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Distribution-Free Performance Bounds with the 
Resubstitution Error Estimate 

LUC P. DEVROYE AND TERRY J. WAGNER, MEMBER,  IEEE 

Abstmct-Probability inequalities are given for tbe deviation of the 
resubstitution error estimate from the unknown conditional probability of 
error. lle inequalities are distribution free and can be applied to linear 
diSCrhiMti0n rules, to nearest neighbor rules with a reduced sample size, 
and to b&gram rules. 

I. INTRODUCTION 

In the nonparametric discrimination problem, one observes X, 
a’random vector with values in wd, and wishes to estimate 8, a 
random variable known to take values in { 1; * * ,M}. All that is 
known about the distribution of (X,fZ) is that which can be 
inferred from a sample (X,,e,); - . ,(X,,&) drawn from the 
distribution of (X,0). The sample, denoted by D,,, is assumed to 
be independent of (X,0). If 

~=g(X,Dn) 
denotes an estimate of 8 from X and the sample, then 

L,=P{B#ep,}, 
the probability of error given the sample, measures the perfor- 
mance of the estimate. Because the distribution of (X,0) is 
unknown, there is no way of computing L,, from D,,. An im- 
mediate need then is to estimate it from the sample. 

One of the oldest estimates of L, is the resubstitution estimate 
(Toussaint [I]) 

where r$ = g(Xi, D,), 1 <i <n, and It.1 is the indicator function of 
the even! { *>. In this correspondence we obtain upper bounds 
for P(IL,, - L,,J >E} that do not depend on the distribution of 
(X,0) and that apply to three types of discrimination rules or 
functions g: 

1) linear discrimination rules; 
2) condensed nearest neighbor rules; 
3) histogram discrimination rules. 

The existence of distribution-free bounds with the resubstitution 
estimate for linear discrimination rules was first noticed by 
Vapnik and Chervonenkis [2]. The bounds we present here for 1) 
improve the earlier ones given in Devroye and Wagner [3], while 
the ones we present for 2) and 3) are new. 

II. &WJLTS 

Let I#,,. . . ,+m be fixed functions from UP’ to R, and let 
Oj=(WiO,e ’ * yC&), l<i<M 
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be any functions of D, which take values in UP+‘. Then the 
discrimination rule which takes 8= i, where i is the smallest 
integer for which 

j!, ~JD&AW + +dDn) 

(2) 

[?I). is called a linear discrimination rule (see Duda and Hart A ..,\ i. Forexample,withm=d,x=(x’,~~~,~“),anct~~(x)=x~, ~<r< 
d, one obtains the ordinary linear discrimination rule. The 
following theorem is proved in Section IV. 

Theorem 1: For every linear discrimination rule and E > 0, 

P { IJ$ - L,I > E} ( 4(4n/M)mM(M-‘)e-“~2/8. (3) 

Using the Borel-Cantelli lemma and Theorem 1, we see that for 
a given n and M, and uniformly over all linear discrimination 
rules, I& - L,,I $0 with probability one, a result of Glick [5]. In 
particular, picking oi,. . . , u, to minimize & is nearly equiv- 
alent for large n to minimizing L,, (Wagner [6]). 

A consideration always present in nonparametric discrimina- 
tion is how to implement rules derived from large amounts of 
data. Linear discrimination rules are of a fixed form and avoid 
this problem since the calculation of or,. . . ,o, need only be 
done once while the choice of +r, * . * ,$,,, is usually dictated by 
computational simplicity. However, if one uses the nearest 
neighbor rule with D,,, a large n presents difficulties in that both 
storage requirements and computation times increase with n. In 
order to keep the implementation requirements within reason 
and still retain the intuitive appeal of the rule, various proce- 
dures for condensing or reducing the sample before the nearest 
neighbor rule is applied have been suggested beginning with 
Hart [7] and most recently by Bitter et al. [8] (see also Wilson 
[9], Tomek [lo], Gates [ 1 I], and Wagner [ 121). There seems to be 
ample evidence that a reduction, properly done, will improve the 
performance of the nearest neighbor rule over that obtained with 
the raw sample. 

We assume below that the sequence which represents the 
condensed sample, 

(Y,A3* * * ,(YK&), (4) 
is obtained from D,, in any fashion where K= K(D,,). The 
estimate 4 = 6 is then made whenever j is the smallest integer for 
which 

IIx- qll= ,$Kllx- FlI* 
This, of course, is just the nearest neighbor rule used with (4). To 
use Theorem 2, it is assumed that K(D,J <k, where k is known a 
priori. For example, one must continue to condense or reduce 
the sample until k points or less remain where k is chosen a 
priori. 

