underlying distri- 
bution and less than 24.0. 

For the K of (2), p* = 1 so that (1) indeed goes to 0 as 

W -‘j2) for that simple rule. If K takes the values 
0,1,2;. . ,N then p * = N, while if 

K(x,y,e)= ,-ll~-Y11*/2~* 

or 
K(X,y,e)= o’- IIX-YII~ 

1 
lb-YII <T 

9 elsewhere 
then p* = 00. We do not know if the above theorem can be 
extended to include these two interesting kernels. 

II. PROOFS 

We begin by proving two lemmas. A rule is said to be 
symmetric if for each n the value of g,, does not depend on 
the order of the (X,,e,) in D,,. In particular, the rules in the 
class defined above are all symmetric. 

Lemma 1: For all symmetric rules 

E(L,D- LJ2 l ’ 5 +3Elz[~.(X,D.)f~l-z[~,-~(X,D,-,)P~lI 

< & +3P[ b(n)+J(n- I)]. 

Proof: Let 

(4, et), (x0, so), (x,, e,), . . f , (x,, 4) 

be independent identically distributed (i.i.d.) with the dis- 
tribution of (X,8), and for a,b, c contained in {t, 0,1,2} 
let 

A 0, c z[,(x~,((x~,e~),(x,,e~),(x,B,) ,..., cxn,en,)ze,] 

AF=z[ s,-I(x,,((x,,e,),(x,,e,),....(x”,e”))fe,]. 

From Rogers and Wagner ([7, theorem 2.21) we see that 

E(L,“- L,)‘= $+:(1-A;)) 

+E{AyA,0’-Ay2A,0+A:A;-A:2A;}. (3) 

Using Schwarz’s inequality on the first term of (3) and 
noting that (Af)‘=A:, (l-Ai)2= 1 -Ai and EAi= EA& 
we see that this term is bounded by 1/2n. For the second 
term of (3) we see from symmetry that it equals 

E{(Ap’-A~)A~+(A;-A;2)A,0’+(A~-A;)A~2 

+A;(A;-A;1)+(Af-A;2)A;1+A:2(A;1-A;)} 

=E{(A~-A~)A,0’+(A~-A~)A,0’+(A~-A;)A~2 

+A;(A,0-A,0’)+(A;-A$)A;‘+(A;2-A~)A,0’} 

=E{(Ap-Ap)(AP-A;‘)+(A;-A;2)(AzOf-A;’) 

+(A:-A;)(Ay2-A;)} 

<3E{IA;‘-A,2/} 

=q I~[~“(x,D”)Pel-~[,_,(x,D”~,)#el I> 

<3P[f?(n)#&n-l)] 

and the lemma follows. 
Lemma 2: Suppose Y,, Y,, * * * , are independent identi- 

cally distributed with values in [ - 1, - b] u { 0} u [b, l] for 
some O<b < 1. Then 

where a < 8.0 and 

! 

1, x >o, 
w(x)= 0, x = 0, 

- 1, x<o. 

Proof: If a2 denotes the variance of Y,, then the 
Berry-Esseen inequality (Petrov [ 17, p. 1111) yields 

sup P &q-EYi)<oV%x -Q(x) x I ( 1 1 1 

< “0 Ely,-Ey,13 < 2% 
\ 

u3 vii ZF (5) 

where cc, is a universal constant known to be less than 
0.7975 (Van Beek [ 181) and 

(a(x)= & = f” e-‘*12dt. 
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From (5) we deduce that where W  is an (n + 1,p) binomial random variable. Since 

b’- a’ 4co Efl < m  = dm and (1 -p)“p < 0.5/(n + 1), 

vzufi +xF* 
(6) we obtain 

Additionally, N = Z;IIK.,,,, then (6) yields 

P a’< i q::<b’]N < 
i 1  

(b’ - a’) 

vLJ,m + 
0  

1 uo4G (7) 

where ai= var(Y,(Y,#O). Lettingh=EY,,p=P{Y,#O}, 
q  = X/p = E { Y, 1 Y, # 0} then two cases can occur. 

1) If X2 <p2b2/2 and Q = Iru~+,fol then 

p{sgn(S,+,b%n(SJ) 

‘(++8co) A, +% 

2 

( G +8co+ (- 

which proves the lemma. 

Proof of Theorem: Let 

y~~~(x~x~~l)z~~i-~]~K(x~XiJ)z~~,=j] 

< 
( 

since cri >~b2 - (A/p)’ > b2/2. 

(8) 
for 1  Qi<n, 2<j<M. If 

~~,(~~~“)z~l~~~,-,(~~~“-,~~ll 
then for some 2 f j <M 

2) If X2>p2b2/2 then the left side of (8) can be upper 
hc -3unded by 

But y,, 
. . . , Y,,j are i.i.d. with values which may 

f’b%+ r,+,--(N+Q)q< -W+QMN,Q> 
assumld to lie in [-l,-l/p*]~{O}~[l/p*,l]. Thus 

+P{S,-Nq( -%IN,Q} 
E(lrs^(n)ie]-Z[~(,-,),,]I L  

20: 4 < ~~~~~P~~l~~~“(x,o,)~el-~~,~,(x,D,~,)~elll~~~~ 

be 

< -“<- 
Nq2 Nb2 ’ <(M- l)p*a/fi 

where S,, =Zl-, Y for all n. Replacing co with 0.7975, we and the theorem follows from Lemma 1 and Chebychev’s 

see that inequality. 

4  4c,V?z -~ 
Nb2 ’ V%b III. bh4A~K.5 

whenever One would hope that the upper bound for sign changes 
4 

-<1 
in Lemma 2 could be improved by eliminating the depen- 

Nb2 dence on b. It cannot. For example, if X,,X2, * * . are i.i.d. 

and, consequently, 
with 

P{sgn(S,+,)#sgn(S,JN,Q} <(g +4c,fi )/(bfl). and 

P[X,=-11=1/n, 

P[X,=b]=l-(l/n), 1  VT7 / 
Now, 

Pb4%+d+wLW 

=~{P~~gn(S~+~)~~gn(S,)lN~Q}Z~~,o~~,ol} 
+P{N=O;Q#O} 

where bE(l/n,l/n-1), then 

SPn( n$4)+Sgn( $4) 

if exactly one Xi equals one for 1 <i Gn. But the probabil- 
ity that exactly one Xi equals one is 

pn( 1 -p)“- ’ >pn( 1 -p)” 
)e-“P/(I-P)> 1/e2, for n  > 2. 

By extending Lemma 2 slightly, one can get a similar 
result to the above theorem for the holdout estimate. See 
Devroye and Wagner [ 191 for details. 

‘p’+ ‘( 1 -py + (1 -p)“p 

< 
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