Theorem 2: For any condensed sample with K(D,,) <k, the 
probability of error for the nearest neighbor rule with the con- 
densed sample satisfies 

(5) 
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The condensed sample partitions lRd into K sets A,; * * ,A5 
associated with Y,, * * . , YK (e.g., Aj is the set of points in lR 
closer to 5 than any other Yi for 1 <i ==Q and as close to & as 
any other Yi for j < i Q n). The  partition here depends on 0,. If 
we fix the partition beforehand, we might expect to get even 
tighter bounds. 

Let Al,.. . ,A, be any f ixed partition of Rd, and let .$t; * . ,& 
be any {l;.. ,M}-valued functions of D,,, where now d=.$ 
whenever X E Aj. Such rules are here called histogram rules. 

Theorem 3: For any e>O, for any fixed partition Al;.* ,Ak 
of lRd, and for any way of selecting [i; . . ,& from D,,, 

P{I~~-L,I>~}~2Mke-*“‘* (6) 
and 

P{I&L,I>E} <4(1+(2n/k))ke-“‘2/8. (7) 

The condensed nearest neighbor and histogram discrimination 
rules are such that the estimate 6 takes at most k values and, as a 
consequence, the bounds (5) and (7) for P{I& - L,,I >E} do not 
depend upon M, which in fact may be infinite. Similar M-inde- 
pendent estimates exist for the linear discrimination rules if one 
decides to use at most k weight vectors q instead of M. 

III. DISCUSSION 

The bounds given in the three theorems, even for moderate n, 
can be useless for small M, d, m, and e. The bound of Theorem 1 
is, however, an asymptotic improvement over the one given in 
[3], while the bound of Theorem 2 and the second bound of 
Theorem 3 have the property that they do not depend on M. 
Also, unlike the bounds of Devroye and Wagner [3], all the ones 
presented here are of the form a,, exp (- @e*), where /3 > 0 is a 
constant and a,, is a function of n. One can conclude from this 
that 

E{(i,-L,)‘} < $ log(a,+l), 

that is, E {($ - L,,)*} decreases as l/n or ‘(log n)/n for all the 
classes of rules considered in this paper. The proof is easy. Find 
ea such that CU, exp (- /3&) = 0, where B > 0 is to be picked later. 
Then 

E((L-L)*}=I, m2tP{li,,-L,I>t} dt 

<e;+2 
s 

co 
ta,, e  - fin” dt 

co 

= $p-% (%le)+e) 

which is minimal for 0 = 1. 
In practice we often have to choose between several possible 

discrimination procedures. Past experience with similar data 
(medical, economic, administrative) can help in the selection, 
but there is no guarantee that given the data D,,, the selected 
discrimination method is best (has lowest probability of error L,) 
among those under consideration. Assume now that for each 
procedure p  in the collection 9, we compute an estimate 
L,,(p, D,,) of L,, and pick the one for which 

i,(~*,o,)=;$~ &,(P,DJ. 

For the rules treated in this correspondence, the resubstitution 
estimate seems appropriate. However, while it is true that for all 
individualp, P{l& - L,I >E} <$(p,n,c), the bound we have for 
p* is 

p{l~~n(~*,D,)-L,(p*,D,)l>~) G  p~T#(~,w). 

For example, if 9  = (pl; . . ,p,) and pi is a  linear discrimina- 
tion procedure with functions &,a * * ,+,$ then the selection 

method picks the best colllection of functions for the data 0,. 
The importan: point is that the inequality of Theorem 1 is not 
applicable to L,,(p*, D,,) because the functions +i,. . . ,$J,,, depend 
on D,. Fortunately, it is true that 

P(l~~n(p*,D,)-L,(p*,D,)I 2~) 

< i 4(4n/M)“‘M(M-‘)e-“*/s. 
i=l 

It should be emphasized, however, that Theorem 1 is valid for all 
ways of picking th: weight functions oi,. . . ,a,,., from the data 
(e.g., to minimize L,,) once +,, . . . ,+,,, are fixed. 

W ith the condensed nearest neighbor rule, we can compare I 
sy=n=s ( Y1, 0,. . . , (Yk,&) of length k or less on the basis of 
L,,. Regardless of how large I is, Theorem 2 applies to p*, the 
rule with the seemingly best condensed sequence. 

The inclusion of the nearest neighbor rule in 9 will force us to 
pick it for almost all Dz if our- standard of comparison is the 
resubstitution estimate L,,(i.e., L,, = 0, if X, has a density, inde- 
pendently of the value of L,,). This shows that for some rules 
other estimates of the probability of error must be used. In the 
case of the nearest neighbor rule, the deleted estimate (Cover 
[13], Rogers and Wagner [14]) seems to be the best candidate. 

Iv. PROOFS 

The key technique used in the proofs is due to Vapnik and 
Chervonenkis [ 151. If Y,, Y,; . . are independent random vari- 
ables taking values in some abstract measure space @ ,a) with 
v(B)=P{Y~EB}, for all BE’%, i=1,2;*., then 

P( ;tpe Iv(C)-v,(C)]Zr) G4s(&2n)e-“c2/8 

where 
1) (Z? is a subclass of 3, 
2) v,(C>=(l/n)Z~z(.r;Ec), 
3) s(e, n) is the maximum over y,, . .. ,yn in Q of the number 

of setsin {{JJ~;~~,~,}~C:CE~}. 

The specific calculations for s(E?,n) that we shall need are the 
following. If e’ represents the class obtained by intersecting p  or 
less sets from e (or taking unions of p  or less sets from e), then 

s(c?,n) <s(e,n)p. 
If 9  is Iw’ and E? is the class of linear half-spaces in R’, e.g., sets 
of the form 

( 

1 
xER’: xaixi<aO 

1 I 

for some ao,. . * ,a,, then s(e, n) g (2n)‘. If the inequality used in 
the definition of e is made strict and/or reversed, the same 
bound can be used for s(E?,n). See Cover [ 161 for the details. 
Proof of Theorem Z 

Replacing 9 with R” x { 1, * * * ,M}, 5  with (ai,Bi) (where 
@ i=(+l(xi)9* ’ * ,+m(xi)), i= 13%. . . ), and ?3 with the Bore1 sub- 
sets of Iw” x { 1; a. ,M}, we see that 

L,,=l-v(! (Aix(ij)) 

2=1-v,,( F  (Aix(i))) 

where Ai is the set of ally E R” for which 6= i. Then 

IL - LI G  sip MC) - 4a 

where (.? is the class of sets of the form 

! (4X(i)). 
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Because Ai comes from an intersection of at most M- 1 linear 
half-spaces, it is,,not difficult to see that 

s((%n) =G SUP 
( 

ff (2nj)m(M-1) 
(n,,...,n,):Xn,=n j=l )() 

G g m ”(M-‘), 

and (3) follows. 

Proof of Theorem 2 
As in Theorem 1 we see that 

L.=l-v( 0 (&X(L))) 

L=l-vn( f (Bix(2))) 

where &~{l;.. ,M} and Bi is the set of y E Rd closest to Yi. 
Thus each Bi is the intersection of at most k- 1 linear half- 
spaces in Rd. If e’ represents the class of sets from LW'X 
(1; ** ,M} of the form 

6 (4X {&})p 
1 

then 

s(C,n) <s(e,n)k 
where e is the class of sets B, x (5,). But 

s(c%n) < n,,. .,Eyzn =n (i, (2,)“‘“‘)) < (2n)d(k-‘) 

where 9 is the number of points from (JJ,,&) 
belong to lRd X {j}. Equation (5) now follows.’ 

+ * * , (.Y,, -9 which 

Proof of Theorem 3 
For a fixed set C in I@ x { 1,. . . ,M}, the inequality of Hoeff- 

ding [ 171 yields 

P{Iv,(C)-v(C)I>c} <2e-*“‘*. 

Because A,;. . ,Ak are fixed in Rd, the class e of sets we need to 
be concerned with are of the form 

! (BtX{il) 

where each Bj is a union of the Ai and the Bj partition Rd. 
Because c has Mk members, we have (6) immediately from 

P{l&-L,,I>r}<P( sip lu,(C)-~(C)I>c)<2M~e-*“‘~. 

For the second part of the theorem, let (x,,y,); * * ,(x,,y,J be 
an arbitrary sequence, and let ni be the number of j, 1 <j GM, 
such that Ai X {j} contains at least one point from the sequence. 
Then the number of sets from 

{ {(x,dd- . . ,(4PYn)}nc: cEe> 
is bounded by 

Because the sequence was arbitrary, we conclude 

and (7) follows. 
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Finite Memory Hypothesis Testing with Dependent 
Samples 

JACK KOPLOWITZ 

Abstmct-Let x1,x2,. . . be a seqaence of dependent random variables 
drawn from a probabiity measure P. Consider the hypothesii test H,,: 
P= PO versus H,: P= P,. It is shown that for a class of discrete valued 
processes, includiag Markov processes, the hypothesis teat caa be resolved 
with a three-state memory. The result is generalized to m-hypothesis tests 
which require m  + 1 states. 

I. INTRODUCTION 

Let x,,x2;. . be a sequence of random variables (rv) drawn 
from a probability measure P. We are interested in the hypothe- 
sis test HO: P= PO versus H,: P= P,, under the constraint that 
the observations are summarized by a time-varying finite mem- 
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